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Abstract
Natural stimuli elicit robust responses of neurons throughout sensory pathways, and therefore their
use provides unique opportunities for understanding sensory coding. This review describes
statistical methods that can be used to characterize neural feature selectivity, focusing on the case
of natural stimuli. First, we will discuss how such classic methods as reverse correlation/spike-
triggered average and spike-triggered covariance can be generalized for use with natural stimuli to
find the multiple “relevant” stimulus features that affect the responses of a given neuron. Second,
ways to characterize neural feature selectivity while assuming that the neural responses exhibit a
certain type of invariance, such as position invariance for visual neurons will be discussed.
Finally, we discuss methods do not require one to make an assumption of invariance, and instead
can determine the type of invariance by analyzing relationship between the multiple stimulus
features that affect the neural responses.
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INTRODUCTION
One way to understand how the brain works is to describe the function of each of its
neurons. In sensory systems, to describe a neuron’s function means to create (either
explicitly or implicitly) a model that can predict the neural responses to novel stimuli.
Ultimately, the goal is to predict a neuron’s responses to “natural stimuli,” i.e., stimuli that
are taken from an animal’s environment (or to approximate such stimuli) (Felsen & Dan
2005). However, one can gain significant understanding of the function of neural pathways
by using simplified stimuli (Rust & Movshon 2005). In fact, much of our current
understanding about the function of visual pathways has been obtained using reduced
parametric stimuli, such as spots of light, edges and bars, curved contours, and elements of
three-dimensional shapes. Studies using parametric stimuli have led to such fundamental
insights as the establishment of orientation selectivity in the primary visual cortex (V1) as
well as tuning for curvature and orientation in three dimensions at subsequent stages of
visual processing (Anzai et al. 2007, Bakin et al. 2000, Desimone & Schein 1987, Hubel &
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Wiesel 1968, Kuffler 1953, Kunsberg & Zucker 2012, Li & Zaidi 2004, McManus et al.
2011, Pasupathy & Connor 1999). The use of parametric stimuli has many advantages.
Mainly, if the stimuli can be parameterized with a small number of parameters, then the
corresponding stimulus set can be probed well experimentally, resulting in models with high
predictive power, at least with the parameterized stimulus set. However, the use of
parametric stimuli in some sensory areas, especially those beyond V1, presents some
difficulty, namely that the relevant set of parameters is either unknown or of such high
dimensionality that fully sampling it is no longer feasible. As an example, one can think of
the many parameters that are needed to describe facial features and expressions. In such
cases, computational approaches to characterize neural feature selectivity become
indispensable.

In parallel to work in vision, research in the auditory modality since the 1950s has relied
much more heavily on the use of computational approaches to describe neuronal function.
The basic idea is to use stimulus sets that are defined by their statistical properties, such as
the mean, variance, or correlation structure, but are otherwise unconstrained. Thus, instead
of using a few parameters, such as the orientation or length of a bar, to specify each
particular stimulus, investigators use a few parameters to specify the properties of an entire
stimulus distribution. Examples of the resulting stimulus ensembles include “white-noise”
stimuli for which the mean and variance are specified but responses at different times or
across different spatial locations are uncorrelated. Adding correlations between stimulus
values at different times, frequencies, or locations yields ensembles of correlated Gaussian
stimuli. Again, the correlations between different stimulus values can be described by a
small number of parameters, such as how fast the correlations decrease with the increasing
distance between pixels.

The use of statistical stimulus sets has its own advantages. First, because the stimulus set is
not optimized for a given neuron, such stimuli are ideally suited for multielectrode
recordings that are becoming increasingly common. Second, the use of such stimuli enables
researchers to uncover types of neural feature selectivity that were not part of the original
hypothesis. The use of statistical stimulus ensembles also permits investigators to proceed
without a good starting hypothesis about the types of stimulus features that are relevant in a
given sensory region. As a result, compared with models obtained using parametric stimuli,
models derived using statistical stimulus sets usually have better predictive power when they
are applied to predict the neural responses in another stimulus context.

How do statistical approaches work in general? The basic idea common to all these methods
is as follows. Prior to conducting an experiment, researchers do not know which stimulus
features will modulate the responses of the neuron under consideration. The goal is to find
these features, referred to as the “relevant stimulus features,” because they may either
increase or decrease the neural spike probability relative to its average value. To find the
relevant stimulus features, one can present a large number of stimuli (~20,000 to ~50,000
different images or sound patterns, which is roughly equivalent to a typical sensory episode
of ~1 h). Although it is possible that none of these patterns exactly matches a particular
neuron’s relevant feature(s), many (or at least some) of the stimuli will be sufficiently close
to optimal to elicit some neural responses. Once the neuronal responses to a large number of
different stimuli have been recorded, the relevant stimulus features for a given neuron, as
well as its preferred optimal stimulus, can be deduced by analyzing how potentially subtle
changes in the neuronal firing rate are related to changes in the corresponding stimuli.
Typically, if a stimulus sequence contains ~104 stimuli, then ~103 spikes will be collected,
and this will be sufficient to map out the profile of the relevant stimulus features on a grid of
~102 points. Notably, stimuli do not need to be repeated multiple times to enable analysis of
the potentially subtle changes in the neuronal firing rate with small changes in the stimulus.
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In fact, for most of the techniques described below, presenting many similar (but not
identical) stimuli just once is preferable to having any chosen stimulus presented multiple
times, even though multiple presentations of the same stimuli allow us to average out the
neuronal noise. This is because presenting many similar stimuli allows researchers not only
to average out the neuronal noise (assuming some continuity in the stimulus/response
function of a given neuron), but also to better probe the stimulus/response function at
intermediate points.

