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Preface
Protein kinase C (PKC) has been a tantalizing target for drug discovery ever since it was first
identified as the receptor for the tumor promoter phorbol ester in 19821. Although initial
therapeutic efforts focused on cancer, additional diseases, including diabetic complications, heart
failure, myocardial infarction, pain and bipolar disease were targeted as researchers developed a
better understanding of the roles that PKC’s eight conventional and novel isozymes play in health
and disease. Unfortunately, both academic and pharmaceutical efforts have yet to result in the
approval of a single new drug that specifically targets PKC. Why does PKC remain an elusive
drug target? This review will provide a short account of some of the efforts, challenges and
opportunities in developing PKC modulators to address unmet clinical needs.

Introduction
Protein kinase C (PKC) is a family of highly related protein kinases that have been a focus
of drug discovery effort for the past twenty years. Much of the interest in PKC began with
the discovery that members of this family of isozymes are activated in a variety of diseases
as evidenced using human tissue studies and animal models. There is evidence for a critical
role for PKC in diabetes2, in cancer3, in ischemic heart disease4 and heart failure5, in some
autoimmune diseases6, in Parkinson’s disease7,8 Alzheimer’s disease9, and in bipolar
disease10,11, in psoriasis12, and in many other important human diseases. However, which
PKC isozyme contributes to the pathology of a given disease and at what point during the
disease progression is it critical, can be answered only when using PKC isozyme-specific
tools.

Much of what we know about the functions of each PKC isozyme in normal and disease
states is based on use of genetic tools. These include manipulation of the level of a given
isozyme by over-expression, siRNA knock-down, and complete elimination (knock-out) of
the genes encoding specific PKC isozymes, or by inhibiting a given isozyme through
expression of the corresponding dominant negative or catalytically ‘dead’ isozyme.
However, such genetic approaches are limited to cells in culture or to in vivo studies that are
confined mainly to one species – mice. Since mice are often not the appropriate/ideal animal
model for many human diseases, additional studies were limited to using small molecule
pharmacological tools. Unfortunately, developing pharmacological tools that affect the
function of just one PKC isozyme has proven to be difficult, in part, because of the great
homology between protein kinases, in general, and between PKC isozymes, in particular.

Since selective regulators of PKC isozymes were not used in many studies, the main
questions in the PKC field remain unresolved. Why does each cell have multiple PKC
isozymes? Are they redundant in their roles? What defines the functional specificity of each
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isozyme? Finally, and relevant to this review, what is the role of individual PKC isozymes in
human diseases and are there ways to selectively regulate a culprit isozyme as a treatment
for a given disease?

It has been more than 25 years since PKC isozymes have been cloned and their role in
human diseases has been recognized. This review summarizes the efforts to generate PKC
isozyme-selective pharmacological tools and how these were applied to identify the isozyme
to target for drug development. To better discuss the challenges in targeting PKC for
therapeutic development, we provide an overview of the biology of the members of the PKC
family, their role in specific diseases, and analyze the classes of PKC regulators that have
been developed and how they were applied in preclinical research. We conclude with a
summary of clinical trials in which several of these regulators were tested as therapeutics for
human diseases and some lessons learned from these drug discovery and development
efforts.

The protein kinase C family
There are over 450 protein kinases in the human genome13. Some of these kinases
phosphorylate only one or very few protein substrates, whereas others can phosphorylate a
large number of substrates and therefore regulate a number of cellular responses. PKC
isozymes belong to the latter group of kinases, phosphorylating serine and threonine (S/T)
residues on a large number of proteins.

The PKC enzymes were identified over 30 years ago, as kinases that are activated by
proteolysis14. Soon after, it was found that diacylglycerol activates the intact enzyme15,
although the means by which diacylglycerol levels are regulated was not known at the time.
Five years after the first description of PKC, it was found that PKC could be activated by the
tumor promoter phorbol ester1. This discovery opened up the field of PKC as a target for
drug development – first in cancer and then in many other diseases. However, the study was
further complicated by the finding that there are eight homologous PKC isozymes: α, βI,
βII, γ, δ, ε, θ and η16–19 products of seven highly related genes (Fig. 1). Many PKC
isozymes are present within the same cell and are activated by the same stimuli. An
additional distant subfamily of atypical PKC isozymes, comprised of PKCζ and λ/ι, exists,
although these are not discussed further in this review, as they do not respond to the same
second messenger, and they share less sequence homology than the eight other
members20,21.

Similar to many other protein kinases, PKC has a regulatory region and a catalytic region.
The catalytic region, or the kinase ‘business end’ of the enzyme, resides in the C-terminal
half of PKC (Fig. 1). It contains a conserved ATP/Mg-binding site and a binding site for the
phospho-acceptor sequence in the substrate proteins. The N-terminal half of the enzyme is
the regulatory region (Fig. 1). In the inactive state, the regulatory region (comprised of two
conserved C1 and C2 domains) is bound to the catalytic region (Fig. 2, bottom) and inhibits
the activity of the enzyme. Dissociation of this intra-molecular inhibitory interaction results
in activation of the enzyme (Fig. 2, top). Both the catalytic and the regulatory domains can
be targeted for generating drugs to affect PKC activity (inhibition or activation), but each
domain also presents challenges in achieving selective and safe drugs. As will be discussed
below, the greatest homology between the PKC isozymes is in the catalytic domain. The
PKC isozymes differ more from each other in the C2 region in the regulatory domain, as
compared with the catalytic domain as well as in the intervening (the so called variable, or
V) regions (Fig. 1). Much of the attention in developing drugs initially focused on the
catalytic (kinase) domain and the second messenger-binding domain, the C1 domain. A
greater isozyme selectivity, however, was associated with drugs focusing on the C2 region
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and the intervening sequences between the domains (the variable, V, regions), as discussed
below.

Activation of PKC
PKC isozymes are activated by a variety of hormones, such as adrenalin and angiotensin, by
growth factors, including epidermal growth factor and insulin, and by neurotransmitters such
as dopamine and endorphin; these stimulators, when bound to their respective receptors,
activate members of the phospholipase C family, which generates diacylglycerol, a lipid-
derived second messenger15 (Fig. 2, upper right). Of the eight-members of the PKC family
that are discussed here, the novel isozymes (PKC δ, ε, θ and η) are activated by
diacylglycerol alone, whereas the four conventional PKC isozymes (PKCα, βI, βII and γ)
also require calcium for their activation (Fig. 1). Cellular calcium levels are elevated along
with diacylglycerol, because the latter is often co-produced with inositol trisphosphate (IP3),
which triggers calcium release into the cytosol from internal stores (Fig. 2, lower right).

Further complication in the field arises because activation of PKC can also occur in the
absence of the above second messengers. High levels of cytosolic calcium can directly
activate phospholipase C, thus leading to PKC activation in the absence of receptor
activation. A number of post-translational modifications of PKC were also found to lead to
activation of select PKC isozymes both in normal and disease states22. These include
activation by proteolysis between the regulatory and the catalytic domain that was noted to
occur for PKCδ, for example23. Phosphorylation of a number of sites may be required for
maturation of the newly synthesized enzyme24, but also for activation of mature isozymes,
e.g. H2O2-induced tyrosine phosphorylation of PKCδ25,26. Other modifications including
oxidation, acetylation and nitration have also been found to activate PKC22. Whether PKC,
activated by these modifications, can be inhibited specifically and how critical these forms
of activation are for a given disease state is yet to be determined.

Finally, a hallmark of PKC activation, first described in 1982, is that it is always associated
with translocation of the enzyme from the cytosolic (soluble) fraction to the cell particulate
fraction, which includes the plasma membrane, but also many other cellular organelles27. It
is this feature of isozyme-selective anchoring to different subcellular sites that enabled the
generation of a class of more selective inhibitors and activators of individual PKC
isozymes27.

Roles and functions of PKC isozymes
After the first descriptions of the cloning of eight different PKC isozymes16–19, isozyme-
specific gene expression studies demonstrated the surprising finding that most PKC
isozymes are ubiquitously expressed in all tissues at all times of development. Yet, it is quite
clear that PKC isozymes have unique and sometimes opposing roles in both normal
signaling and disease states28,29. In fact, even the same isozyme can have opposing roles in
the same cell, depending on the context of the stimulation30.

