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Stochastic Properties of Neurotransmitter Release Expand
the Dynamic Range of Synapses

Hua Yang and Matthew A. Xu-Friedman
Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260

Release of neurotransmitter is an inherently random process, which could degrade the reliability of postsynaptic spiking, even at
relatively large synapses. This is particularly important at auditory synapses, where the rate and precise timing of spikes carry informa-
tion about sounds. However, the functional consequences of the stochastic properties of release are unknown. We addressed this issue at
the mouse endbulb of Held synapse, which is formed by auditory nerve fibers onto bushy cells (BCs) in the anteroventral cochlear nucleus.
We used voltage clamp to characterize synaptic variability. Dynamic clamp was used to compare BC spiking with stochastic or determin-
istic synaptic input. The stochastic component increased the responsiveness of the BC to conductances that were on average subthresh-
old, thereby increasing the dynamic range of the synapse. This had the benefit that BCs relayed auditory nerve activity even when synapses
showed significant depression during rapid activity. However, the precision of spike timing decreased with stochastic conductances,
suggesting a trade-off between encoding information in spike timing versus probability. These effects were confirmed in fiber stimulation
experiments, indicating that they are physiologically relevant, and that synaptic randomness, dynamic range, and jitter are causally

related.

Introduction
The probabilistic nature of neurotransmitter release has been
clear since early recordings of synaptic potentials (Fatt and Katz,
1952), but the functional implications are poorly understood.
Most importantly, when the average size of synaptic potentials is
near threshold, the randomness of release potentially introduces
noise and unreliability. This could have a major impact in the
auditory system, where the rate and precise timing of spikes carry
information about the nature and location of sound sources, so
the loss or mistiming of spikes will degrade auditory processing.
This is a particular issue for relay neurons in the auditory
pathway, such as bushy cells (BCs) in the anteroventral cochlear
nucleus. BCs receive excitatory input from auditory nerve fibers
(ANFs) at synapses called “endbulbs of Held” (Lorente de No,
1981; Ryugo and Fekete, 1982; Limb and Ryugo, 2000). BCs relay
ANTF activity to brain areas involved in sound localization. End-
bulbs are among the largest and fastest synapses and, at low fre-
quencies of activation (<100 Hz), show near-perfect fidelity in
triggering action potentials in BCs. However, ANFs are capable of
firing at up to 300 Hz in vivo (Johnson, 1980; Joris et al., 1994;
Taberner and Liberman, 2005). At these rates, endbulb EPSCs
can depress below spike threshold (Wang and Manis, 20065
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Strenzke et al., 2009; Yang and Xu-Friedman, 2009; Chanda and
Xu-Friedman, 2010a). Furthermore, single quanta at the endbulb
are particularly large (mEPSCs ~100 pA, mEPSPs 1-2 mV)
(Oleskevich et al., 2004; Chanda and Xu-Friedman, 2010b).
Thus, variability in EPSP amplitude could have a large impact on
spiking during ongoing activity when endbulbs are depressed.

The stochastic properties of release have been used to eluci-
date fundamental mechanisms of synaptic transmission (Scheuss
and Neher, 2001; Silver, 2003) but have not been addressed in
their own right. Average EPSCs typically measured in vitro do not
reflect the moment-by-moment variation that the nervous sys-
tem normally encounters in vivo. Recently, considerable variabil-
ity has been found in EPSP amplitude in vivo (Lorteije et al., 2009;
Kiinzel et al., 2011). Although it is not yet clear how much of that
variability results from deterministic versus stochastic processes,
it seems likely that the fidelity of postsynaptic spiking is influ-
enced by the stochastic nature of neurotransmitter release. Fur-
thermore, the persistence of synaptic variability in vivo raises the
question whether there may be unrecognized benefits of stochas-
tic release.

We addressed these issues by quantifying the variability of
release at the endbulb and assessing its impact experimentally
using dynamic clamp. Variability in BC spiking is almost entirely
accounted for by variability in synaptic conductance, whereas
spike threshold remains highly stable. This reduces reliability for
EPSPs that are on average just over threshold, but it also increases
spiking for EPSPs that are on average below threshold. The over-
all effect of the stochastic properties of release is therefore that
postsynaptic spike probability encodes information about aver-
age EPSP amplitude, which increases the dynamic range of syn-
apses. However, it does so at a cost to precise timing, as latency is
closely tied to EPSP amplitude.
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Materials and Methods

Electrophysiology. Brain slices were prepared from the cochlear nucleus of
CBA/Ca] mice of either sex 15-21 days of age according to procedures
described previously (Yang and Xu-Friedman, 2008), and approved by
the Institutional Animal Care and Use Committee at the University at
Buffalo. Recordings were performed at 32°C in external solution con-
taining the following (in mm): 125 NaCl, 26 NaHCO;, 1.25 NaH,PO,, 2.5
KCl, 1 MgCl,, 1.5 CaCl,, 20 glucose, 4 Na L-lactate, 2 Na pyruvate, 0.4 Na
L-ascorbate, and 10 uMm strychnine. For ANF stimulation experiments, in
current-clamp, 5 um CPP was also included. Patch electrodes contained
the following (in mm): (voltage clamp) 35 CsF, 100 CsCl, 10 EGTA, 10
HEPES, 1 QX-314, pH 7.3, 311 mOsm, or (current/dynamic clamp) 130
KMeSO,, 10 NaCl, 2 MgCl,, 0.16 CaCl,, 0.5 EGTA, 10 HEPES, 4
Na,ATP, 0.4 NaGTP, 14 phosphocreatine di(tris), pH 7.3, 305 mOsm.
Recordings were made using a Multiclamp 700B controlled by an In-
strutech ITC-18 digital interface through Wavemetrics Igor running
custom-written routines. Patch electrodes had resistances of 1.5-2.5
M), yielding series resistances of 5-10 M{2, which were compensated to
70%. Individual ANFs were stimulated in the neuropil using a 3-5 um
electrode connected to a stimulus isolator (WPI, A365), passing 14 A of
current for 0.2 ms. Dynamic clamp was performed using the ITC-18
interface at 50 kHz (for more details, see Xu-Friedman and Regehr,
2005a). Conductance threshold (see Figs. 3 and 5) was measured with 0.5
nS resolution by applying AMPA-like conductances of different ampli-
tudes, and finding the minimum conductance that drove spiking with an
adaptive procedure. The conductance of dynamic clamp trains was
scaled to 5-6 times this value. In most cases, the value of the first pulse
was changed to a more moderate suprathreshold value (e.g., 30 nS) to
avoid recording artifacts caused by the very large conductances that
rested endbulbs are capable of (=>100 nS). This was in keeping with our
focus on later pulses in the train when synaptic depression has set in.

