
A Probabilistic Model of Neutral and Selective

Dynamics of Protein Network Evolution

JANUSZ DUTKOWSKI1 and JERZY TIURYN2

ABSTRACT

Comparative approaches in genomics have long relied on rigorous mathematical models of
sequence evolution. Such models provide the basis for formulating and solving well-defined
computational problems, in turn yielding key insights into the evolutionary processes acting
on the genome. Analogous model-based approaches for analyzing biological networks are
still under development. Here we describe a model-based approach for estimating the
probability of network rewiring events during evolution. Our method builds on the standard
duplication-and-divergence model and incorporates phylogenetic analysis to guide the
comparison of protein networks across species. We apply our algorithm to study the evo-
lution of functional modules and unconstrained network regions in seven available eu-
karyotic interactomes. Based on this analysis we identify a map of co-functioning protein
families whose members participate in strongly conserved interactions and form major
complexes and pathways in the eukaryotic cell. The proposed approach provides principled
means for inferring the probability of network rewiring events, enabling insights into the
conservation and divergence of protein interactions and the formation of functional modules
in protein networks.

Key words: discrimination between selective and neutral evolutionary dynamics, dynamics of

evolution, evolution of protein networks.

1. INTRODUCTION

After a decade of large-scale screening, vast amounts of protein–protein interaction (PPI) data

have been collected for a number of organisms. Although far from being complete, the available partial

interactomes are routinely used as a system-level framework for interrogating cellular processes and con-

ditions (Dutkowski and Ideker, 2011). Some of the most successful investigations have identified evolu-

tionary conserved subnetworks in multiple distantly related organisms, enabling inferences about essential

network connections and providing hypotheses on novel functional units (reviewed in Sharan and Ideker,

2006). Independently from these studies, theoretical models have been constructed providing insights into

network phenomena such as the scale-free degree distribution (Barabási and Albert, 1999), high degree of

clustering (Watts and Strogatz, 1998), and emergence of functional modules (Pereira-Leal et al., 2007).
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Existing approaches for comparing networks across species differ substantially both in terms of mathe-

matical formulations of the problem as well as applied algorithms. Early procedures searching for local

subnetworks conserved across two species (Kelley et al., 2003; Sharan et al., 2005a; Koyuturk et al., 2006)

have been complemented by multiple network aligners (Sharan et al., 2005b; Flannick et al., 2006). Global

alignment has been formulated and solved by integer quadratic programming (Li et al., 2007). New graph-

theoretic algorithms (Narayanan and Karp, 2007; Kalaev et al., 2009) and spectral approaches inspired by

Google’s page-rank algorithm have been proposed (Singh et al., 2007; Liao et al., 2009). Available

methods offer a diverse range of scoring functions, including those motivated by evolutionary consider-

ations (Koyuturk et al., 2006; Hirsh and Sharan, 2006; Berg and Lassig, 2006; Flannick et al., 2008), as

well as structural and functional similarity (Kuchaiev and Pr�zulj, 2011; Ali and Deane, 2009).

Apart from developments in network alignment, multiple studies have focused on constructing and

analyzing random graph models that aim to capture the basic processes by which protein networks evolve.

Most of these models are based on the principle of duplication and divergence (Sole et al., 2002; Vazquez

et al., 2003; Bebek et al., 2005; Berg et al., 2004; Ispolatov et al., 2005b; Ispolatov et al., 2005a; Evlampiev

and Isambert, 2008) and have shown to match the observed data in terms of key topological features such as

degree distribution and clustering coefficient (Bebek et al., 2006; Hormozdiari et al., 2007). When these

models are fitted to experimental data, they provide important insights about the evolutionary forces

shaping the network topology. Functional inferences, however, are challenging because nodes in these

network models are typically anonymous and cannot be mapped to specific genes or proteins in the real

networks. Additionally, these models typically describe the network of a single organism. Hence, although

very interesting insights have been made using traditional random graph models, for example, recent

inferences of putative ancestral network states (Navlakha and Kingsford, 2011), their ability to jointly

model network evolution across species remains limited (Knight and Pinney, 2009).