This article discusses the advantages and limitations of statistical techniques that are
currently available for characterizing neural feature selectivity and that use noise-like and
natural stimuli. Particular attention is given to the methods used to characterize neural
resposes to natural stimuli, because such stimuli are often the only type that can drive robust
responses in high-level sensory areas. Largely omitted from this discussion are techniques
that can lead to a more effective use of experimental time. The reader is directed to a
number of recent and excellent reviews (Huys & Paninski 2009, Lewi et al. 2009, Paninski
et al. 2007) on how to optimize the order in which stimuli should be presented to maximize
the accuracy of derived models given the limitations of the length of the recording.

RECEPTIVE FIELD
The concept of a receptive field (RF) was first introduced in somatosensation to describe a
part of the body surface where the reflex can be elicited (Sherrington 1906). In sensory
systems, the term became much more widely known after Hartline (1938) used it to describe
the firing properties of the retinal ganglion cells (RGCs). One way to measure the RF of an
RGC in its original formulation is to plot the neuronal firing rate as a function of light
position. Another way is to plot the pattern of light intensities that, when presented on a
screen, would elicit the maximal firing rate from this neuron. If the neuron is modeled as a
linear system, then the two ways of measuring the RF are equivalent. However, because the
neuronal firing rate inevitably exhibits at least some nonlinear effects, for example, because
it cannot be negative, the two interpretations of the RF concept will differ. Research has
shown that the second formulation, whereby the RF is interpreted as the optimal stimulus for
the neuron, is much more amenable to the generalizations necessary to capture a rich variety
of nonlinear and contextual effects observed for sensory neurons.

LINEAR MODEL
To predict the firing rate of a neuron to a novel stimulus using a linear model, one can
compare how similar that stimulus is to the optimal pattern, i.e., the RF. Mathematically,
this corresponds to multiplying stimulus values pixel by pixel by the RF values and
summing across all pixels. In this interpretation, the RF becomes the weighting function
according to which stimulus values are combined to obtain the firing rate (Figure 1). The
linear model also includes the coefficient of proportionality between the stimulus similarity
to the RF and the neural firing rate. This coefficient of proportionality, referred to as the
“gain,” is the same for all stimuli.

Before discussing various ways for building nonlinear models of neural responses, it is
useful to explore other ways of thinking about the RF concept. If the RF has D pixels (which
could include temporal profiles), then it can also be represented as a vector in a D-
dimensional space. To compare each new stimulus to the RF, stimuli should be defined on
the same grid of pixel values as the RF. Then, each stimulus can be considered as a vector in
the same D-dimensional space. The mathematical procedure described above of weighting
each stimulus value by the RF profile corresponds to the computation of a dot product
between the RF and the stimulus for which we would like to obtain the firing rate prediction.
In geometrical terms, this corresponds to taking a projection of a vector that describes the
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stimulus onto the vector that describes the RF (Figure 1). In other words, this procedure
corresponds to either finding a stimulus component along the RF or filtering stimuli by the
RF.

Spike-Triggered Average
These geometrical interpretations suggest ways to find the RF from neural recordings. When
only the stimulus component along the RF affects the neural firing rate, averaging all stimuli
that have elicited a spike will result in an averaging out of all the stimulus components along
directions in the stimulus space other than that of the RF. This spike-triggered average
(STA) should then yield a vector that is proportional to the RF (Figure 2). The STA could
also contain the average stimulus that is not associated with spiking, which in many cases
equals zero. If the mean of all stimuli (both those that elicited and those that did not elicit a
spike) is nonzero, then this term should be subtracted from the STA to yield an estimate of
the neuron’s RF.

One can prove that this intuition for computing the STA is mathematically rigorous if the
stimulus ensemble is “circularly symmetric,” meaning that the stimulus ensemble probes the
neuron’s responses in all directions equally (Chichilnisky 2001). If so, the STA yields an
unbiased estimate of the neuron’s RF that will converge to the true RF as longer recordings
are obtained. One example of a circularly symmetric stimulus distribution is the so-called
white-noise stimulus ensemble, which has zero mean and independent variations along all
stimulus dimensions that follow a Gaussian distribution. More generally, the probability
distribution of observing a stimulus with a certain amplitude can be non-Gaussian. Such
distributions are also of relevance. For example, analyses of image intensities in the natural
environment may follow a Laplace distribution (Ruderman & Bialek 1994, Simoncelli &
Olshausen 2001). However, as long as the distribution is circularly symmetric, the STA will
correspond to the RF asymptotically.