Stochastic model of release. This model is modified from an earlier,
deterministic model (Yang and Xu-Friedman, 2008, 2009), that added
receptor desensitization to the release and recovery model of Dittman et
al. (2000). These models share many features in common with a number
of existing models of neurotransmitter release. This model is mechanis-
tically based, but it is not claimed to be complete. For example, the model
does not take into account delayed release, receptor saturation, or vari-
ability in quantal size (Chanda and Xu-Friedman, 2010a; Yang and Xu-
Friedman, 2010). Phenomenologically, it yields EPSCs with mean and
SDs that match voltage-clamp data of trains of activity reasonably well.

The deterministic model used analytical solutions for each release and
recovery process. The stochastic model was implemented using an Euler
integration approach, with time step dt = 0.5 ms. The model tracked a
number of independent release sites (Ng). Each release site, equivalent to
one active zone, contained its own pool of releasable vesicles of maxi-
mum size Ny, and an unlimited reserve pool. The vesicle pool was ini-
tialized with Ny, vesicles, which was depleted with activity. When a
stimulus occurred, the number of vesicles released by one release site, r;,
followed a binomial distribution, with parameter N equal to the number
of available vesicles at site i (N;), and parameter P equal to the probability
that each releases, which we held fixed in this model with a value of P,,.
The vesicle pool recovered according to two processes: a slow recovery
with rate k,, and a fast recovery with rate k,,,_,. The balance of these was
determined by accumulation of an activity sensor D, which incremented
with each pulse, and decayed back to rest with time constant 7,. The
activity sensor was modeled as driving fast recovery according to a simple
binding reaction with dissociation constant Kp,.

The decay of D was implemented deterministically as follows:

D(t + dt) = D(t) exp ( — dt/p).
The value of D was used to determine the instantaneous recovery rate:
Kreeor®) = (kmax — ko)/[1 + Kp/D(1)] + k.
The actual number of vesicles that recovered during each interval dt was

probabilistic, drawn from a binomial distribution, with parameter N
equal to the number of open slots in the site’s releasable pool (i.e., Ny, —
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N,), and parameter P dependent on the rate of recovery (i.e., k.., d1). On
average, this produced exponential recovery.

To drive the desensitization part of the model, cleft glutamate at each
site, S;, was incremented according to the number of vesicles released at
that site. Cleft glutamate decayed deterministically back to 0 with time

constant 7g. This was implemented for each time step as follows:

recov

Si(t + dt) = Si(t) exp ( — dt/Ts).

Receptor desensitization was modeled as an instantaneous binding reac-
tion with cleft glutamate, using dissociation constant K. Early versions
of the model calculated the synaptic current contributed by each site,
EPSC,, as follows:

EPSC, = 7’,’/(1 + Si/KS)!

where r; was the number of vesicles released from site i after the stimulus.
However, this led to the problem that adjustments in the parameter Ny,
to tune the stochastic properties of release, had the side effect of changing
the depth of desensitization, which was a deterministic aspect of synaptic
plasticity that it was preferable to hold constant. To break this interac-
tion, we revised this to:

EPSC;, = r/(1 + S/KsNy).

The overall EPSC was the sum of every site’s EPSC..

We found that including a facilitation component in the model was
not necessary to fit our experimental data, but for completeness we de-
scribe it here. Following Dittman et al. (2000), a facilitation sensor F
would be incremented after each stimulus, which decays exponentially
with time constant 7y

F(t + dt) = F(t) exp ( — dt/).

The probability of release at any moment, P(t), would be influenced by
the facilitation sensor according to a simple binding reaction with disso-
ciation constant K:

P(t) = Py + (1 — Py)/[1 + K/F(1)].

Model validation. We validated the conversion of the model from de-
terministic to stochastic by comparing the output of both types of model.
We ran the stochastic model either with thousands of release sites, or by
running the model thousands of times, and comparing the average
against the output of the deterministic model. These were always essen-
tially identical. Once it was clear that the model was well behaved, we
selected a representative voltage-clamp experiment and adjusted the pa-
rameters of the model to match both the average EPSC amplitude and the
SD (see Fig. 4). To improve similarity, we fit parameters iteratively by
hand to minimize a y? statistic.

The parameters for the model used to derive conductances in Figures
4and 6 were Py = 0.4, ky = 0.5/s, k,,,,,, = 7/s, T, = 10 ms, K, = 0.05, 73 =
5 ms, Kg = 1 Ny, Ny = 60, Ny, = 3, and facilitation was not included.
Figure 5 used identical parameters, except that the number of sites (Ng)
was varied.

Results

Probabilistic effects in current clamp

Synaptic variability is evident in current-clamp recordings. We
made whole-cell recordings of BCs in slices from the anteroven-
tral cochlear nucleus of P15-P21 mice and activated individual
ANFs using a small stimulating electrode in long trains of differ-
ent frequencies. Spiking was initially highly reliable, but this reli-
ability dropped off as activity continued, particularly at high
frequencies of activation (Fig. 1A-C). Notably, even though spik-
ing became less reliable, it did not vanish. As the train of activity
continued, spiking decreased to 75% (at 100 Hz) to as little as
25% (at 333 Hz) for prolonged periods on average. Different
synapses appeared to cut out at different frequencies (Fig. 1D),
presumably reflecting different degrees of synaptic depression
(Yang and Xu-Friedman, 2009).
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Figure 1.  Stochastic firing properties of BCs in the cochlear nucleus. A—C, Representative
current-clamp recording from a BCin response to ANF stimulation. 4, ANF stimulation (vertical
markers) at 200 Hz triggers BC spikes or EPSPs. Arrows indicate —60 mV for each trace. B, Raster
plot of spike times over 25 trials, showing a sustained, but irregular, response. €, Probability of
spiking for stimulation trains of different frequency. At 100 Hz, the probability of spiking (Py;c)
was nearly 100% after stimulation, whereas at 333 Hz, P, was nearly 0%. At intermediate
stimulation rates, Py, took on intermediate values. D, Average Py, for six experiments

7 1 spike
similar to A. On average, P, ;. decreased gradually over the course of a train at all frequencies.

pike

The question is why spiking reached intermediate values,
rather than 100% when the EPSP was above threshold or 0%
when it was below. This indicates that spiking is influenced by a
stochastic process. The stochastic process could be presynaptic,
such as through variability in the amount of neurotransmitter
release, or postsynaptic through fluctuations in resting mem-
brane potential or spike threshold. Shifts in resting membrane
potential of <5 mV have measurable effects on spike probability
in BCs (Pliss et al., 2009; Chanda and Xu-Friedman, 2011), and
spike threshold can be affected by activity (Xu-Friedman and
Regehr, 2005a).