Much of the initial work on PKC in cellular response employed phorbol esters, which
irreversibly activate all the PKC isozymes and therefore does not represent well the transient
activation that occurs by diacylglycerol. Nevertheless, using phorbol esters, PKC was found
to regulate many cellular functions, including cell proliferation, and cell death, increased
gene transcription and translation, altered cell shape and migration, regulation of ion
channels and receptors, regulation of cell-cell contact and secretion, etc. Because phorbol
esters are not isozyme-selective, this early work did not identify which of the iszoymes
regulate a given function.
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Subsequent studies that aimed to determine if a particular PKC isozyme participates in the
studied cellular event or pathology always included determining whether the isozyme is
translocated to the cell particulate fraction; only a subset of the studies also confirmed that
the translocated isozyme is catalytically active, by measuring kinase activity, in vitro.
Translocation is measured by cell fractionation as well as by microscopy (using either light
and/or electron microscopy). Thus, translocation assays and examining changes in the levels
of particular PKC isozymes were used as markers for activation of a given isozyme in the
measured response.

PKC in disease
Increased activation of select PKC isozymes have been observed in cancer3,31, diabetes32,
ischemic heart disease33,34, acute and chronic heart disease35, heart failure34,36, lung37 and
kidney38,39 diseases, a number of dermatological diseases including psoriasis12, in
autoimmune diseases6,40 and in a number of neurological diseases, including stroke41,
Parkinson’s disease7,8, dementia42, Alzheimer’s disease9,43, pain44 and even in psychiatric
diseases, including bipolar disease10. Initially, the role of PKC in various illnesses was
implicated because abnormal activation or levels of a particular isozyme in the disease state
was noted. However, this correlation between PKC activation and a disease could not
determine whether the activated isozyme leads to the pathology, prevents it, or has no role in
it. To address a causal role of PKC in a particular disease both genetic and pharmacological
tools have been used. Table 1 lists some of the diseases and names the likely isozymes that
contribute to these pathologies. Below, we will discuss some of these diseases and the
pathological role of specific PKC isozymes in more detail.

Heart diseases
Significant effort has been invested in understanding the role of specific PKC isozymes in
cardiac diseases, with much of the initial focus being placed on cardiac ischemia. After the
seminal study of Downey and collaborators45, demonstrating that direct PKC activation
prior to the ischemic event provides cardiac protection, several groups examined the role of
PKC in this disease. However, the initial use of non-selective pharmacological tools led to
conflicting data, leading to the conclusion that PKC is likely ‘a spectator’ rather than ‘a
player’ in this response46. Subsequent studies with transgenic mice that express dominant
negative regulators of specific isozymes and the use of selective pharmacological tools in a
variety of species including rabbits, mice, rats and pigs explained the earlier ambiguity:
Activation of PKCδ and ε has opposing consequences on the ischemic myocardium29.
Whereas PKCε activation is cardioprotective4, PKCδ activation mediates much of the acute
injury induced after transient myocardial ischemia28,47. Fig. 3 depicts some of the molecular
basis for the opposing effects of these two isozymes in regulating mitochondrial function.
The figure also depicts how activation of PKCε protects the proteasome from inactivation,
which leads to a fast and selective degradation of the damaging PKCδ at reperfusion48 thus
altering the balance between PKCδ and PKCε towards cardioprotection. Protection of the
proteasome also improves cardiomyocyte health by enabling removal of oxidized and
damaged proteins (Fig. 3). Box 1 provides a summary of the role of PKC isozymes in other
cardiac diseases, including heart failure, atherosclerosis, myocardial infarction and cardiac
arrhythmia.

Organ transplantation
There are two pathologies that need to be addressed to benefit patients after organ
transplantation. The first relates to the ischemia and reperfusion injury to the transplanted
organ, which, depending on its severity, can lead to both acute and chronic rejection (due to
irreversible tissue damage49,50). The second pathology in which PKC plays a role relates to
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the immune response to the transplanted organ51, leading to organ rejection. The role of δ
and εPKC in ischemia and reperfusion injury has been discussed above. The consequences
of reducing this acute injury on functioning of the transplanted organ has been
demonstrated, for example, in a study of cardiac transplantation; vascular occlusion due to
increased inflammatory stimulation (vasculopathy) is inhibited if ischemia and reperfusion
injury is reduced by treating with an activator of PKCε and inhibitor of PKCδ at the minutes
before organ harvest and right after organ transplantation36,50,52. PKCθ, a critical isozyme
for T cell activation, has also been implicated in the immunorejection of the transplanted
organ and inhibition of this isozyme can reduce T cell activation, subsequent migration and
further immune response6,53.

Cancer
It is not surprising that different cancer types depend on the activity of different PKC
isozymes. Given PKC’s role in both cellular proliferation (PKCα)31 and vasculogenesis
(PKCβ)54, two processes that are critical for cancer growth and metastasis, PKC has been
targeted for cancer therapy. Further, genetic and pharmacological studies showed that other
PKC isozymes are also important in this disease. For example, PKCδ activation increases
angiogenesis in human prostate cancer cells55, PKCε overexpression is observed in
stomach, lung, thyroid, colon, and breast cancers3, PKCη has been implicated in non-small
cell lung cancer where the increased levels of PKCη correlated with tumor aggressiveness
and cell proliferation levels56,57, and a role for PKCθ overexpression has been associated
with gastrointestinal stromal tumors58.

Diabetic complications
Preclinical research suggests that hyperglycemia leads to activation of PKCβ, which may
play an important role in mediating the microvascular disease complications of retinopathy,
nephropathy, and neuropathy59. Hyperglycemia leads to chronic activation of PKCβ,
causing aberrant signaling and a variety of pathologies such as cytokine activation and
inhibition, vascular alterations, cell cycle and transcriptional factor mis-regulation, and
abnormal angiogenesis2. Clinical trials that examine the benefit of PKCβ inhibition are
described below.

PKCδ, on the other hand, was found to have a major role in islet cell function and insulin
response60. The authors showed that changes in the level and activity in PKCδ between
mice strains correlates with risk of insulin resistance, and glucose tolerance. There is also
loss of inflammation associated with insulin resistance in PKCδ deficient mice60. Therefore,
inhibiting PKCδ may also provide a treatment for metabolic syndrome.

Bipolar disorders
PKC is highly expressed and heterogeneously present within the brain, where it plays
important roles in regulating pre- and post-synaptic neurotransmission, coordinating
intracellular signaling in response to neurotransmitter activation, and modulating changes in
gene expression and neuronal plasticity11,61,62. Evidence to support a role for PKC signaling
in bipolar disorder includes: 1) amphetamine-induced “manic symptoms” in rodents are
correlated with PKC activation in the brain63; 2) platelets from patients with mania show an
increased PKC activity and translocation to serotonin stimulation when compared to
platelets from control subjects64; 3) post-mortem studies of brains of patients with bipolar
disorder revealed increased levels of PKC activation and translocation65; 4) both lithium and
valproate, two efficacious drugs in bipolar illness, indirectly decrease the activity of both
PKCα and PKCε61.
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Other diseases
PKC is a central mediator in many signaling cascades. As described in this review and many
others, the 8 family members of PKC are implicated in disease states based not only on their
function, but also on their activation or inhibition states and on changes in their levels. There
are many other pathologies where PKC has been implicated based on the above criteria.
These include lung37 and kidney38,39 diseases, dermatological diseases including
psoriasis12,66, autoimmune diseases6,40 as well as neurological diseases, including stroke41,
Parkinson’s disease7,8,67, Alzheimer’s disease43 and pain44. Whether PKC is critical in
mediating these pathologies or whether PKC activation is caused by the pathologies remains
to be determined using selective pharmacological tools in animal models of these diseases.