What happens if the stimulus ensemble is not circularly symmetric? For example, in the
natural environment, image intensities at nearby locations are often positively correlated
with each other (Field 1987). As a consequence, the sum of intensities at the two locations
will cover a much broader range of values than their difference. Stimulus ensembles with
such correlations are not circularly symmetric. In other words, variance is not equal along
different dimensions in the stimulus space (Figure 3b). How does this affect our ability to
estimate the relevant stimulus features by computing the STA? Consider the following
hypothetical example: The neuron’s spikes are triggered when the light intensity at one
location exceeds a certain threshold value. The light intensities at this location are correlated
with light intensities at nearby locations. The STA will, therefore, show a peak in the light
intensity at the location that is relevant for eliciting neuronal spikes. However, the nearby
locations will also show significant deviations from zero (Figure 3). In technical terms, the
STA provides a biased estimate of the relevant stimulus feature. Even if we collect an
infinite amount of data, the STA will not provide a correct estimate of the relevant stimulus
feature in cases where stimulus values are correlated across different dimensions. However,
it is possible to compensate for the presence of stimulus correlations with one relatively
simple step. In the linear model, the effect of stimulus correlations is limited to pairwise
correlations between different stimulus values, which are specified by the stimulus
covariance matrix. To obtain an unbiased estimate of the relevant stimulus dimension from
the STA, one simply needs to multiply it by the inverse of the stimulus covariance matrix
(Rieke et al. 1997; Theunissen et al. 2000, 2001):

(1)
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where vi are components of the relevant stimulus feature, matrix Cij is the stimulus
covariance matrix, (STA)j represents components of the STA, and summation over the
repeated index j is implied. The covariance matrix is obtained by averaging stimulus
deviations from the mean. This procedure is known as decorrelation or deconvolution. The
resultant vector is termed the decorrelated STA (Rieke et al. 1997; Theunissen et al. 2000,
2001) and is analogous to deconvolution that is sometimes done in microscopy to obtain a
deblurred image by compensating for the microscope’s point spread function (Press et al.
1992). The stimulus covariance matrix is the analogue of the point spread function in the
context of neural coding. It captures the expected stimulus values at nearby locations given a
“point source” at the chosen location.

Although correcting the STA for stimulus correlations according to Equation 1 is a simple
linear operation, practical implementations can be difficult because a very strong asymmetry
is often found in the range of stimulus values contained within the input ensemble. This is
especially true for stimuli derived from the natural environment. Here, the intensities
averaged across space (the image) or time have a much wider range of values compared with
the range of values explored by their differences. More generally, components of natural
stimuli at high spatial and temporal frequencies are much less well sampled than are
components corresponding to low spatial and temporal frequencies (Field 1987). Because of
this asymmetry, some stimulus dimensions are much less well probed than others. The
process of compensating for the difference in sampling along different stimulus dimensions
according to Equation 1 amplifies noise at the stimulus dimensions that were less well
probed. In mathematical terms, the covariance matrix C is ill-defined, and its eigenvalues
have widely different amplitudes. In the context of natural stimuli, small eigenvalues of the
covariance matrix correspond to high temporal and spatial frequencies and reflect the small
power found at these frequencies.

The division of the STA by the stimulus covariance matrix amplifies noise at the
components that are underrepresented in the stimulus. To overcome these issues, one can
perform “regularization.” This process is based on the observation that at some frequencies
the amount of noise will exceed the measured signal; for those frequencies, it is better to
assume that the signal is equal to zero. Deciding which stimulus components are sufficiently
well sampled to be included often has to be determined on a neuron by neuron basis and in
some cases can introduce additional biases that are not present in the decorrelated STA
computed without regularization according to Equation 1 (Sharpee et al. 2008). Several
advanced statistical techniques have been developed to tackle this issue by incorporating
priors such as STA smoothness and sparsity (Ahrens et al. 2008, Christianson et al. 2008,
Paninski et al. 2007, Park & Pillow 2011b, Sahani & Linden 2003).

LINEAR-NONLINEAR MODEL
The linear model can often well characterize neural feature selectivity by specifying the
neuron’s RF (Theunissen et al. 2000, 2001). However, the linear model cannot account for
many nonlinear and contextual effects in the neural response (Gilbert & Wiesel 1990,
Nothdurft et al. 1999, Schwartz et al. 2007, Series et al. 2003, Sharpee & Victor 2008, Sillito
& Jones 1996, Zipser et al. 1996). One way to generalize the linear model of neural feature
selectivity to capture some of the nonlinear aspects of the neural computation is to assume
that these nonlinear effects are in some sense weak. Then, one can write the nonlinear
transformation as a power series containing linear, quadratic, and higher-order terms. This
expansion corresponds to the Volterra/Wiener series approximation (Marmarelis &
Marmarelis 1978, Victor & Purpura 1998, Victor & Shapley 1979). Given enough terms in
the expansion, the series is guaranteed to approximate any arbitrary function well. However,
in practice, this approximation can extend only to linear and quadratic terms. Thus, in the
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Wiener approach, only quadratic functions of the stimulus can be modeled. Unfortunately,
neural responses often contain much sharper nonlinearities than can be described by a
quadratic function. For example, in a simple threshold model where the neuron produces a
spike only when the stimulus value exceeds a certain value, the quadratic function is too
smooth to approximate the nonlinearity well.