Contribution of synaptic variability

We wanted to determine which factors contributed to the persis-
tence of spiking, so as to understand their implications for
neuronal computation. We first quantified the variability in neu-
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Figure 2.  Variability in EPSCs during trains of activity. A-C, Representative voltage-clamp
recording. 4, Single trial of a 40-pulse, 200 Hz train. Inset, Magnified view of the same trace.
EPSCamplitude is quite variable from pulse to pulse, even at steady state. B, EPSCamplitudes
from 24 trials similar to A. Open circles represent EPSCs on single trials, and closed circles
represent the overall average. ¢, EPSC mean == SD for trains of multiple frequencies. These
amplitudes were used to drive dynamic-clamp experiments in Figure 3 and were fit using the
model of stochastic release in Figure 4. D, EPSC mean == SEM for 6 cells recorded in voltage
clamp. E, Variability in EPSC represents a large fraction of the EPSC amplitude at steady state.
Mean CV (SD/mean) is plotted over the train for 6 cells recorded in voltage clamp. The steady-
state CV for pulses 11— 40 is shown at right.

rotransmitter release at the endbulb using voltage-clamp record-
ings and activating single ANFs over 40 stimuli. EPSCs show
substantial variability from one pulse to the next (Fig. 2A). We
recorded EPSCs over many trials and found substantial variabil-
ity in EPSCs at all frequencies of stimulation (Fig. 2B,C). We
observed similar effects in six cells. We quantified the average
EPSC during trains (Fig. 2D), as well as the SD (o). The coeffi-
cient of variation (CV = o/mean) rose during the train, until
variability represented a large percentage of the total amplitude
(~30%, Fig. 2E).

To determine whether the variability evident in voltage-clamp
recordings might account for the variability in spiking seen in
Figure 1, we used the dynamic-clamp technique. Dynamic clamp
is a powerful tool (Robinson and Kawai, 1993; Sharp et al., 1993;
Prinz et al., 2004) that is particularly appropriate for these exper-
iments. First, endbulbs are axosomatic terminals, so currents
passed by the dynamic clamp setup at the soma are naturalistic
(Xu-Friedman and Regehr, 2005a). Second, we want to under-
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stand the effect of synaptic variability, but it is very difficult and
perhaps impossible to control the variability of synapses in isola-
tion from other synaptic properties, such as overall amplitude
and short-term plasticity. We avoided that problem by using dy-
namic clamp to mimic synaptic conductances with and without
variability. We applied synaptic conductances based on two dif-
ferent sources: (1) the EPSC amplitudes we measured in individ-
ual voltage-clamp trials (Fig. 3A, right) or (2) the average EPSC
amplitude across all trials (Fig. 34, left). Each conductance am-
plitude was convolved with a constant unitary EPSC (Fig. 3A, left,
inset). Over the course of the experiment, the BC received the
same average synaptic conductance under both stimulus regimes,
but one was variable across trials and the other fixed. When we
applied the conductance based on the average EPSC amplitude in
dynamic clamp, the BC spiked with high regularity from trial to
trial (Fig. 3B, C, left). In many cases, even imperceptible fluctua-
tions in the amplitudes of synaptic conductance were reflected in
consistent failure or success of firing (Fig. 3B, C, left, bracketed
pulses).

We quantified the probability of spiking (P,;) during the
train, which oscillated sharply between near 100% reliability and
lower probability (Fig. 3D, closed symbols). We have observed
similar regularity in other dynamic-clamp studies using fixed
conductances that addressed entirely different issues (Pliss et al.,
2009; Chanda and Xu-Friedman, 2010a). This behavior contrasts
strongly against the gradual changes in P,;.. with ANF stimula-
tion (Fig. 1), suggesting that spike generation itself contributes
very little to the observed variability in P,y

We tested whether the stochastic properties of release might
contribute to the variability observed during ANF stimulation, by
applying dynamic-clamp stimuli that were based on individual
voltage-clamp records (Fig. 3A, right). Spiking was much more
variable (Fig. 3B, C, right), and P;. changed gradually during
the train, showing no sharp oscillations (Fig. 3D, open symbols).

To understand how the stochastic properties of release affect
the transmission of information across the synapse, we consider a
stimulus, which is encoded into a temporal pattern of auditory
nerve spiking activity. For a given temporal pattern of presynap-
tic activity, such as a train, an individual EPSP would fluctuate
around an average conductance on repeated presentation. The
average conductance amplitude is influenced by both tonic levels
of presynaptic activity as well as the temporal fine structure of
activity. A great number of studies emphasize how presynaptic
activity is transformed into postsynaptic conductances and spik-
ing (Zucker, 1989; Abbott and Regehr, 2004), but it is also im-
portant to consider this from the opposite viewpoint. Does a
pattern of activity in a postsynaptic cell reveal the activity presyn-
aptic to it? For a reliable relay, the answer is obviously yes. How-
ever, for an unreliable relay, such as an endbulb driven at high
frequency, the absence of spiking is quite ambiguous. Was there
no spike because there was no presynaptic activity or because
presynaptic activity failed to trigger a spike? Can P, reveal
more information about presynaptic activity than just presence
or absence?