PKC inhibitors and their application in pre-clinical research
It has long been a goal of academic and industrial researchers to develop PKC-specific
inhibitors that are also isozyme selective. Efforts to identify selective modulators of PKC
have taken disparate approaches (see Fig. 4). These include development of (a) ATP-
competitive small molecule inhibitors that bind to the ATP site of the kinase catalytic
domain, (b) phorbol esters and derivative activators and inhibitors that bind to the C1
domain, mimicking DG-binding, and c) peptides that disrupt protein/protein interactions
between the regulatory region and RACK (Fig. 4). Table 2 lists the names, structure, and
degree of selectivity of some of the inhibitors and activators of PKC that were generated
during the past 20 years with emphasis on those that were tested in the clinic.

ATP-competitive small molecule inhibitors
The highest similarity among PKC isozymes is in their catalytic domain (Fig. 1). The high
degree of sequence homology and structural similarity for this region among PKC isozymes
and the similarity with this region in other protein kinases suggests that generating isozyme-
selective inhibitors for the ATP-binding site is extremely challenging68 (Box 2). Typically,
inhibitors of kinase active sites have been discovered by high-throughput screening
approaches or in silico methods, which use protein structures and computational methods to
predict small molecules that best interact with the given site in the protein. Clinical
candidates that inhibit PKC isozymes through an ATP- competitive mechanism have been
discovered through high-throughput screening, and subsequent medicinal chemistry
optimization that was assisted by in silico design69. The best-characterized ATP-competitive
small molecules are the bisindolemaleimides70. These water-soluble compounds bind to the
ATP-binding pocket and limit phosphorylation. The classic example, staurosporine, has pan-
PKC activity, binding all isozymes with a double-digit nanomolar dissociation constant
(Kd). Unfortunately, staurosporine binds several other S/T kinases68. Medicinal chemistry
efforts to develop a more selective inhibitor led to the discovery of enzastaurin, which is
more selective for PKCβ over other isozymes71. However, subsequent studies demonstrated
that enzastaurin inhibits other PKC isozymes as well as several other protein kinases at a
similar Kd. Rottlerin exemplifies the difficulties of developing a PKC isozyme selective
ATP-competitive small molecule inhibitor. First described as a PKC-inhibitor, with
selectivity for PKCδ in 199472, multiple groups went on to characterize its activity both in
vitro and in vivo. After much controversy, Soltoff et al,73 published a paper demonstrating
its activity against several other enzymes. Newer generations of inhibitors, e.g., the
phenylamino-pyrimidine74 and arylamino-pyridinecarbonitrile75 classes, show some
specificity for PKCθ, with 10 to 100-fold selectivity over conventional PKC isozymes.
Finally, compounds, such as balanol76 and rizuzol77, which were originally developed as
inhibitors of PKA, also inhibit PKC.
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Activators and inhibitors that mimic DG-binding
The second class of PKC modulators targeting the C1 domain (Box 2) are those that mimic
the binding of the C1 domain to the second messenger activator of the enzyme,
diacylglycerol. A classic example is the tumor promoter, phorbol ester78, which mimics
diacylglycerol and activates PKC. Based on the seminal work of Blumberg and coworkers,
diacylglycerol binding-site on the C1 domain was characterized79, which led to better
understanding of the diacylglycerol pharmacophore, and guided the design of potent PKC
activators, e.g., diacylglycerol-lactones80. These diacylglycerol-lactones show 3–4 orders of
magnitude higher affinity for PKC isozymes and a greater specificity for PKCα and PKCδ,
as compared with the natural diacylglycerols81. The C1 binding site is also highly conserved
among the isozymes, making it difficult to develop selective compounds. The best
characterized of these compounds is bryostatin, a naturally occurring macrolactone, which
has pan-PKC activity in the low nanomolar to picomolar range82. Several studies have
shown some anti-cancer properties, albeit limited in utility in the clinic83. Preferred
protection of PKC from down-regulation by the strong ligand, phorbol ester84 led to a
function-oriented synthetic approach to the design of selective PKC-binding bryostatin
analogues85. These molecules show isozyme selectivity in binding the C1 domain86 of
various PKCs and may represent a novel class of PKC regulators87,88.

Inhibitors of protein/protein interactions between PKC and cognate proteins
A third class of PKC modulators inhibits protein-protein interactions found to be critical for
the translocation (change in the subcellular localization) of PKC isozymes following
activation. PKC translocation upon activation, first described in 1982 by Kraft, Sando and
Anderson89, was assumed to reflect the binding of the enzyme to the lipid-derived second
messenger diacylglycerol in the plasma membrane. However, microscopy and cell
fractionation studies demonstrate that activated PKC isozymes are present in a variety of
subcellular locations90. Activated PKC isozymes are found on cytoskeletal elements91,
inside the mitochondria92, on the Golgi apparatus93, on endoplasmic reticulum93 on
centrosomes94–96, at the nuclear membrane and inside the nucleus90. Because different
activated PKC isozymes localize to distinct subcellular sites within the same cell84,85, we
proposed in 1988 and subsequently demonstrated that these isozyme-unique localizations
are mediated by unique protein-protein interactions between a given PKC isozyme and an
anchoring protein that we termed RACK, for receptor for activated C-kinase27,97. Other
proteins can selectively interact with PKCs to keep them in an active state, to anchor them
next to a particular substrate or to shuttle them from one location to another98,99. Some of
these PKC-binding proteins are highly selective. For example, RACK1 binds PKCβII but
not PKCβI100, even though the isozymes are products of the same gene and differ only in
the last 50 of the 750 amino acids encoded by this gene18,101. Other proteins bind more than
one isozyme through different sites and for different purposes. For example, HSP90 binds
both δ and PKCε. However, binding of PKCε is required for shuttling this isozyme into the
mitochondria92, whereas binding of δPKC to HPS90 is required for shuttling of PKCδ into
the nucleus102. What is more surprising is that although PKCδ also enters the mitochondria,
this entry is independent of HSP9092. Furthermore, the interaction sites for PKCε and δ with
HSP90 are distinct and a pharmacological tool has been devised to affect the interaction of
one isozyme and not the other92. A review of proteins that interact with PKC isozymes is
not provided here, but a short list of interacting proteins is provided within Box 2.

Since protein-protein interactions are thought to occur across relatively large, flat surfaces,
prevailing wisdom suggests that small molecules that fit ‘greasy pockets’ are unlikely to
work103. However, a rational approach to develop peptide inhibitors of protein-protein
interactions refuted this notion104. In this approach, the respective binding sites of the two
interacting proteins are predicted and short peptides (∼6–10 mer) with sequence homology
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to one of the interacting regions are found to effectively inhibit the corresponding protein-
protein interaction. Box 3 provides a short summary of the rationale used to generate
isozyme-selective inhibitors and activators of PKC and Table 3 lists some examples of
peptides with biological activities.

Much of the work on protein-protein interaction (PPI) focused on the C2 domain (initially
termed V1 in the novel PKC isozymes)99,104–106. As indicated in Figure 1, C2 is the least
conserved between the isozymes and even between the highly homologous members of the
novel PKCs, δ and PKCθ, there is only 52% homology within this region. Yet the domain
fold is similar: it is a beta sandwich of four strands, each with an alpha helix at one end and
loops in between the strands (Fig. 1). Mochly-Rosen and colleagues showed that most of the
protein-protein interactions map to unique sequences within the C2 domain and peptides
corresponding to these sequences act as inhibitors of PPIs105,106. Other PPI sites are found
in intervening regions between the common regions C1, C2, C3 and C4, including the V2,
V3 and V5 regions and the region between C1a and C1b domains of PKC99. A peptide
derived from the latter region in PKCε inhibits interaction with actin107. A peptide derived
from the region between the C2 and C1 region of εPKC inhibits the interaction of this
isozyme with HSP9092. A peptide derived from the V5 region selectively inhibits the
interaction between PKCβII and RACK194,108 as well as the function of that isozyme, for
example in cancer94 or in rat models of heart failure109. Recent studies in cancer have
shown that PKCε is required for the growth of non-small cell lung cancer (NSCLC) and is
anti-apoptotic; in vivo sustained treatment with the PKCε-specific inhibitory peptide, εV1–2
(see Table 3), slowed tumor growth in xenograft models110.