A very elegant, simple, yet agile way to capture sharp nonlinearities in the neural response is
provided by the so-called linear-nonlinear (LN) model (de Boer & Kuyper 1968, Meister &
Berry 1999, Victor & Shapley 1980). In statistics, this model is also known as the
generalized linear model (Weisberg & Welsh 1994). Whereas the linear model requires that
the firing rate of a neuron depend on the stimulus similarity to the RF (computed as the
stimulus projection onto the RF, a purely linear operation), the LN model allows the firing
rate to be an arbitrary nonlinear function of the stimulus projection on the RF (Figure 1).
This function is often referred to as the nonlinear gain function to emphasize that the gain
between the firing rate and the stimulus projection onto the RF now depends on this
projection. In the LN model, the RF is often referred to as the filter or the relevant stimulus
dimension.

The LN model has many computational advantages. For example, its linear component---the
relevant dimension representing the RF---can be found using the linear techniques described
above if the stimulus ensemble is circularly symmetric (Chichilnisky 2001, de Boer &
Kuyper 1968) or, for certain nonlinearities, in the more general case of finite energy band-
limited (Lazar & Slutskiy 2012, Victor & Knight 2003, Victor et al. 2006). The circularly
symmetric stimulus includes the case of the white-noise Gaussian stimulus without
correlations. The linear techniques also work for determining the linear part of the LN model
if stimuli are correlated but are Gaussian (Ringach et al. 2002, Sharpee et al. 2004) or, for
models with specific nonlinearities. In this case, the RF is computed as the decorrelated STA
according to Equation 1 (Theunissen et al. 2000, 2001). If necessary, regularization may also
be used. However, as in the case of the linear model, doing so may introduce biases into the
RF estimates (Sharpee et al. 2008). The mathematical proof that the linear component of the
LN model can be estimated with linear techniques in the case of Gaussian stimuli relies on
the special property of Gaussian stimuli: Here, the average of any number of Gaussian
variables is equal to the sum of products of pairwise averages between the variables (de
Boer & Kuyper 1968). In other words, by specifying the stimulus covariance matrix,
researchers can fully explain the statistics of stimulus correlations in terms of pairwise
correlations between different stimulus values.

In a more general case, where correlations of higher than second order cannot be predicted
from the knowledge of pairwise stimulus correlations, the linear techniques do not provide
unbiased estimates of the RFs of the LN model. In effect, the procedure for estimating the
linear and the nonlinear parts can no longer be done independently of one another, as was
done for the Gaussian stimuli. Importantly, for sensory neuroscience, natural stimuli in
visual, auditory, or olfactory modalities exhibit strong non-Gaussian correlations that extend
beyond the second order (Ruderman 1997, Simoncelli 2003, Singh & Theunissen 2003,
Vickers et al. 2001). The presence of strong higher-order correlations in the stimulus
ensemble is thought to be driven by the fact that natural stimuli are composed of objects. By
contrast, the presence of Gaussian second-order correlations typically yields “cloud-like”
stimulus patterns that are devoid of edges and object boundaries (Field 1987). Examples of
such stimuli are provided in Figure 3b.

Maximally Informative Dimensions
To characterize the feature selectivity with natural stimuli and other stimuli with non-
Gaussian correlations, the presence of higher-order stimulus correlations in such stimulus
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ensembles must be taken into account. One approach is to evaluate the relevance of different
stimulus dimensions for eliciting the neural response using measures that do not rely
exclusively on the first- and second-order moments of the stimulus distributions. The
Kullback-Leibler (KL) distance between probability distributions provides such a
measurement (Cover & Thomas 1991). When the two distributions are the same, this
distance is zero. In addition, when the KL distance is computed between two probability
distributions, one of which reflects all stimuli P(s⃗) and the other stimuli that elicited a spike
P(s⃗ | spike), it corresponds to the mutual information between stimuli and the neural spike
rate (Brenner et al. 2000):

If we look only at the probability distributions along a single dimension or a set of stimulus
dimensions, we obtain the mutual Shannon information between these dimensions and the
neural spike rate (Adelman et al. 2003, Sharpee et al. 2004). If the spike probability does not
depend on this stimulus dimension, then these two probability distributions (one computed
across all stimuli and the other for stimuli that elicited a spike) will be the same, indicating
that these dimensions carry zero information about the neural spikes. By contrast, the
dimensions that capture all the information in the neural response correspond to those upon
which the decision to spike was based. Therefore, the RF of the LN model may be found by
searching for the maximally informative dimension about the neural response (Sharpee et al.
2004). Because the KL distance upon which the mutual information is based is sensitive to
any deviations between the probability distributions regardless of whether these deviations
are described by differences in the first-, second-, or higher-order moments of the
distribution, this procedure can be used with different kinds of stimuli, including natural
stimuli (Figure 3c).