We addressed these questions by considering the relationship
between P, ;. and the average conductance for individual pulses
(Gampa)> which gives us a dramatically different view of thresh-
old and synaptic function. For dynamic-clamp trials using the
average EPSC conductance, there was a sharp transition from
nonresponsive to 100% spiking over a short range of EPSC am-
plitudes (Fig. 3E, closed symbols). However, when P, for the
variable trials was plotted against the average pulse amplitude,
the relationship shows a much more shallow dependence (Fig.
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Figure3. Stochastic EPSCamplitude increases the dynamic range of synaptic transmission. A-D,
Representative dynamic-clamp recording. A, Synaptic conductances used to drive dynamic-clamp
experiments. Synaptic conductances were based on EPSCs measured in separate voltage-clamp ex-
periments shown in Figure 24—C. On different dynamic clamp trials, either the overall average ampli-
tude (left, average of 20 trials) or amplitudes measured on individual trials (right shows five examples)
were convolved with a unitary EPSC (left, inset). B, Sample dynamic clamp trials, with conductances
drawn from the overall average EPSC on each trial (left), or the EPSC amplitudes measured in individ-
ual trials (right, each trace uses a unique set of conductances, shown in A). Spiking was highly repeat-
able using the average conductance compared with the individual conductances. For the average
conductance (left), the 39th pulse in the 100 Hz train showed nearly 100% reliable spiking (asterisk
below traces), whereas the 38th and 40th failed to elicit spikes, even though differences in the average
conductance are imperceptible over this range (A). Spiking was much more variable when using the
conductances fromindividual trials (right). Arrowheads to the left of traces indicate —60mV. , Raster
diagram of spike times from 32 trials using the average (left) or individual (right) conductances.
Continuous vertical lines indicate highly regular firing. D, P, ., for dynamic damp trials driven with
average versus individual conductance for 100 Hz trains, calculated from the rasters in C. The average
conductance led to sharp oscillations in P, (closed circles) compared with the individual conduc-
tances (open circles), which showed a gradual dedline. E, Relationship between P, ;.. and average
pulse conductance Guypa. Gapa Was the same for dynamic damp conductances based on either
individual voltage-clamp trials (A—C, right) or the overall average (A-C, left) for trains of 50, 100, and
200 Hz. P, values are derived from the same analysis as in D but are plotted against the average
conductance for that pulse. Lines are sigmoidal fits to the data using Equation 1, and the derived
measure of dynamic range is indicated by the dumbbells above the graph. F, Py, as a function of
conductance amplitude, regardless of position in the train. Synaptic conductances from the experi-
ments of A and B were sorted by amplitude across all trials, then binned to calculate P, ;... Data from
average trials are shown with solid symbols, and from individual trials are shown with open symbols.
Lines are sigmoidal fits to the data as in £, with dynamic ranges indicated by the dumbbells above the
graph. The average difference in dynamic range was 0.32 == 0.10, which was not significant (p =
0.12,N =7 cells). 6, Dynamicrange increased when stochastic properties of neurotransmitter release
were included in dynamic-clamp trials. We fit sigmoidal curves (Eq. 1) to measure the dynamic range
forindividually variable trials (open circles, open bars) and the average trials (closed circles, solid bars).
The dynamic range increased significantly when considering Py, as a function of average conduc-
tance amplitude for individual pulses (p << 0.001), but not when considering P, ., as a function of
conductance amplitude regardless of train position (p = 0.12). Data are averages from seven cells.
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3E, open symbols). When the conductance reflected natural vari-
ability (Fig. 3E, open symbols), there was a significant chance for
conductances that were on average below threshold to drive
spikes as much as 20% of the time. However, when only the
average conductance was applied, these largely failed to drive any
spiking at all (Fig. 3E, closed symbols).

We view the relationship in Figure 3E as an important way to
describe the dynamic range of the synapse. From this perspective,
the average synaptic conductance is the input to the synapse, and
Py, is the output. The range over which the synapse shows a
graded change in P ;. carries information about the size of the
synaptic conductance. When that range is narrow, P ;. reports
little about the amplitude of the synaptic conductance, and
downstream elements would lose access to activity that failed to
trigger spikes at the relay synapse. When the range is wide, then
P, carries more nuanced information about the amplitude of
synaptic conductances, thereby reflecting more about presynap-
tic activity levels and fine structure of sensory information.

To quantify the dynamic range, we fit the data of Figure 3E to
a sigmoidal function as follows:

Pspike(GAMPA) = {1 + exp[— (Gampa — (;1/2)/7’]}71 (1)

where G ,pp4 1s the average conductance amplitude for a specific
pulse, G, is the half-maximal conductance, and r reflects the
steepness of the transition from nonfiring to firing. We define the
dynamic range d = 4r, which is the inverse of the maximal slope
(when Gppa = Gv2). This value marks the range of conductances
over which Pg;.. changes from 0.1 to 0.9, which is an appropri-
ately intuitive measure of dynamic range. In the experiment of
Figure 3E, the dynamic range was 0.15 for dynamic-clamp trials
using synaptic conductances based on the overall average and
0.63 using synaptic conductances based on individual voltage-
clamp trials (Fig. 3E, top horizontal lines; i.e., a fourfold dif-
ference). These dynamic ranges are scaled relative to the
conductance threshold because the conductances were nor-
malized in Figure 3E to that threshold.

We did the same experiment in seven cells and quantified the
dynamic range for trials driven with variable conductances com-
pared with average conductances. The dynamic range increased
significantly from 0.18 = 0.03 for average conductances to 0.66 *
0.03 for variable conductances (p < 0.001, ¢ test, Fig. 3G). This
was an average increase of 333 = 85%.

We verified that this difference in response was not a result of
differences in spike threshold between average and stochastic
conditions. We reanalyzed the data of Figure 3 to consider P
as a function of individual conductance amplitude, not average
pulse amplitude. To do this, we grouped synaptic conductances
of similar amplitude, regardless of their timing in the train, and
calculated P for the group. In the example of Figure 3F, each
point represents P across 30 conductances of similar ampli-
tude. When we did this more conventional analysis, we found
that spike threshold was identical for both conditions, with a
sharp cutoff between amplitudes that triggered versus those that
did not trigger a spike (Fig. 3F). Similar results were found for
multiple cells, and there was only a small difference in dynamic
range (0.22 = 0.02 for stochastic vs 0.18 % 0.03 for average con-
ductances, N = 7, Fig. 3G), representing an increase of 32 = 10%.
Thus, the moment-by-moment synaptic conductance predicts
with high success whether or not a spike is triggered, and
variation in spike threshold plays no obvious role under our
experimental conditions. Furthermore, the stochastic proper-
ties of release generate a large increase in the dynamic range of
the synapse.
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Figure4. Stochasticmodel of neurotransmitter release. 4, Diagrammatic view of determin-
istic (left) and stochastic (right) models of release. The deterministic model tracked the average
behavior of a synapse, using fixed rates of release and recovery of a pool of vesicles, as well as
desensitization and recovery of postsynaptic receptors (see Materials and Methods). The sto-
chastic model tracked multiple sites, each with its own pool of vesicles and receptors. Release
and recovery were governed by binomially distributed random processes. The deterministic
model used seven parameters, and two parameters were added for the stochastic model. B,
Activity of a single release site, showing fluctuations in vesicle pool size (V,) and extracellular
glutamate concentration during a train of activity. C, The stochastic model captured both mean
and variance of synaptic transmission. Symbols show mean (top) and SD (bottom) of voltage-
clamp data from the cell depicted in Figure 24—C. Solid lines show mean and SD of conductances
given by the stochastic model.