Post-translational modification of PKC - a future direction for drug development?
PKC can also be activated (in the presence or absence of the above described second-
messengers) by a number of post-translational modifications including: tyrosine
phosphorylation, oxidation of a cysteinerich domain within the C1 domain, nitrosylation,
acetylation, binding of other metabolites (e.g., retinol or arachidonic acid) and proteolytic
cleavage of the enzyme at the hinge region between the catalytic and the regulator halves of
the enzyme (see review22). Although these alternative means of PKC activation may play a
role in disease states, no pharmacological agents have been developed yet based on second-
messenger-independent activation of PKC.

Clinical Applications of PKC regulators
Modulation of PKC activity presents an attractive target for clinical drug development for
several reasons. 1) Isozyme-specific perturbations in PKC activity have been identified in a
number of human disease states including congestive heart failure34, bipolar disorder111,112,
and diabetes mellitus2,59. 2) PKC isozymes play an important role in critical biological
processes such as cell proliferation and formation of vasculature that are important in tumor
growth and metastasis113–116. 3) Animal studies demonstrate a role for individual isozymes
in a particular disease and/or evidence of therapeutic effects when the isozymes are inhibited
or activated62,117,118. 4) A number of pharmacologic agents that are efficacious in disease
states have been shown to modulate activity of PKC, either directly or indirectly through a
signaling cascade10,119.

Despite the apparent promise of PKC modulators in human disease, results in clinical trials
have been mixed and largely negative. Clinical trials have been conducted for the treatment
of cardiovascular disease, neuropsychiatric disorders, malignancies, transplantation, and
diabetic complications including nephropathy, neuropathy, and retinopathy. This section
will focus on clinical efficacy studies for both novel compounds and previously approved
drugs (Table 4).
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Oncology Trials
Although a number of clinical trials have been conducted in cancer with drugs thought to
modulate PKC activity, tumor responses have been infrequent and modest at best. Only six
agents have been studied in efficacy trials. Bryostatin 1, a macrolide lactone and a non-
selective activator of both classical and novel PKC isozymes, entered clinical study in 1993
after promising results in cancer xenograft models120. The drug has since been tested in
multiple phase 2 studies with largely disappointing results. Bryostatin 1 showed minimal or
no anti-tumor activity when tested in patients with advanced melanoma, sarcoma, head and
neck cancer, multiple myeloma, colorectal cancer, ovarian cancer, cervical cancer, non-
small cell lung cancer, and pancreatic cancer121–130. Modest effects were observed in
advanced renal cell cancer and gastric/esophageal cancer, but the overall response was
disappointing and more than half of the patients experienced severe myalgias, necessitating
early termination of one study131–134. There are currently no open trials of bryostatin 1 on
the ClinicalTrials.gov website.

Aprinocarsen, an anti-sense oligonucleotide that targets PKCα mRNA, has also been studied
clinically in a number of oncology trials. In phase 2 studies, aprinocarsen failed to show
activity as a single agent against advanced colorectal, ovarian, and hormone refractory
prostate cancer135–138 and showed only modest activity against relapsed, low-grade non-
Hodgkin’s lymphoma139. In two phase 3 non-small cell lung cancer studies, aprinocarsen
failed to improve tumor response rate or survival when added to combination chemotherapy,
but additional toxicities including thrombocytopenia and venous thromboembolism were
observed140,141. Further clinical development of aprinocarsen has been discontinued.

Enzastaurin is an orally available small molecule selective inhibitor of PKCβ that targets the
ATP-binding site (Table 2). Single agent phase 2 studies showed inadequate efficacy in
patients with advanced presentation of the following malignancies: large B cell lymphoma,
mantle cell lymphomas, non-small cell lung cancer, high grade gliomas, recurrent ovarian
and primary peritoneal malignancies, and asymptomatic chemotherapy-naïve colorectal
cancer142–147. In a larger phase 2 study, enzastaurin did not add to the anti-tumor activity of
pemetrexed and carboplatin in patients with stage IIIb or stage IV non-small cell lung
cancer148. Clinical studies are ongoing to assess the addition of enzastaurin to combination
chemotherapy for advanced brain malignancies (http://clinicaltrials.gov).

Other PKC modulators have undergone limited study in oncologic indications. High dose
tamoxifen (a non-selective PKC inhibitor at high dose) provided negligible benefit to
patients with malignant gliomas and hormone refractory prostate cancer149–151.
Midostaurin, an orally available multi-targeted kinase inhibitor had no effect against
malignant melanoma in a small study152. Midostaurin did show ≥ 50% reduction in blast
counts in a substantial proportion of patients with acute myeloid leukemia and
myelodysplastic syndrome and is being assessed in clinical trials for hematologic
malignancies, but its effect may be mediated by FMS-like tyrosine kinase 3, which is
mutated and constitutively overactive in up to 30% of patients with myeloid leukemias153.
UCN-01 (7-hydroxystaurosporin), a non-selective kinase inhibitor, was ineffective against
both progressive renal and ovarian cancers154,155.

Cardiovascular Trials
Flosequinan, a non-selective inhibitor of inositol-triphosphate and PKC, was compared to
placebo in 193 patients with symptomatic heart failure. After 12 weeks, patients in the
flosequinan group showed statistically significant improvements in maximal treadmill
exercise time (96 vs. 47 seconds; p=0.022), increase in maximal oxygen consumption (1.7
vs. 0.6 ml/kg per minute; p = 0.05), and symptom improvement (55% vs. 36%, p=0.018)156.
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In a larger subsequent study, the Data Monitoring Committee stopped the trial prematurely
after an interim analysis revealed increased deaths and hospitalizations in the active arm,
and flosequinan was removed from the market157. Recently ruboxistaurin, a PKCβ inhibitor
that was well-tolerated in large clinical studies of diabetic patients158, was shown to improve
cardiac function in a porcine heart failure model159 and perhaps warrants clinical study in
heart failure.

Volatile anesthetics such as isoflurane, sevoflurane, and desflurane are known to activate
PKCε119, an essential step in ischemic preconditioning of cardiomyocytes4,160. Clinical
trials comparing the use of these anesthetics to intravenous anesthetics prior to coronary
artery bypass grafting (CABG) showed statistically significant reductions in peak troponin I
levels, need for postoperative inotropic support, and need for length of stay exceeding seven
days161–164. In one study, a volatile anesthetic reduced one-year mortality165.

Adenosine, a purine nucleoside, has been shown to activate both PKCδ and PKCε. Studies
of intravenous adenosine prior to and during heart surgery have been modest in both size
and effect166–168. Acadesine, a drug thought to increase adenosine levels in ischemic tissues,
was compared with placebo in 2,698 patients undergoing CABG. The study missed its
primary endpoint of reduction of myocardial infarction and secondary endpoint of a
composite of cardiac death, myocardial infarction, or stroke at postoperative day 4169. In the
small subset of patients experiencing post-operative myocardial infarction, two-year
mortality was reduced from 27.8% to 6.5% (p=0.006)169. A more recent study of acadesine
in CABG patients was stopped prematurely for futility after failing to show an effect on the
composite outcome of 28 day mortality, nonfatal stroke, and severe left ventricular
dysfunction (5.1% acadesine vs. 5% placebo)170.

Adenosine was also studied as a myocardial salvage agent during acute myocardial
infarction (AMI) in a large randomized trial. Although there was no difference in the
composite clinical endpoint of death and heart failure, infarct size was significantly reduced
in the high-dose group compared to placebo (11% vs. 27% of the left ventricle; p=0.023)171.
Delcasertib (δV1-1), a peptide inhibitor of PKCδ rationally designed by the Mochly-Rosen
lab as an effective inhibitor when given at reperfusion28, showed encouraging trends toward
reduced infarct size and accelerated resolution of ST elevation when administered by
intracoronary injection to AMI patients with an occluded coronary artery on initial
angiogram172. A larger AMI study of intravenous delcasertib administered prior to
angiography in patients with and without reperfusion at the time of drug treatment failed to
show a statistically significant benefit in the primary endpoint of infarct size, as assessed by
CK-MB AUC (area under the curve). Subgroup analysis revealed a trend towards reduced
infarct size (∼14%) in patients with anterior STEMI and TIMI 0/1 flow on initial
angiography173., but this signal was not considered adequate to warrant further development
by the sponsor.