The proof that RF of the LN model corresponds to the maximally informative dimension
about the neural response (I would prefer to restore “is based on”) the so-called data-
processing inequality (Cover & Thomas 1991). This inequality states that adding any extra
processing of inputs can only decrease the amount of information about the output of a
system. Thus, if we take stimulus components along the same dimensions as were
considered in the process of generating the neural spikes, then no extra processing steps are
added. Otherwise, if we take stimulus components along dimensions that do not exactly
correspond to the dimensions that elicited the neural spikes, then the output information will
be reduced. Finding the RF of the LN model is equivalent to the maximum likelihood fitting
of the LN model (Kouh & Sharpee 2009). Thus, although other distance measures can be
used (Paninski 2003, Sharpee 2007) to compare changes in the probability distributions
between all presented stimuli and stimuli that elicited a spike, information maximization
yields the smallest variance in RF estimates versus other unbiased methods.

Multidimensional Feature Selectivity
The LN model discussed above describes the neural responses as being triggered according
to the degree to which a single stimulus feature is present in the stimulus. However,
responses of many types of sensory neurons exhibit a variety of contextual effects wherein
their responses to the primary stimulus feature are modulated by the presence of other
stimulus features in the stimulus. Examples include crossorientation suppression (Carandini
et al. 1998, Priebe & Ferster 2006) and contrast-invariant orientation tuning for V1 cells
(Troyer et al. 1998). Marr (1982) has argued that to distinguish a faint edge of a given
orientation from a brighter edge of a nearby orientations requires that an orientation-
selective neuron be suppressed by the presence of edges orthogonal to its preferred
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orientation. Another example is the feature selectivity of complex cells in the primary visual
cortex whose responses indicate the presence of an edge while allowing for some degree of
position invariance. This property can be modeled with several visual features that
correspond to Gabor patterns with different spatial phases (Adelson & Bergen 1985). To
account for these aspects of neural coding, the traditional LN model is generalized such that
the spike probability is a nonlinear function of several stimulus components (Rust et al.
2005). Similar to the case of a one-dimensional LN model, the nonlinearity can take an
arbitrary shape, but now with respect to several stimulus components (Figure 4).

Spike-Triggered Covariance
How can we determine these relevant stimulus features from the neural responses? The STA
is one of these features, and it is computed by analyzing the change in the mean between the
stimulus distribution conditional on a spike and the distribution of all stimuli that were
presented in the experiment (Figure 2). Analyzing the change in the variance between these
stimulus distributions allows one to find all the relevant dimensions in cases where the
stimuli are described by a Gaussian distribution (Bialek & de Ruyter van Steveninck 2005,
de Ruyter van Steveninck & Bialek 1988, Schwartz et al. 2006) or by a circularly symmetric
distribution (Samengo & Gollisch 2012). The intuition behind this procedure is that any
dimension along which the variance is different from those expected a priori is associated
with neural spikes. Unlike the change in the mean that defines a single dimension, the
variance can differ along many dimensions.

In mathematical terms, the spike-triggered covariance method consists of two steps. The
first step is to compute a difference between the covariance matrix of all stimuli and that of
the stimuli that elicited a spike:

The second step is to diagonalize this matrix to find dimensions along which the variance is
significantly different from zero. The variance is encoded in the eigenvalues of matrix ΔC.
The eigenvectors that correspond to the significant eigenvalues describe the dimensions
along which the variance is significantly different between the ensemble of stimuli that
elicited a spike and that of all stimuli. To determine the significance, these two steps are
repeated using shuffled spike trains that contain as many spikes as the recorded spike trains.
Another way of breaking the correlations between stimuli and spikes that preserves all the
structure in the neural spike trains is to shift forward these spike trains relative to the stimuli
(Bialek & de Ruyter van Steveninck 2005). The spike-triggered covariance can, in principle,
be used in the presence of stimulus correlations (Bialek & de Ruyter van Steveninck 2005,
Schwartz et al. 2006). To obtain the relevant dimensions in this case, the eigenvectors of
matrix ΔC must be divided by the stimulus covariance Cij in a manner analogous to
Equation 1. However, preliminary evidence indicates that this procedure can present more
difficulties to execute in practice than arise when removing the effect of correlations from
the STA (Aljadeff et al, 2013).