Synaptic variability and dynamic range

We wanted to probe the effects of the stochastic properties of
release further, but the experimental approach of Figure 3 was
constrained to specific patterns of activity with EPSCs quantified
in voltage clamp. To go further, we wanted to set the amplitudes
of conductances in dynamic clamp using a model. We began with
a deterministic model of synaptic plasticity that was developed to
capture the average effects of depletion, desensitization, and re-
covery (Yang and Xu-Friedman, 2008, 2009), but in the absence
of synaptic variability. To implement stochastic release, release
and recovery were modeled as binomial random processes in-
volving a finite pool of vesicles, which was spread across multiple
release sites (Ng), each with its own, limited pool of releasable
vesicles (Ny) (Fig. 4 A, B; see Materials and Methods). The model
tracked the local glutamate concentration in each release site’s
synaptic cleft to drive desensitization with a simplified first-order
binding reaction (Fig. 4B; see Materials and Methods). On aver-
age, deterministic and stochastic models had the same behavior.
From our voltage-clamp studies, we selected one cell with average
levels of depression and determined model parameters that
would mimic both the average and stochastic behavior of this
representative cell (see Materials and Methods). The model



Yang and Xu-Friedman e Synaptic Variability and Dynamic Range

0 1 2 35 0 1 2 35 0

Gawvpa (X Threshold) Gawpa (X Threshold)

Figure 5.

J. Neurosci., September 4, 2013 - 33(36):14406 —14416 « 14411

L J B fe)
=i L]
S o
o1
£ °
g 8 &
5‘ O @- i
T 171 0 T T T T T T
| 2 35 15 60 240 det 0 03 06

Gawpa (X Threshold) Ng cVv
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neurotransmitter release, with model parameters held constant, except for the number of release sites (Ns). As s increased, the conductance variability decreased. A-C, Spike probability for each

pulse (Pspike)

as a function of the pulse’s average synaptic conductance (G,yp,) in a representative experiment. For the deterministic model (solid symbols), dynamic range was uniformly narrow.

For the stochastic model, the dynamic range was greater for low Ns. Dynamic ranges for the different conditions are indicated using the dumbbells above each plot. D, Dynamic range as a function
of s for five experiments. Dynamic range was widest for the smallest number of release sites and narrowed with increasing Ns. Dynamic range was most narrow with the deterministic model. E,
Dynamic range as a function of synaptic variance. Dynamic ranges from D are plotted against the CV of the steady-state synaptic conductances for different N (mean = SEM of five experiments).

matched this representative cell reasonably well over a wide range
of activity levels (Fig. 4C, compare lines and symbols). For our
purposes, it was not necessary that the model duplicate the true
mechanisms underlying either deterministic or stochastic prop-
erties of release, as long as it yielded synaptic conductances with
reasonably similar average and SD. There are many additional
contributions to variability in real synapses that we did not incor-
porate in the model, including quantal variability and variability
in P between release sites. We only used two model parameters to
introduce variability, Ng and Ny, so to match the variance of
experimental data, these parameters had to take on unrealistically
low values to compensate for missing sources of variability (see
Materials and Methods).

We first considered the relationship between the dynamic
range and the variance of the EPSC. We varied the SD of the
synaptic conductance by changing the number of release sites,
N, and leaving all other parameters unchanged. Our starting
value for Ny was 60. When Ny was quadrupled (240), the conduc-
tance SD produced by the model dropped in half; and when Ng
was reduced to one-fourth (15), the SD approximately doubled.
We performed dynamic-clamp experiments similar to Figure 3,
but using the model synaptic conductances in place of measured
ones and assaying spiking in real BCs. In half the trials, we used
the deterministic model of release; and in half the trials, we used
the stochastic model with different values of Ng. Trains of 50, 100,
and 200 Hz were applied. The deterministic conductances
showed a sharp transition between 0% and 100% reliability (Fig.
5A, closed symbols), similar to the “average” stimulus used in
Figure 3. The stochastic conductances showed a graded relation-
ship between G, yps and Py (Fig. 5A, open symbols), similar to
the “individual” stimulus used in Figure 3.

The dynamic range depended heavily on the number of re-
lease sites in the stochastic model. With 15 release sites (Fig. 5A),
the dynamic range was greatest, decreased with 60 release sites
(Fig. 5B), and the dynamic range was narrowest with 240 release
sites (Fig. 5C). Similar effects were found in five cells, where the
dynamic range increased over the deterministic model by 830 *
320% for Ng = 15 (Fig. 5D, p = 0.001, paired t test). Smaller, but
still significant, increases in dynamic range were found with more
release sites (p = 0.003 for Ng = 60; p = 0.01 for Ng = 240), and
effects were significantly different between all conditions (p <
0.05 for all pairwise comparisons). Thus, a greater variance in
synaptic conductance led to an increase in the dynamic range of
the synapse (Fig. 5E).

Irregular activity
We investigated the impact of stochastic properties of release for
more naturalistic activity patterns. We used dynamic clamp to

apply an irregular, Poisson-distributed, pulse train at 100 Hz,
with a 3 ms refractory period imposed. Synaptic conductances
were set using the deterministic and stochastic models on alter-
nate trials. BC spiking was regular and repeatable with the deter-
ministic model, particularly when the interval between
conductances was >15 ms (Fig. 6A). However, many of the syn-
aptic conductances failed to elicit any response at all, trial after
trial. This primarily occurred when the interval between pulses
was short and synaptic depression was strong (Fig. 6C). In this
representative experiment, nearly complete failure was observed
for intervals <10 ms (Fig. 6D, closed symbols).

The consistent failures represent an inability to relay informa-
tion at short intervals. Close spiking can reflect fine temporal
detail in a stimulus, so a complete lack of spiking would mean the
loss of potentially important stimulus information. For auditory
activity, this seems particularly important, as natural sounds can
contain high temporal complexity, particularly in a natural envi-
ronment. Thus, with a deterministic synapse, important infor-
mation could be masked by being in the shadow of a highly
effective synaptic conductance.