Trials for Diabetic Complications
Ruboxistaurin, an orally available PKCβ inhibitor, has been extensively studied in diabetic
retinopathy and has been well-tolerated158. The PKC-DRS, a randomized, double-blinded
trial, compared three doses (8, 16, and 32 mg/day) of ruboxistaurin and placebo in 252
patients with severe nonproliferative diabetic retinopathy over 36 months. There was no
effect on the study’s primary endpoint of progression of diabetic retinopathy. The secondary
endpoint of sustained moderate visual loss (SMVL), however, was reduced from 25% in the
placebo group to 10% in the 32 mg/day group in subjects who had definite diabetic macular
edema at baseline174. The PKC-DRS2 was a 36 month, double-blinded, placebo-controlled
study in which 685 patients with nonproliferative diabetic retinopathy were randomized to
receive either 32 mg of ruboxistaurin or placebo once daily. The primary endpoint of SMVL
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occurred in 9.1% of placebo-treated patients and 5.5% of ruboxistaurin-treated patients (p =
0.034). Initiation of laser treatment for macular edema was 26% less frequent in the active
treatment group (p = 0.008)175. In response to an FDA request for data on longer-term
outcomes, a two-year open-label extension study of PKC-DMRS2 was conducted in 203
subjects who had been off-study for approximately one year at the time of re-enrollment.
Thus, the study compared outcomes in 100 patients who received ruboxistaurin for the last
two of the six years since initial enrollment and 103 patients who received ruboxistaurin for
five of the six total years. The primary endpoint of SMVL occurred in 26% of the placebo-
ruboxistaurin group and 8% of ruboxistaurin only group by the end of the open label
extension (p < 0.001)176. Ruboxistaurin is currently undergoing regulatory review by the
FDA for diabetic retinopathy based upon these data. In a diabetic macular edema study,
ruboxistaurin failed to show improvement in a composite endpoint of progression to sight-
threatening macular edema or necessity for focal/grid photocoagulation therapy177. Oral
midostaurin was shown to reduce diabetic macular edema but further development was
abandoned due to intolerable gastrointestinal side effects178.

Clinical trials were also conducted to study the effect of ruboxistaurin in delaying diabetic
nephropathy. One study compared 32 mg/day of ruboxistaurin versus placebo over one year
in 123 diabetic subjects with persistent albuminuria. Although the albumin to creatinine ratio
decreased significantly in the active drug group and estimated glomerular filtration rate
decreased significantly in the placebo group, the intergroup differences were not statistically
significant179,180. A subsequent analysis was performed of the 1,157 patients enrolled in the
three ruboxistaurin diabetic retinopathy studies. There was no difference in kidney outcomes
in patients receiving placebo versus ruboxistaurin180. Two studies conducted in patients with
diabetic neuropathy showed evidence of reduction in neuropathic symptoms over the six and
twelve month treatment periods181,182. Longer-term studies are warranted to better define
the role of ruboxistaurin in reducing progression of neuropathy.

Bipolar Disorder Trials
Tamoxifen citrate, an estrogen receptor modulator commonly used to treat breast cancer,
readily crosses the blood-brain barrier and non-selectively inhibits PKC at doses
approximately four-fold higher than the standard anti-estrogen dose62,151. Several small
clinical trials have been conducted over the past decade to assess the efficacy of high dose
(40–80 mg daily) tamoxifen in acute mania. All studies showed substantial improvement in
mania scores compared to placebo183–186. Patients taking standard-dose tamoxifen have an
increased risk of venous thrombosis, pulmonary embolism, stroke and uterine cancer and
these safety concerns will be more pronounced at the higher doses used for mania. A PKC
inhibitor that crosses the blood-brain barrier and has an improved safety profile would be a
welcome addition for treatment of bipolar disorder.

Transplantation Clinical Trials
Sotrastaurin is a non-selective PKC inhibitor with activity against both conventional and
novel isozymes. Because it inhibits PKCθ, a critical isozyme for T cell activation,
sotrastaurin is being developed as an immunosuppressive for organ transplantation187. In
two clinical studies of allograft renal transplantation, immunosuppressive regimens
including sotrastaurin and mycophenolic acid were compared to standard of care regimens.
In each case, the groups receiving sotrastaurin had dramatic increases in acute
rejection187,188.
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Challenges in Clinical Applications of PKC Modulators
Thus far, the clinical trial results of PKC modulators have been disappointing, largely due to
inadequate therapeutic effect and/or unanticipated adverse reactions. Among the many
agents tested to date, only ruboxistaurin achieved an adequate therapeutic signal to warrant
an FDA review for potential market approval for use in non-proliferative diabetic
retinopathy. A number of scientific challenges have contributed to the slow rate of progress
in the clinical application of PKC modulators and to failure of related clinical trials:

1. Inadequate understanding of disease-specific pathophysiology - Much of the basic
research leading to clinical studies has failed to identify the isozyme(s) of interest
or the specific downstream signaling event that leads to the pathology. For
example, many PKC isozymes have been implicated in cancer, and some PKC
isozymes may be critical for select types of the disease. Work with mice bearing
human tumors may down play the interaction between the tumor and the normal
tissue (e.g., endothelial cells) and therefore often only a single isozyme in each
tumor type is implicated in the pathology. A more robust understanding of the
underlying biology and comparison of pathways identified in human specimens is
essential for therapeutic progress in this field.

2. Inadequate preclinical studies - Animal models that examine the role of PKC in
chronic diseases are usually very short term. For example, pressure overload by
aortic constriction is often used to induce heart failure in rodents. This model
mimics pressure overload induced by hypertension, which slowly leads to heart
failure in humans. However, aortic constriction induces pressure overload very
abruptly and therefore may implicate molecular processes in heart failure that do
not occur in natural progression of the disease in humans. In addition, idealized
controlled experiments conducted on inbred animals do not capture the full range
of heterogeneous conditions encountered in clinical practice. Patients vary in age,
underlying health, baseline medications, diet, and severity and cause of the disease
of interest. Any of these factors might result in decreased efficacy or increased
toxicity of the study drug. The route of administration is often changed between
animal efficacy studies and clinical trials. To the extent possible, these potential
confounding factors must be replicated in the animal studies. Species differences in
PKC expression must also be taken into consideration when conducting animal
efficacy studies. Another factor that needs to be considered is the lack of
reproducibility of preclinical findings: Unfortunately, many academic studies
include data in a single animal model, use too few animals per group, use
inappropriate statistical tools, are carried out in un-blinded fashion and/or report
only positive data. A recent publication in Nature reported that only 11% of 53
papers reporting preclinical data in cancer research were independently confirmed
by Amgen investigators; the rest of the studies could not be confirmed even when
working with the original authors189. Numerous reasons can be provided to explain
the Amgen findings, and this is not the platform to discuss them. Nevertheless, lack
of incentive (and platform) to publish confirming or negative data in a second
species may contribute to the problem.

3. Lack of selectivity and unacceptable on-target and off-target effects - As discussed
above, many PKC inhibitors also affect other protein kinases72,190 and, therefore,
are less suitable as therapeutics. Second, multiple PKC isozymes are expressed in
all cell types throughout the body and play critical roles in normal physiology. As a
result, systemic inhibition of an isozyme (e.g., PKCβ) that contributes to a disease
process, such as the disordered angiogenesis of proliferative macular degeneration,
may result in undesired on-target side effects, such as delayed wound healing.
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Further, each PKC isozyme regulates a number of intracellular signaling events,
each leading to a specific phenotypic response. Therefore, even an isozyme-
selective drug may elicit responses that are both positive and negative in the
pathophysiology of a particular disease. To address this problem, the Mochly-
Rosen lab is developing separation-of-function inhibitors (SoF) (Fig. 4d). SoF
inhibitors are peptides that are designed to selectively inhibit the phosphorylation
of one particular substrate of an individual PKC isozyme, without affecting
phosphorylation of its other substrates. Such peptide inhibitors were developed
using the same rational as summarized in Box 3 (e.g., to selectively inhibit
pyruvate dehydrogenase kinase phosphorylation by PKCδ47; submitted). Peptide
regulators that affect the translocation to a particular site, without affecting the
translocation and the resulting activities in other sites can also be developed e.g.,
the peptide that selectively enhances PKCε translocation into the mitochondria to
provide cardioprotection92. It remains to be determined whether such separation-of-
function inhibitors of individual PKC isozymes will be useful therapeutics. In
addition, some labs have taken an in silico or systems biology approach to address
the selectivity of PKC inhibitors (e.g., investigators at Lilly took at chemical
proteomics approach to address bisindolmaleimide selectivity191).