Maximally Informative Subspaces
Multiple relevant stimulus dimensions can also be found by maximizing the mutual
information (Sharpee et al. 2004). Several dimensions that together account for a maximal
amount of information in the neural response may be obtained by computing the KL
distance between the probability distribution along these dimensions for all presented stimuli
and the distribution for the stimuli that elicited a spike. For example, a pair of maximally
informative dimensions may be found by maximizing
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2

This equation yields the KL distance between the probability distribution Pv⃗1v⃗2 (x1, x2) of
stimulus projections x1 and x2, respectively, along dimensions v⃗1 and v⃗2, and the probability
distribution Pv⃗1v⃗2 (x1, x2 | spike) of these projections across the stimuli that elicited a spike.
Accordingly, a two-dimensional probability distribution must be sampled to jointly
characterize two dimensions in terms of the amount of information about the neural
responses that they provide.

In principle, one can find N maximally informative dimensions by sampling the stimulus
probability distribution across N dimensions, although doing so is difficult to achieve in
practice for more than three or four dimensions. Qualitatively, the number of samples that
are available to map out the spike-conditional distribution Pv⃗1v⃗2 (x1, x2 | spike) is related to
the number of recorded spikes. This is often the limiting factor in the computation of
information. Note that the stimulus distribution Pv⃗1v⃗2 (x1, x2) is easier to sample, and in
some cases, an analytic expression may be available. These constraints, known as the curse
of dimensionality (Belleman 1961), limit the number of dimensions that can be
simultaneously characterized according to the mutual information (Rowekamp & Sharpee
2011) as well as other divergence measures (Paninski 2003), which include the percentage
of explained variance.

In some cases, it is possible to bypass the curse of dimensionality by searching for the
relevant dimensions in an iterative fashion, for example, by first finding the relevant
dimension, then finding the second relevant dimension in the subspace orthogonal to the
first, etc. (Rapela et al. 2010, Rapela et al. 2006, Rowekamp & Sharpee 2011). Typically,
this procedure works well when stimuli are not correlated. However, with uncorrelated
stimuli, the relevant dimensions may also be found using spike-triggered covariance, which
is a much simpler procedure. When stimuli are correlated, sequential searching can find the
first relevant dimension accurately if stimulus correlations are Gaussian. The sequential
search for secondary relevant dimensions is complicated by the presence of stimulus
correlations: The sequential search can return a dimension that accounts for a large amount
of information, not because it is relevant to the neural response, but because stimulus
components along this dimensions are strongly correlated with the primary stimulus
dimension (Rowekamp & Sharpee 2011).

QUADRATIC NONLINEAR MODELS
Maximally Informative Quadratic Models

A different approach for finding multiple relevant stimulus dimensions from the neural
responses to natural stimuli is to modify the structure of the LN model. The model
considered above allows for an arbitrary nonlinear function of a few stimulus components.
A recently proposed alternative is to describe the spike probability as an arbitrary nonlinear
function of a quadratic form of stimuli (Fitzgerald et al. 2011a, Rajan & Bialek 2012):

3

where the sum over repeated indices is implied and F is an arbitrary nonlinear function. The
parameters of the model are vi, which is analogous to the RF, and Jij. By analogy with the
LN model, this model may be termed the quadratic-nonlinear (QN) model. The structure of
the QN model is motivated by the need to capture such properties of sensory neurons as
divisive normalization and contrast gain control (Carandini et al. 1997) where responses of
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one neuron are normalized by a squared output of the responses of other neurons in the
circuit. As discussed by Rajan & Bialek (2012), the QN model is also well matched both to
the properties of complex cells (Adelson & Bergen 1985) in the primary visual cortex and to
nonphase locked auditory neurons (Hudspeth & Corey 1977).

The QN model is also congruent with some types of the LN model. For example, the matrix
J can have a low dimensional structure. In such cases, the neuronal response will be
described as a quadratic function of a small number of stimulus components, as in the
standard LN model. However, the LN model can, in principle, describe arbitrary interactions
between the relevant dimensions, whereas these interactions are limited in the QN model
(Equation 3) to sums and differences between the squares of relevant stimulus components.
Nevertheless, the quadratic model provides a way forward to determine multiple relevant
stimulus dimensions from the neural responses to natural stimuli. At the same time, by
incorporating an arbitrary nonlinearity, the QN model represents an advance over the
Wiener approach where in practice only a quadratic form of the stimulus can be estimated.