For the stochastic synaptic conductances, the situation was
quite different. Under these conditions, P, remained >0%
even for the briefest intervals (Fig. 6B), so that stimulus informa-
tion encoded in brief, high-frequency activity could be relayed on
to higher centers. We modified our measure of dynamic range to
consider the pulse interval as the “input” to the synapse. In this
case, the dynamic range was greater for the stochastic model of
release (Fig. 6D, open symbols). We saw similar effects in five
cells, with a significant increase in dynamic range from 3.2 = 0.7
ms with deterministic release to 13.7 = 1.6 ms with stochastic
release (p < 0.003) and an average relative increase of 540 *
250% (Fig. GE).

Thus, the stochastic properties of release enhance the dynamic
range of synapses and could reveal stimulus features that fall in
temporal shadows. The results of Figure 5 indicate that these
effects are greater with increased synaptic variability, which we
accomplished in our model using fewer release sites. It is there-
fore a question of why endbulbs do not show greater variance
naturally. Real endbulbs have a large number of release sites.
Serial EM reconstructions of rat endbulbs had an average of 155
release sites (Nicol and Walmsley, 2002), and some endbulbs in
cats are estimated to have up to 10 times as many (Ryugo et al.,
1996). The dynamic range could be increased if endbulbs had
fewer release sites. To maintain the same overall amplitude, each
release site would need to contribute a higher current. Average
mEPSC amplitudes are ~100 pA, and individual mEPSCs up to
300 pA are commonly observed (Oleskevich et al., 2004; Chanda
and Xu-Friedman, 2010b; Yang and Xu-Friedman, 2010), so it
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would be possible to increase the contri-
bution of individual release sites. So the
question becomes: why did the advan-
tages of a wide dynamic range not drive
endbulbs to have fewer release sites and
larger quantal size?

Spike timing variability

To address this question, we investigated
other consequences of synaptic variance.
The endbulb of Held is notable for pre-
serving highly precise temporal informa-
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tion about sounds (Carr, 1993; Oertel,
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creased, jitter decreased. With the deter-
ministic model, jitter was very low indeed,
near the level of detectability for the re-
cording setup. Histograms of spike laten-
cies showed that the variance of spike
times was highly dependent on the num-
ber of release sites, but also that the overall
mean latency remained constant (Fig.
7B). The amount of jitter likely relates to
the effect of conductance amplitude on
the rate of depolarization (Cao et al.,
2007) and subsequent spike latency (Xu-
Friedman and Regehr, 2005a, b). There was a strong inverse re-
lationship between the amplitude of individual conductances
and spike latency (Fig. 7C).

We found similar effects in five cells. As the number of release
sites in the model increased, spike jitter decreased from 180 *
20 s with 15 release sites to just 28 = 6 us with the deterministic
model (Fig. 7D, p < 0.001 for all pairwise comparisons, F test).
Thus, there appear to be two functional effects of changing the
number of release sites that counter each other. When the num-
ber of release sites decreases, both dynamic range and jitter in-
crease (Fig. 7E). This suggests that there may be a trade-off in
these two possible optimizations of synaptic function.

Figure 6.

P.

spike

Dynamic range during fiber stimulation

We wanted to verify whether real synapses showed a large dy-
namic range and whether this might increase jitter, so we also
conducted current-clamp experiments using ANF stimula-
tion. We measured EPSP amplitude after ANF stimulation
using the first derivative of membrane potential (V', in V/s;
Fig. 8A). Our strategy was to identify spikes by thresholding
V'. When there was no spike (e.g., Fig. 8A, stimulation 4), then
the EPSP amplitude was taken as the peak in V'. When there
was a spike, we tried to isolate a second earlier peak in the
second derivative (V”), reflecting the EPSP. It was common to
find no second peak, particularly early in stimulus trains when
the EPSP is extremely large and merges with the spike (e.g.,

Stochastic properties of release uncover high-frequency activity. A-D, Data from a representative dynamic-clamp
experiment using a 75 Hz Poisson-distributed train of activity to drive the conductance model. 4, B, Responses of a BC driven by
deterministic (4) or stochastic (B) model conductances. The actual (4) or average (B) conductances are shown above the rasters.
For scale, the final conductance in the train was 20 nS. With the deterministic model (4), responses were highly bimodal, either
reliably firing or reliably failing to fire on nearly every trial. By contrast, responses to the stochastic model (B) were much more
variable. Many pulses produced spikes in B that failed to do so in A. Responses are shown at steady state, beginning with the 10th
pulse. €, Conductances at short intervals tended to be smaller. Conductance amplitudes were from the deterministic model. D,
as a function of preceding interval, revealing a wider dynamic range for trials using the stochastic model (open circles)
compared with the deterministic model (closed circles). Lines are sigmoid fits to the data to quantify the dynamic range, which is
indicated using dumbbells above the graph. E, Average dynamic ranges from five experiments using deterministic (closed circles,
solid bar) and stochastic models (open circles, open bar). The increase is statistically significant (p = 0.003, t test).

Fig. 8A, stimulation 1). These stimuli were excluded from
further analysis. After depression set in, EPSPs were often
clearly distinct from the resulting spike (e.g., Fig. 84, stimu-
lation 3), and the EPSP amplitude could be unambiguously
measured from V’'. Sometimes, there was only a partial sepa-
ration between EPSP and spike in V", so EPSP amplitude was
taken at the time V" reached a minimum (e.g., Fig. 84, stimu-
lation 2).

We were able to apply this algorithm to 6 of the 7 experiments
of Figure 1. We measured the average EPSP as well as P, for
each pulse in trains of 100, 200, and 333 Hz (Fig. 8B, open circles)
and fit to the sigmoidal curve of Equation 1 (substituting EPSP
amplitude and EPSP, , in place of G,\ps and G ,), to yield the
dynamic range (Fig. 8B, horizontal lines), which was 17.5 V/s in
this example. In other words, there was a large change in spike
rate as average EPSP varied over a range of 17.5 V/s. This curve
was analogous to the “individual” and “stochastic” curves of Fig-
ures 3 and 5. We wanted to compare this against the nonrandom
case, in essence, to determine how “hard” threshold is. However,
with ANF stimulation, we could not control the randomness of neu-
rotransmitter release. Instead, we estimated the dynamic range for
nonrandom release using the same approach as in Figure 3F. We
sorted all EPSPs by amplitude and binned a number of them to-
gether to calculate P,;.. (Fig. 8B, closed circles). We fit this relation-
ship using Equation 1 to obtain the dynamic range, which was
narrower, 12.8 V/s in this example (horizontal lines in Fig. 8B).
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Figure7. Increased variability also drives anincrease in jitter, causing a trade-off. A-C, Data
from a representative dynamic-clamp experiment illustrating the effects of synaptic variability
on jitter. 4, Spike latency after synaptic conductances in regular, 50 Hz trains (similar to the
experiments of Fig. 5). Each horizontal line shows the spike latencies from steady-state pulses
11-40 of a single trial all overlaid, with a small vertical displacement to avoid perfect overlap.
Spike latencies have a resolution of 20 ws. The black line at left indicates the time of the peak of
the synaptic conductance (Fig. 34, left, inset). The variability of synaptic conductances was
controlled by changing the number of release sites (V). Spike latencies were more variable for
smaller Ns (i.e., more variable conductance amplitude). The deterministic model had the least
jitter. B, Latency histogram of spikes from A. Markers indicate overall mean and SD of the
latency. The mean was unaffected by the variability of synaptic conductance, but the SD (i.e.,
the jitter) increased with decreasing Ns. €, Effect of individual synaptic conductance Gyyp, 0N
spike latency. Spike latency is inversely related to Gyyp,. Thus, variability in synaptic conduc-
tance results in variability in spike latency. D, Spike jitter as a function of the number of release
sites, from five experiments similar to A-C. E, Trade-off in spike jitter and dynamic range. As
dynamic range increases, so does jitter. Jitter data are from D, and dynamic range data are from
Figure 5. The measurements of dynamic range and jitter from current-clamp experiments in
Figure 8 are also included for comparison (black +).