4. The drug does not reach its target in adequate concentration - PKC modulators
must be delivered intracellularly to their target. Optimal clinical dosing regimens
are typically extrapolated from efficacious blood concentrations in animal studies.
But blood levels may not correlate in either magnitude or timing to intracellular
drug concentrations and the target tissue. This is particularly problematic with
peptide and oligo-nucleotide therapies, which are largely impermeable to cell
membranes and often require a carrier peptide to allow intracellular access.

5. Lack of blood biomarkers - As yet, there are no PKC-specific biomarkers that
would indicate adequacy of dosing or predict phenotypic outcome. As a result,
expensive trials measuring clinical outcomes are the only way to identify the
optimal dosing regimen. This adds substantially to development costs and greatly
increases the probability of failure to show efficacy.

6. Confounders in clinical practice - When designing clinical trials, researchers must
consider and control for additional factors that might reduce a drug’s clinical effect.
For example, a selective PKCε activator intended to reduce cardiac ischemic
damage during CABG will be less likely to show efficacy versus placebo if volatile
anesthetics are also routinely administered, since they also activate PKCε.

7. Inability to obtain and analyze data from failed clinical trials - With the
establishment of registration of ongoing trials in clinicaltrials.gov, there was hope
that all patient-related data will be available for analysis regardless of the trials’
outcome. However, whereas data on positive trials are provided in a relatively
timely fashion, there is a long lag in or lack of reporting on failed trials. This may
be due to reduced priority for the sponsors to publish and/or a disincentive to
improve drug development in competing companies. Since the majority of the
studies are conducted with academic principle investigators, it is imperative that
this work will be published and that a forum for publishing these important data in
high profile journals will be available. Analysis of such failed trials will provide
critical information on how to improve subsequent trials.

Conclusion
Given PKC’s critical roles in both normal physiology and disease, this family of kinases
remains an enticing target for drug development. As our knowledge of PKC biology
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deepens, it appears that even selectivity at the isozyme level may be insufficient for a drug
to have optimal efficacy and minimal unintended “on-target” adverse effects. Biomarkers
that are specific for PKC activity would greatly enhance our ability to monitor the
pharmacodynamic activity of new PKC modulators. As we continue to unravel the biology
of PKC, future success in developing drugs for PKC-mediated diseases will require that we
thoughtfully combine cutting-edge basic research with more robust and efficient drug
development practices.
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BOX 1: PKC in cardiac disease

1. Platelet activation at atheroslerotic site232:

The main isozyme found to be required for platelet aggregation is PKCα and
PKCα inhibition is protective. Because PKCα knockout does not lead to
excessive bleeding, an inhibitor of this isozyme may be safe for this indication.
A role for other isozymes has also been described.

2. Myocardial infarction (MI) and acute ischemia and reperfusion
injury4,118,233,234:

Both δ and PKCε are activated in the ischemic human heart and in a number of
animal models of MI. Selective activators and inhibitors of this isozyme and
work in transgenic mice showed that PKCε activation is protective when
occurring prior to the ischemic event or right at reperfusion, mimicking
protection induced by short ischemic period prior to the prolonged ischemic
event (pre-conditioning) or right at reperfusion (post-conditioning). PKCε
activation protects mitochcondrial functions, in part via activation of
mitochondrial aldehyde dehydrogenase 2 (ALDH2), which removes toxic
aldehydes, products of lipid peroxidation195. In contrast, PKCδ inhibition at
reperfusion is protective. PKCδ activation mediates much of the damage, by
activating mitochondrial pyruvate dehydrogenase kinase47, which inhibits
pyruvate dehydrogenase and ATP regeneration and triggers necrosis. PKCδ
activation also induces reperfusion-induced apoptosis235 of both endothelial and
cardiac myocytes, thus leading to further tissue injury. See summary on the
opposing roles of PKCδ and PKCε in MI (Fig. 4).

3. Cardiac arrhythmia236

PKCε inhibits fatal ventricular arrhythmia associated with ischemia and
reperfusion injury, possibly through inhibition of mast cell degranulation and
activation of ALDH2 in these cells, inhibition of L-type calcium activation in
cardiac myocytes, inhibition of sodium channel and decreased connexin 43-
dependent intermyocyte communication via gap junction. Note that PKCδ
inhibitor, which like PKCε activator, also reduces infarct size in the MI model,
does not inhibit post-MI cardiac arrhythmia, indicating that reduction of infarct
size per se is insufficient to prevent arrhythmia.

4. Compensatory hypertrophy35

PKC α, βII, δ and ε are all activated during compensatory hypertrophy.
However, only sustained inhibition of PKCε is cardioprotective during
compensatory hypertrophy in hypertensive rats; selective inhibition of the other
isozymes shows no benefit237. Over-expression of PKCα in decreases
contractility and knockout of PKCα enhances contractility238 and selective
activation of δPKC increases cardiac mass28, but also increases fibroblasts
proliferation239 and therefore may be deleterious.

5. Heart failure35

Transgenic and knockout mice demonstrated that αPKC mediates HF in
mice203. However, failed human hearts show at most a small increase in αPKC
activation. In contrast, a more than 2X increase in βPKC activation33,34,240,241

and in two models of HF in rats (βIIPKC )109. Conflicting data were obtained on
the role of PKCβ in HF using transgenic mice205–209. However, the use of
highly selective pharmacological tools demonstrated that inhibition of PKCβII
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is therapeutic, at least in part by 1. preventing proteasomal inactivation and the
resulting accumulation of misfolded proteins204; 2. by inhibiting decreases the
contractile dysfunction159,207; and 3. by inhibiting increased cardiac fibrosis and
improving calcium handling109,242

6. Diabetic cardiomyopathy2

Hyperglycemia activates PKC α, βII, δ and ε. PKCδ activation may prevent
atherosclerosis. PKCε inhibition accelerated diabetes-induced cardiac
dysfunction and death in mice. However, it appears that inhibition of PKCβ
alone (perhaps βII) is sufficient to protect from endothelial cell dysfunction,
insulin resistance and cardiomyopathy.

7. Endothelial dysfunction and vascular restenosis243

PKC α, β, and δ increase smooth muscle cell (SMC) migration by promoting
actin polymerization and enhancing cell adhesion. Sustained treatment with
PKCβ and PKCδ inhibitors each provides some therapeutic benefit in rat and
mice models. PKCδ inhibition and PKCε activation inhibit vasculopathy after
transplantation50 or after balloon injury and stenting244. Also, acute inhibition
of PKCδ greatly reduces MI-induced microvascular dysfunction by inhibiting
endothelial cell death235 and by inhibiting re-occlusion of microvessels during
reperfusion235.
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BOX 2: Potential targets for drug development and challenges associated
with these targets

1. ATP-binding site (in the catalytic domain): The PKC catalytic domain within
the PKC family is ∼70% homologous, and the ATP-binding site in all protein
kinases is highly conserved. Therefore, generating a drug that selectively
inhibits one kinase has been a great challenge if not impossible68.

2. DG-binding site (in the C1 domain): The C1 domain and the DG-binding site
are highly homologous between isozymes (60–80% identity). Further, other
non-PKC proteins have C1 domains that bind DG245. Therefore, generating a
drug that selectively bind the C1 of one isozyme has been a challenge, but the
work of Blumberg et al 246 identified some selective C1-binding molecules, as
did some recent work by Wender et al 87.

3. Protein-protein interactions with anchoring proteins (in the C2 domain):
RACKs27 anchor proteins that bind activated PKC, in part through the C2
domain, have not been identified for all the PKC isozymes. The C2 domain is
structurally conserved between PKC isozymes, but sequence homology is less
than 50%. Further, there are also other proteins and enzymes with a C2 domain.