How can we estimate the parameters of the QN model from the neural responses to natural
stimuli? As in the LN model, this can be done by finding its parameters---the values of the
linear term v and the quadratic matrix J---that account for the maximal amount of
information in the neural response (Fitzgerald et al. 2011a, Rajan & Bialek 2012). All the
arguments for self-consistency of estimators carry over from the LN model because the QN
model can be reformulated as an LN model with respect to the expanded stimulus {si ; si sj},
where indices i and j go from 1 to D (the dimensionality of the original stimulus). Even
though the resulting expanded stimulus will have a very large dimensionality, analysis of
model neurons suggests that the procedure remains feasible (Fitzgerald et al. 2011a). As in
the spike-triggered covariance methods, diagonalizing the matrix J of the QN model will
yield the stimulus dimensions that are relevant for spiking. Finding the parameters of the QN
or LN models by maximizing information is equivalent to a maximum likelihood estimation,
at least for a Poisson model of spiking (Kouh & Sharpee 2009). If the nonlinearity F in the
QN model is constrained to be an exponential, then prior assumptions can be incorporated
via maximum likelihood optimization onto the smoothness of the relevant stimulus features
or the sparseness of their values (Park & Pillow 2011a). Minimal quadratic models: a
Maximum Noise Entropy approach. The approaches described above rely on finding a
suitable model structure to describe the neural circuit and then fitting parameters of these
models according to the chosen criterion, such as information maximization, maximum
likelihood estimation, or percent explained variance. For complex and hierarchical circuits,
the appropriate model structure can be difficult to determine. An alternative to finding a
suitable model structure to fit the neural responses is to construct what is known as a
minimal model. The goal is to construct a model that is consistent with a given set of
measurements of the neural responses and stimuli, but that is otherwise as unconstrained as
possible. This approach is theoretically similar to the maximum entropy principle (Jaynes
1957) and in machine learning is known as the conditional Markov random fields (Lafferty
et al. 2001).

According to the maximum entropy principle, when many distributions may be consistent
with a given set of measurements, the distribution that has the maximal entropy (least
constrained) should be chosen to obtain the least-biased model. Such a choice often yields
models with the best predictive power on a novel set of data (Jaynes 2003). Recent studies
show that this approach is fruitful in characterizing the responses of neural populations
(Schneidman et al. 2006, Shlens et al. 2006). In the current discussion, the aim is to adopt
this principle to build minimal models of input/output functions. Thus, the focus is on input/
output functions for single neurons, although extensions to multiple neurons are certainly
possible (Globerson et al. 2009, Granot-Atedge et al. 2012).
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To build a minimal model of the neural input/output function, the chosen model should yield
the highest entropy of the neural response for a given stimulus, averaged over all stimuli.
The corresponding quantity is known as the noise entropy (Brenner et al. 2000, Strong et al.
1998). For binary responses (at sufficiently small time resolution, all neural responses are
binary if patterns of spikes in time are not considered), the maximum noise entropy model
has three appealing properties. First, this model is analytically solvable and the response
function has a simple structure: It is a logistic function whose argument is a sum of stimulus
parameters whose correlations with the neural response represent the constraints that the
model needs to satisfy (Fitzgerald et al. 2011b). For example, the minimal model that is
consistent with the measurements of the STA and spike-triggered covariance is

Here, parameters of the model are c, νi, and Jij. These parameters are adjusted such that the
STA and spike-triggered covariance predicted by the model matche those measured
experimentally. The relevant stimulus dimensions can be found by diagonalizing the matrix
J, just as in the QN model.

Second, although similar, the main difference between the minimal quadratic model and the
QN model is that the nonlinearity is a logistic function in the former, but can take an
arbitrary form in the latter. Thus, the parameters of a minimal model can be found through a
convex optimization that is not plagued by local minima. This practical advantage of
minimal models makes it possible to find their parameters even with high dimensional
stimuli. For example, in the analysis of simulated neurons with six relevant dimensions, the
relevant stimulus dimensions from a minimal quadratic model were a slightly better match
to the model dimensions than the dimensions from a maximally informative QN model
(Fitzgerald et al. 2011a). However, in cases where only one or two relevant dimensions are
needed, the maximally informative LN model yields a better match to model dimensions
than either the maximally informative QN model or the minimal quadratic model.

Third, minimal models often make it possible to quantify, in information-theoretic terms, the
relative importance of different constraints (Figure 5). For example, matching the minimal
model to the experimental data in terms of the mean spike rate (which can be considered a
zeroth order constraint because it does not involve stimuli) fully determines the overall
entropy of the neural responses if they are binary or Poisson. With the entropy of the neural
response fixed, maximizing the noise entropy is equivalent to seeking the model that
provides the least amount of information while satisfying the necessary constraints
(Globerson et al. 2009). As pointed out by Globerson et al. (2009), the information captured
by the model that provides the minimal amount of information while satisfying a given set
of constraints is a direct measure of the information content of these constraints (Figure 3).
In general, minimally informative models are not analytically solvable, but in cases where
they coincide with models computed by maximum noise entropy, the analytical solution is
provided by the logistic function mentioned above. In addition to the binary and Poisson
responses, it is possible to find a minimally informative model by maximizing noise entropy
for Gaussian neural responses through the addition of the mean and variance of the spike
rate to the set of constraints. Again, this is because the mean and variance are sufficient to
specify the entropy of the neural response across a set of stimuli. Finally, the emergence of
the logistic function as the least-constrained model that represents the necessary constraints
between inputs and outputs suggests a possible functional explanation for the ubiquity of
logistic input/output functions in systems biology, ranging from transcription control to
neural gain functions (Clemens et al. 2012, Fairhall et al. 2006, Sharpee et al. 2011, Tyson et
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al. 2003). It can also explain nonmonotonic gain functions, which are especially common in
the auditory system wherein the neurons encode not just the mean of the relevant stimulus
feature, but also its variance (Figure 6b).