We found similar effects in multiple cells. The dynamic range
was wider when considering P, ;. for individual pulses in trains
(22.3 = 2.7 V/s, N = 6 cells; Fig. 8C), whereas the dynamic range
was significantly narrower when considering simply the efficacy
of EPSPs at driving spikes (14.0 = 2.5 V/s; p < 0.001; Fig. 8C,
left). This represents an increase in dynamic range of 71.6 =
19.0%. We scaled the dynamic range for each cell by the threshold
EPSP (EPSP,,,), which yielded a normalized dynamic range of
0.77 £ 0.6 (Fig. 8D), which is very similar to the dynamic-clamp
experiments of Figures 3G (0.66 = 0.03) and 5B (0.76 * 0.03).
This validates that our dynamic-clamp experiments accurately
captured the effects of the randomness of neurotransmitter re-
lease. However, the estimate of the nonrandom dynamic range in
current-clamp experiments (0.46 * 0.04) was somewhat larger
than in dynamic-clamp experiments (0.2 in Fig. 3G). We attri-
bute this to the fact that conductance amplitudes were specified
in the dynamic-clamp experiments, whereas EPSP amplitudes
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had to be measured in current clamp. Noise in current-clamp
recordings would cause errors in measurement of EPSP ampli-
tude, so they would be sorted incorrectly by amplitude, and the
binned values of P, ;. would tend to be drawn toward 0.5, yield-
ing an overestimate of dynamic range. By contrast, such errors
would cancel out when the average amplitude was calculated for
individual pulses, and not have any systematic influence on dy-
namic range. Despite this quantitative difference, it is clear that
our current-clamp experiments show the same trend as the
dynamic-clamp experiments, that the randomness of neu-
rotransmitter release increases the dynamic range of synapses.

We examined whether the randomness of neurotransmitter
release had the same consequences on BC spike latency in current
clamp as it did in dynamic clamp (Fig. 7). EPSP latency was very
stable during trains of ANF stimulation, but spike latency was
quite variable (Fig. 8E). Spike latency showed a strong inverse de-
pendence on EPSP amplitude, whether latency was measured rela-
tive to the stimulus (Fig. 8F, circles) or the EPSP (Fig. 8F, squares),
similar to dynamic clamp (Fig. 7C). We quantified spike timing jitter
during trains of ANF stimulation at 100, 200, and 333 Hz. The jitter
in spike timing across all stimuli was considerable, ~150 us regard-
less of stimulation frequency (Fig. 8G). This value was close to the
spike jitter in response to physiologically based dynamic clamp stim-
uli using Ny = 60 (143 = 21 us; Fig. 7D, E).

Discussion

We have studied functional implications of the stochastic prop-
erties of neurotransmitter release using dynamic and current
clamp. Our data strongly suggest that the randomness of EPSP
amplitude has implications beyond just revealing the mecha-
nisms underlying neurotransmitter release. This randomness
also can play an important role in transmitting information. Our
key approach was to apply synaptic conductances using dynamic
clamp so that we could precisely control the stochastic and deter-
ministic components independently. We did this using both re-
corded and modeled synaptic conductances. Both approaches
indicated that the stochastic properties of release increase the
dynamic range of synapses, when we consider the average synap-
tic conductance as the input and the probability of spiking as the
output. We validated these effects in current-clamp experiments
using fiber stimulation, producing an extremely close match with
our physiologically based dynamic-clamp experiments (Fig. 7E,
compare green, closed symbol and black cross), indicating that
this wider dynamic range occurs with real synapses. Our experi-
ments emphasize that it is important to take synaptic variance
into account when considering synaptic function. This is partic-
ularly true in dynamic-clamp experiments, where using a fixed
set of conductances could exaggerate spike reliability.

Spike probability (Py,;.) can in principle be used downstream
of the synapse to reconstruct more fully the structure of auditory
nerve activity. However, this computational benefit comes at a
cost because the stochastic properties of presynaptic release also
introduce jitter into postsynaptic spike timing, seen in both dy-
namic clamp and with fiber stimulation. Jitter would be expected
to compromise BC function, by degrading precise timing in-
formation, and rendering BC spike timing more variable than
incoming ANF spikes. Our modeling work suggests that syn-
apses can potentially emphasize dynamic range or timing, by
controlling the number of release sites. The dynamic range
and jitter shown by BC responses to real ANF activation sug-
gest that endbulbs compromise between these two computa-
tional imperatives.
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Dynamic range

Our data indicate that spike threshold in
BCs is highly stable, with a sharp cutoff
for individual EPSPs (Fig. 3F,G). That
is, for these cells, fluctuations in resting
membrane potential or spike threshold
contribute very little to spike variability
seen with fiber stimulation (Fig. 1).
However, this mechanistic reliability
poses a significant problem. For features
of complex auditory stimuli that are en-
coded in closely spaced spikes, this
would lead to depressed EPSPs. De-
pressed EPSPs would reliably fail to
drive spiking, thus losing representation
of these features in higher stages of the
auditory pathway.