4. Protein-protein interactions with other proteins that regulate the subcellular
localization of the enzymes. (The location of the interaction sites has not always
been identified, but is often in mediated by sequences unique for individual
isozymes): At least three families of proteins interact with select PKC
isozymes99. These are RACKs27 , annexins247 and 14-3-3248. Other proteins,
including HSP9092, actin107, AKAPs249,250 and importins102 also interact with
some PKCs and some show high selectivity. However, critical partner proteins
and the interaction site with each partner have not been always identified.

5. Interaction between PKC isozymes and their substrates. (The location of the
interaction sites has not always been identified, but is often in mediated by
sequences unique for individual isozymes): Several PKC substrates were found
to stably interact with the corresponding PKC isozymes. These were termed
STICKs by Jaken and collaborators251. This kind of PKC-protein substrate
interaction can be selectively disrupted (Mochly-Rosen et al, unpublished).
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BOX 3: Rational approaches to identify peptide inhibitors of protein-protein
interaction (PPI) of PKC99,104,106

1. Sequence homology between two unrelated proteins that interact with PKC:

A peptide corresponding to a short homology between two unrelated PKC-
binding proteins, annexin I and 14-3-3 is a PKC inhibitor252.

2. The least conserved sequences within a highly conserved region:

Peptides corresponding to the least conserved sequences between isozymes in
the C2 domain are selective inhibitors of the function of the corresponding
isozyme. For example, δV1-1 peptide, derived from a PKCδ-unique sequence in
the C2 domain (aka V1 domain), is a selective inhibitor of PKCδ function28.

3. The most similar sequences between unrelated proteins that contain a
homologous domain:

Both PKCβ and phospholipase C contain C2 domains and peptides
corresponding to the most homologous regions are selective inhibitors of PKC
and do not affect other C2-containing proteins253.

4. A short sequence of homology between PKC and its partner protein:

Often this sequence represents an auto-inhibitory site that interacts with the
binding-site for the partner protein when PKC is inactive. The first PKC
inhibitor to be identified is the pseudosubstrate peptide, corresponding to a
sequence in PKC that mimics the phospho-acceptor site in the substrate254. The
six amino acid pseudo-βRACK peptide, representing a short homologous
sequence between PKCβII and RACK1, is a selective activator of PKCβII255.
Similarly, ψεRACK peptide, corresponding to a sequence in PKCε that is
homolgous to its RACK, is a selective activator of PKCε256. A peptide
corresponding to a six amino acid homology between Hsp90 and PKCε
increases the interaction of PKCε with Hsp90 and its function, but not the
interaction of PKCδ with Hsp9092. Finally, separation of function inhibitors,
representing a stretch of homology between a given isozyme and one of its
protein substrates, inhibits the phosphorylation of that substrate and not any
other substrates of the same isozyme (Mochly-Rosen, unpublished data).

Other ‘filters’ to confirm that the sequences found represent PPI between a PKC
and its partner proteins.

• The sequence is conserved in evolution

• The sequence contains at least one charged amino acid

• If the sequence is found in other proteins in the human genome, the
sequence in these other proteins is not conserved in evolution.
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Figure 1.
a. Domain composition of PKC family members is shown in a stick scheme (not to
scale). The structure of PKCβII (3PFQ) by domains; the diacylglycerol- binding C1a
domain, the phosphatidylserine- (and calcium-) binding C2 domain, and the kinase domain.
The secondary structures are α helix (in orange), β strands (in cyan) and loops (in gray),
Zn2+ in purple and Ca2+ in green. b. The homology of different PKC isozymes to PKCδ.
The C2 domain is the least conserved between the isozymes as compared with the other
domains, suggesting that pharmacological tools that focus on the C2 domain are more likely
to be isozyme-selective.
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Figure 2. What processes lead to dissociation of the intra-molecular inhibitory interaction in
PKC and to activation of the enzyme?
All PKCs require the binding of diacylglycerol (DG) to the C1 domain of the regulatory
region for activation. Conventional PKCs also require calcium (Ca2+) binding to the C2
domain of the regulatory region. These second-messengers are generated following the
binding of certain hormones, neurotransmitters or growth factors to their corresponding
receptors. The consequent activation of membrane-associated phospholipase C (PLC) results
in hydrolysis of phosphatidylinositol-bisphosphate (PIP2), a membrane phospholipid, to DG
and inositol trisphosphate (IP3). IP3, in turn, triggers the release of calcium from the
endoplasmic reticulum (ER), causing a rise in cytosolic Ca2+ concentration. Therefore, a
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single event (receptor-dependent phospholipase C activation) leads to generation of the two
second-messengers that are required to activate both the conventional and novel PKCs. The
rise in DG and Ca2+ leads to activation of PKC and its translocation from the cytosol to the
plasma membranes as well as to other subcellular locations, where each isozyme interacts
with its anchoring protein, RACK. When bound to RACK and the second messenger
activators DG (and Ca2+ for the conventional PKC isozymes), PKC is then active,
phosphorylating a number of substrates that are nearby, thus leading to diverse cellular
responses.
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Figure 3. The role of PKC isozymes in ischemic heart disease
Shown is how prolonged ischemia and reperfusion results in activation of PKCδ more than
PKCε, leading to translocation of PKCδ into the mitochondria47, phosphorylation of
pyruvate dehydrogenase kinase (PDK), which in turn phosphorylates pyruvate
dehydrogenase47 and reduction in TCA cycle and ATP regeneration192. Mitochondrial
dysfunction leads to higher ROS production and lipid peroxidation leads to accumulation of
reactive oxygen species (ROS) and toxic aldehydes, such as 4-hydroxynonenal (4HNE), that
interact and inactivate macromolecules including proteins, DNA and lipids193.
Mitochondrial dysfunction and increase in ROS leads to both apoptosis29,194 and necrosis
and severe cardiac dysfunction192. In contrast, ischemic preconditioning prior to prolonged
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ischemia and reperfusion provides cardioprotection by activating more PKCε4, which also
translocates into the mitochondria92 and prevents mitochondrial dysfunction induced by
prolonged ischemia and reperfusion. PKCε-mediated protection occurs, in part, by PKCε
phosphorylation and actvation of aldehyde dehydrogenase 2 (ALDH2)195. Activated
ALDH2 metabolizes aldehydes, such as 4HNE, thus reducing the aldehydic load and the
mitochondrial and cellular damage. This results in improved mitochondrial functions and
faster recovery of ATP levels. The reduced 4HNE levels also prevent direct inactivation of
the peroxisome and thus enable fast removal of aggregated proteins. The active proteasome
also selectively degrades activated PKCδ, increasing the balance in favor of the cardiac
protective PKCε48.
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Figure 4. Inhibitors of PKC
Inhibitors of ATP binding to the kinase inhibit the phosphorylation of all the substrates (e.g.,
S1, S2, S3) of that isozyme, and to a loss of all cellular responses (a). PKC regulators that
target the DG-binding site, and act as activators (b) or inhibitors (not shown). The inhibitors
can also inhibit anchoring of the enzyme to its RACK that rings the activated isozyme next
to its substrates, thus leading to inhibition of all the physiological responses of that isozyme
(c). Theoretically, the active, but non-anchored PKC may phosphorylate new substrates.
However, this was not observed perhaps because activation in the absence of RACK binding
is very transient and/or because the cytosolic phosphatases remove such non-physiological
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phosphorylations. The same isozyme is localized to several subcellular locations following
activation90 and therefore near a subset of substrates and away from others. Further, there
are reports on direct binding of substrates to PKC at sites that are distinct from the phospho-
donor/ phospho-acceptor sites. Therefore, inhibitors of protein-protein interactions at a
specific subcellular location or with a specific substrate may provide unique inhibitors of the
phosphorylation of one substrate and not the others (d). Such separation-of-function
inhibitors will have great value, as each PKC isozyme phosphorylates substrates and not all
these phosphorylation events contribute to the pathological condition.
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Table 1

PKC isozymes that are implicated in human diseases

Disease Main PKC isozyme implicated in the
pathology Ref

The pathology associated with PKC

Cancer PKCα196 Proliferation, intravasation & metastasis

PKCβ54 Vasculogenesis and cancer cell invasion

PKCδ30 Angiogenesis

PKCε197 Proliferation, pro-survival, metastasis, resistance to
chemotherapy

PKCθ58 Gastrointestinal stromal cell proliferation

PKCη89 Glioblastomal cancer increased proliferation, resistance to
radiation

Diabetic complications PKCβII2 Vascular complications

PKCβ198,199 Knockout attenuates obesity and increased glucose transport
(role of βI?)