OUTLOOK
Ultimately, computational methods for characterizing neural feature selectivity will be able
to relate the neural responses to the underlying neural circuitry even in cases where many
stages of nonlinear processing separate stimuli from the recorded neural responses. The
progress that have been made in the field over the past ten years goes a long way toward this
goal by recovering the multiple stimulus features that are relevant to the responses of high-
level sensory neurons. However, much remains to be done. In particular the stimulus
features upon which the responses of a given neuron are triggered usually have specific
relationships to each other, as indicated by their co-occurrence in the natural environment.
However, orthogonal representations of these features often make it difficult to deduce these
relationships. For example, when the neural responses are triggered by the same image
feature that is centered at different positions in the visual field, the features obtained by
spike-triggered covariance make it difficult to guess the computational relationship between
the features (Rust et al. 2005). Recent methods are beginning to characterize the neural
feature selectivity by taking invariance directly into account (Eickenberg et al. 2012, Vintch
et al. 2012). The resulting models can economically account for the observed neural
responses as triggered by a small number of image features, while allowing for their
different positioning within the visual field. In other sensory systems, relevant invariance
properties are either more difficult to parametrize than position invariance or are not known.
One possible way to discover types of invariance present in the responses of a particular
neuron is to find such linear combinations of the relevant stimulus features that make it
possible to describe the observed responses as logical OR operation with respect to a set of
inputs (Kaardal et al. 2013). Given a set of relevant stimulus features, finding the
appropriate linear combinations of features are numerically and computationally easy to
perform, although the methods so far have not been tested in higher level sensory areas. The
hope is that by building on combinations of the available computational tools for receptive
fields identification future works will be able not only to characterize the neural feature
selectivity in the presence of complex and in some cases yet unknown types of invariance on
high level sensory neurons in vision and other sensory modalities.
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Figure 1.
Geometric interpretation of the receptive field (RF) in the context of the linear and linear-
nonlinear (LN) models. An example stimulus is a natural image taken from a van Hateren
data set (van Hateren & van der Schaaf 1998). The stimulus has d pixels in the horizontal
and vertical dimensions, which yields a stimulus of D = d2 dimensions. The RF taken to
mimic properties of V1 neurons is also defined in this space. The linear model predicts the
spike probability as taking a projection between the stimulus and the RF. The LN model
adds a nonlinear gain function to account for such properties as rectification and saturation
in the neural response.
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Figure 2.
Illustration of how the receptive field of a neuron can be estimated from its responses to
white-noise stimuli by computing the spike-triggered average. Each dot represents a high-
dimensional stimulus projected onto a plane. Each stimulus was taken from an uncorrelated,
white-noise Gaussian distribution. Stimuli that elicited a spike are marked with red filled
dots. Their average yields a vector, which is the relevant stimulus dimension for generating
spikes from this neuron.
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Figure 3.
Differences between the spike-triggered average (STA) and the receptive field (RF) for
noncircular probability distributions. (a) Example of a non-Gaussian distribution of stimuli
without correlations. (b) Example of a Gaussian distribution with correlations. In both
examples, the STA does not always yield a correct estimate of the RF. However, for the
Gaussian distribution, it can be corrected according to Equation 1 to yield an accurate
estimate. (c) In the case of natural stimuli, which are non-Gaussian and have strong
correlations, even with corrections for the second-order correlations, the STA does not yield
a correct RF estimate. However, the RF can be estimated as a maximally informative
dimension (MID).
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Figure 4.
Schematic of a linear-nonlinear model with multiple relevant stimulus features.
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Figure 5.
Geometric intuition of information transmission in minimal models. For a given set of
constraints, the maximal noise entropy model provides the smallest amount of information
between the neural response y = 0,1 and the stimulus. The point of origin with zero
information corresponds to the model where only the mean spike rate <y> is constrained;
this model carries no information about the stimulus. As more constraints are added,
information captured by the minimal model will approach the true information in the data
Idata. As a result, the information content of any constraint can be quantified. In contrast, a
maximally informative model is used to find the value of parameters that account for the
greatest amount of Idata in one step. Although optimization to find the maximally
informative set of parameters is nonconvex, the corresponding optimization for the minimal
models is convex. Given the right set of constraints, both models will converge to the same
input/output function of the neuron.
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Figure 6.
Maximum noise entropy models can account for variety of nonlinear effects. (a) The logistic
function arises when the neural response encodes stimuli linearly. (b) The logistic function
of a quadratic argument can be observed in models where the neural response encodes both
the mean and the variance of stimulus components along the relevant stimulus features. In
this case, the nonlinear gain function is nonmonotonic. (c) Maximum noise entropy models
based on two relevant stimulus features can characterize a variety of nonlinear computations
when extended to moments higher than two. These include “ring,” “bimodal,” and
“crescent-shaped” nonlinearities previously observed in the retina (Fairhall et al. 2006).
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