The stochastic properties of release
provide a solution to this problem. Even
EPSPs that are highly depressed on aver-
age may randomly score extra quanta on a
given stimulus presentation that drive
them over threshold, triggering spikes.
This allows those stimulus features to be
passed along the auditory pathway. A sec-
ond consequence is that spike probability
also decreases for EPSPs that are on aver-
age just above threshold. Both effects con-
tribute to an increase in the dynamic
range.

We have made two assumptions in our
treatment of the dynamic range of the
endbulb. The first is that there is informa-
tion to be gleaned from the average EPSP
amplitude that is valuable to sensory pro-
cessing. We have already considered the
value of preserving the presence of sub-
threshold EPSPs, but it also seems likely
that the amplitude of individual EPSPs
carries information. In in vitro experi-
ments, EPSP amplitude is robustly influ-
enced by presynaptic spike rate over short
and long time-scales, through the various
mechanisms of short-term plasticity (Re-
gehr and Stevens, 2001). Thus, EPSP
amplitude may carry information about
long- and short-term sensory features. Re-
cently, it has been questioned whether this
extends to the situation in vivo (Lorteije et
al., 2009), where it is difficult to distinguish
deterministic from stochastic contributions
to EPSP amplitude. These issues deserve
further investigation.
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Figure 8.  Dynamic range and jitter for real fiber stimulation match dynamic-clamp experiments. A, Measuring EPSP
amplitudes. Traces are raw membrane potential (V, top) and first (', middle) and second (I, bottom) derivatives.
Broad-dashed lines indicate fiber stimulation times (stimulus artifact was small in this example). Fine-dashed lines indi-
cate times of EPSPs and spikes as used for subsequent analyses. All traces are filtered at 5 kHz. B, Dynamic range. Average
Pyike Was calculated for individual pulsesin trains of 100, 200, and 333 Hz stimulation rates and plotted against the average
EPSP amplitude (open circles). This relationship was fit to Equation 1 to estimate the dynamic range (open dumbbells
above the plot). To estimate the deterministic dynamic range, we sorted EPSPs by amplitude before calculating P, and
average EPSP (closed circles). €, Average dynamic ranges from six similar experiments averaging by EPSP amplitude (closed
circles, solid bar) or train pulse (open circles, open bar). The increase is statistically significant (p << 0.001, t test). D, Same
data as C, but normalized to spike threshold (EPSP, ), to facilitate comparison with dynamic-clamp experiments. E, BC
spike jitter in the same cell as A and B. All successful spikes are overlaid for pulses 11-20 in 200 Hz trains (86), which cover
a wide range of EPSP amplitudes. The EPSP latency is quite constant, whereas spikes are extremely variable. The arrow
indicates the stimulus time. F, Spike latency for the same cell as A, B, and E. Latency was measured from the stimulus (upper
circles) or the EPSP (lower squares). All spike times are shown for 100 (blue), 200 (green), and 333 (red) Hz stimulation.
Both methods indicate that latency is highly inversely dependent on EPSP amplitude. G, Average spike jitter in six exper-
iments for pulses 1120 of 100, 200, and 333 Hz trains. In two cells, spike probability was too low to measure jitter at 333
Hz stimulation.

The probabilistic responses of BCs may then be integrated at
targets, such as neurons in the medial superior olive, which inte-

The second assumption is that there is a way for spike proba-
bility to be read out downstream. For simple, repetitive stimuli,
such as long tones, this could be done by downstream neurons
integrating over long time periods. For fast, nonrepeating sensory
features, it would be necessary for multiple cells to react proba-
bilistically to the same presynaptic activity, and then these cells
converge at other sites downstream. This may be occurring in the
auditory pathway. Individual ANFs can contact multiple BCs,
and BCs receive input from multiple ANFs (Ryugo and Fekete,
1982; Liberman, 1991; Spirou et al., 2005; Cao and Oertel, 2010).

grate multiple BC inputs (Couchman et al., 2010). The random-
ness of neurotransmitter release would ensure that some
response is preserved at the population level, even during stimuli
that cause high depression.

The effects we observe are distinct from stochastic resonance.
In stochastic resonance, noise added to a signal leads to improved
detectability for small stimuli (Douglass et al., 1993). By contrast,
the stochastic properties of neurotransmitter release led to in-
creased spiking for small EPSPs, but also decreased spiking for
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large EPSPs. Thus, there is no net change in BC spiking over the
full range of EPSP amplitude, so EPSPs are not more “detectable”
with the addition of the stochastic component.

Timing versus rate codes

We have found an explicit trade-off between timing and rate
codes. These codes are often posed as theoretical extremes, but
in the auditory system, they both play a role. Precise spike
timing carries important information related to the spatial
origin of a sound, and spike rate carries information about
sound intensity. Our study suggests that synapses could spe-
cialize to support the dominant coding strategy. Spike timing
is favored by less randomness, whereas spike probability is
favored by more randomness. We predict that the degree of
randomness at a synapse would provide insight into how in-
formation is represented.

Specifically, our model indicates that the degree of random-
ness at a synapse is greatly affected by the number of release sites
or releasable vesicles. Other synaptic properties not incorporated
in our model would also contribute to synaptic variability, in-
cluding calcium channel activity, vesicle glutamate content, and
postsynaptic receptor density. Our model did not include these,
so the values for numbers of release sites and releasable vesicles
are unrealistically low (60 and 3, respectively). If randomness
were a problem by generating too much spike jitter, one would
predict endbulbs to have many release sites and small mEPSCs.
The endbulb has particularly great flexibility in this regard be-
cause it is an axosomatic synapse with large surface area. End-
bulbs do form many release sites (100—1000) (Ryugo et al., 1996;
Nicol and Walmsley, 2002), but they also have relatively large
mEPSCs (~100 pA), which are a significant percentage of EPSC
amplitude at steady state (Fig. 2). Thus, endbulbs do not appear
to be simply designed to eliminate the effects of randomness for
the sake of enhanced spike timing. Rather, the endbulb appears to
strike a compromise between precise spike timing and spike
probability.

The situation in vivo is likely somewhat more complex be-
cause each BC receives multiple converging ANFs (Liberman,
1978; Sento and Ryugo, 1989; Spirou et al., 2005; Cao and Oertel,
2010). Synaptic variability would be expected to increase as
EPSPs from different ANFs do or do not overlap at different times
during a sound stimulus, potentially increasing jitter yet further.
However, the interaction of these multiple inputs is also thought
to contribute to reduced jitter in some BCs (Joris et al., 1994;
Xu-Friedman and Regehr, 2005a, b; Yang and Xu-Friedman,
2009). Future experiments will be needed to address the full com-
plexity of this situation.
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