PKCδ60 Stimulation of islet cell function

Ischemic heart disease PKCδ mediates injury52,160,192,200 Increased ROS, decreased ATP generation increased apoptosis
and necrosis

PKCε is protective; useful for
predictive ischemia such as in surgery
or organ transplantation4,118,160,195,201

Protection of mitochondrial functions and proteasomal activity,
activation of ALDH2 and reduction of aldehydic load

Heart failure PKCα202,203 Decreased cardiac contractility, myofilaments force ,
uncoupling β adrenergic receptor

PKCβII5,108,204 In rats, decreased proteasomal activity and removal of
misfolded proteins in several models, disregulate calcium
handling.

PKCβII205–209 In mice*, overexpression results in hypertrophy or is not
required for hypertrophy. It also decreases or increases
contractility.

PKCε4,5,35 Increased fibrosis, fibroblasts proliferation, and inflammation

Psoriasis PKCδ12,66 Increased inflammation, increased proliferation, dis-regulation
of angiogenesis

Pain PKCγ44 Key mediator of pain in dorsal root ganglia

PKCε44 Key mediator of pain in spinal cord

Autoimmunity and inflammation PKCδ210,211 B cell development, inflammation

PKCθ6,212 Involved in many T cell responses

Stroke PKCδ41,213–215 Increased mitochondrial fission, ROS production and decreased
blood-brain barrier

PKCε41,216 Cytoprotective, increased cerebral blood flow

Bipolar disorders PKCα10,11,65,112 Altered gene expression

PKCε63 Altered neuronal transmission

Asthma and other lung diseases PKCθ217 Inflammation, airway hyper-responsiveness

PKCδ218 Eosinophils activation
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Disease Main PKC isozyme implicated in the
pathology Ref

The pathology associated with PKC

(loss of others may contribute to
pathology)

Parkinson’s disease PKCδ8,219,220 Inflammation, neuronal cell death

Footnote: some work using gene knockout and over-expression in mice is not discussed here, because there are conflicting data on the matter and
the explanation for the conflicting is not always clear and is beyond the scope of this review.

*
Whereas studies using rat models find that inhibition of PKCβII is protective from heart failure5,204, other studies using mouse genetic models

provide conflicting data205–209. Whether these differences reflect species differences, dose of gene, strain of mice or other reasons remain to be
determined.
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Table 3

Peptides derived from unique sequences in PKC (6–10 amino acids in length) exert isozyme-selective effects
in a number of animal models of human diseases.

Peptide
(isozyme; Swissprot #; site)

Peptide
sequence

Selectivity reference Biological effects: examples of
diseases and modelsreference

βC2–4 (human PKCβ;
PO5771; amino acids 218–
226)

SLNPEWNET Affects all cPKCs253 Inhibits cardiac hypertrophy in culture253

δV1-1 (mouse PKCδ; P28867;
amino acids 8–17)

SFNSYELGSL Selectively inhibits PKCδ28 Reduces infarct size when given at reperfusion,
after myocardial infarction (MI)28,192; Inhibits
breakdown of blood/brain barrier in
hypertensive rats257

εV1–2 (rat PKCε; P09216;
amino acids 14–21)

EAVSLKPT Selectively inhibits PKCε224 Prevents transition to heart failure in
hypertensive rats237; Inhibits pain sensation in
an inflammatory pain model in rats44

βIIV5-3 (human PKCβ;
P05771-2; amino acids 612–
617)

QEVIRN Selectively inhibits PKCβII108,94 Prevents cardiac dysfunction and death in a rat
model of post-MI heart failure109; inhibits neo-
angiogenesis in a xenograft model of prostate
tumor in mice94

γV5-3 (human PKCγ;
P05129; amino acids 659–664)

RLVLAS Selectively inhibits PKCγ44 Prevents pain by blocking transmission in the
cord44

αV5-3 (human αPKC;
P17252; amino acids 642–647)

QLVIAN Selectively inhibits PKCα258 Inhibits PKCα and inhibits tumor metastasis258

ψε RACK (rat PKCε; P09216;
amino acids 85–92)

HDAPIGYD Selectively activates PKCε by
inhibiting auto-inhibitory intra-
molecular interaction256

Induces protection from ischemic event when
given prior to MI256,259
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Table 4

Summary of clinical trials with PKC regulators

Indication Drug Reference
Proposed
mechanism Outcome

Company
Comments

Congestive heart failure Flosequinan156,157 Non-selective
↓PKC

Increased
hospitalizations and
mortality required early
study termination

Withdrawn from clinical use

Coronary bypass grafting
(preconditioning)

Volatile anesthetics161–165 ↑PKCε Reduction in troponin I
levels, need for
inotropic support, and
prolonged
hospitalization (>7days)

Sevoflurane and desflurane
compared to propofol in moderate
size studies.

Adenosine166–168 ↑PKCε Reduction in composite
AMI, mortality, need for
pressors postoperatively.

Requires validation in larger study

Acadesine169,170,2 30 ↑PKCε
↑AMPK*

No reduction in death,
AMI, or stroke

Reduced two year mortality in the
small group of patients who had a
post-operative AMI.

Acute myocardial
infarction Salvage

Adenosine171 ↑PKCε No reduction in
composite endpoint of
death and CHF

Reduced infarct size from 27% to
11% when given at 70 mcg/kg/min

Delcasertib172,173 ↓PKCδ No benefit when given
intravenously

Positive biomarker trend when
given to patients with TIMI 0/1
flow

Bipolar Mania Tamoxifen183–186 Nonselective
↓PKC (at high

dose) ER#
inhibitor

Several small studies
show significant benefit
in acute mania

High dose tamoxifen (80 mg/day)
increases risk of thrombo-
embolism, stroke, and uterine
cancer

Oncology Bryostatin121–134 Nonselective
↑PKC

Minimal to no benefit
against a number of
cancers.

Causes severe myalgias in >50% of
patients. No ongoing studies.

Aprinocarsen135– 141 ↓PKCα Limited to no benefit
against a number of
cancers.

Development discontinued

Enzastaurin142–148 ↓PKCβ Very rare to no
objective responses
against a number of
cancers

Ongoing studies in brain
malignancies

Tamoxifen149–151 Nonselective
↓PKC (at high

dose) ER#
inhibitor

Limited to no benefit in
malignant gliomas and
hormone refractory
prostate cancer

High dose tamoxifen (80 mg/day)
increases risk of thromoembolism,
stroke, and uterine cancer

Midostaurin152,153 Nonselective
↓PKC
↓FMS-like
Tyrosine kinase
3

No effect in metastatic
malignant melanoma.
Decreased peripheral
blasts in leukemia.

Leukemia trials being conducted.

UCN-01154,155,231 Nonselective
↓PKC
↓Chk1

No response in
advanced renal cell
cancer or ovarian cancer

Studied in combination with
topotecan in ovarian cancer study

Diabetic Retinopathy Ruboxistaurin158, 174–177 ↓PKCβ Reduced sustained
moderate vision loss in
large studies

Under review by FDA for diabetic
retinopathy

Diabetic Nephropathy Ruboxistaurin179, 180 ↓PKCβ Failed to improve
kidney outcomes

Studied as secondary outcome in
large retinopathy trials

Diabetic Neuropathy Ruboxistaurin181, 182 ↓PKCβ Mild decrease in
symptoms

Small, short-term studies. Requires
validation in larger study

Nat Rev Drug Discov. Author manuscript; available in PMC 2013 September 03.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Mochly-Rosen et al. Page 46

Indication Drug Reference
Proposed
mechanism Outcome

Company
Comments

Transplant Rejection Sotrastaurin187,188 Nonselective
↓PKC

Marked increase in
rejection

Rejection occurred when used in
combination with mycophenolate

*
AMP-activated protein kinase

#
estrogen receptor

Nat Rev Drug Discov. Author manuscript; available in PMC 2013 September 03.