To provide a model-based approach for comparing networks across species, we have previously developed

conserved ancestral protein-protein interactions (CAPPI) (Dutkowski and Tiuryn, 2007), which applies phylo-

genetic analysis to reconstruct the history of protein sequence evolution based on which it further infers the

evolution of protein interactions. CAPPI applies a model closely resembling the random graph models previously

proposed, but it additionally adds a speciation event—a natural extension that allows us to consider networks

from multiple species. The second crucial difference compared to standard random graph models is that the

duplication and speciation events are linked directly to the specific proteins in the underlying biological net-

works, allowing for functional analysis of real networks. Originally, CAPPI was designed to perform local

network alignment, that is, to identify conserved network regions under a user-specified model. It was further

extended to handle missing links in networks and predict new protein interactions (Dutkowski and Tiuryn, 2009).

In the present work we take a new direction. First, we develop an expectation-maximization (Dempster

et al., 1977) algorithm to learn the parameters of the evolutionary model automatically from experimental

data, providing the first cross-species estimations of PPI evolutionary rates under a duplication-and-

divergence model. This approach significantly extends CAPPI’s network modeling capabilities, allowing

for direct estimation of evolutionary parameters, parameter-free identification of conserved network re-

gions, and reconstruction of ancestral and consensus network representations for multiple species. Next, we

introduce two instances of the model: one that corresponds to evolution under selective pressure, and the

other one that fits the neutral scenario. We train the two models on specific examples of known functional

modules and randomly selected network regions. Finally, for every pair of protein families, we compute the

likelihood of evolving under the conserved and under the random model. Using this method, we infer the

most conserved network regions across seven eukaryotic species and identify cofunctioning protein fam-

ilies whose members participate in major eukaryotic complexes and pathways.

2. METHODS

We first briefly summarize the network model (Dutkowski and Tiuryn, 2009) and then present the

expectation maximization (EM) algorithm developed in the present study.

2.1. The model of PPI network evolution

Suppose we have a set of protein–protein interaction networks for several species. We first construct a

phylogenetic tree for the input species and cluster all protein sequences present in these species to define
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clusters of paralogous proteins. Each cluster, also called a protein family, corresponds to a single protein in

the ancestral species. Each family gives rise to a reconciled phylogenetic tree (Page and Charleston, 1997),

which, in addition to speciation, uses duplication events and gene losses to explain the particular protein

composition of the family. The reconciled trees are constructed subject to minimization of the number of

duplication and loss events.

Assume real-valued parameters Y = ( ps, ds, pd, dd, pm, dm, p*) and an initial network of protein–protein

interactions represented by an undirected graph G. The graph G can be thought of as an ancestral network

of interactions, where nodes correspond to the proteins and edges connect two interacting partners. The

parameter p* represents the ( prior) probability of observing an edge in G. The network evolves subject to

the following events:

� Speciation gives rise to two graphs (for two species) in which edges are retained with probability ps

and new (non-existing) edges are introduced with probability ds.
� Duplication gives rise to a new graph, which is obtained from the predecessor by duplicating one of its

nodes. Edges incident to the node that was duplicated are retained with probability pd, and new edges

incident to this node are introduced with probability dd. This is done independently for each of the two

duplicated nodes.
� Measurement (this is the addition to the original model of Dutkowski and Tiuryn, 2007). With this

event, we model the possibility of introducing errors during the measurement process. The resulting

graph represents the input dataset. Each edge is retained with probability pm, and new (non-existing)

edges are introduced with probability dm. The reader may have noticed that this step is similar to the

speciation event, except that there is only one successor instead of two. Actually this part of the model

can be further refined by introducing separate parameters for different input sets, addressing in this

way specific reliability of the data.

The above speciation and duplication events can be naturally associated with corresponding events in the

reconciled phylogenetic trees, thus representing the evolution of interactions spanning every pair of protein

families (for details see Dutkowski and Tiuryn, 2007, 2009).

2.2. EM parameter estimation

Based on this model, we now develop an EM approach for deriving the probabilities of network

rewiring events directly from the existing interaction data. We have two types of such events associated

with speciation: retaining an edge and introducing an edge. We denote these two types by s and s + ,

respectively. In a similar fashion we define the events d, d + , m, m + . We introduce the concept of an

event in order to easily refer in a uniform way to the corresponding parameters of the model. For this

reason, we will also include the event of initiation and denote it by*. This event represents creation of

the ancestral graph G by a sequence of edge introductions. Let E = {s, s + , d, d + , m, m + , *} denote the

set of all types of events. With each type e ˛ E there is naturally associated a probability pe for this

event to occur. Thus, for example, ps retains its meaning from the parameter set Y, and pd + = dd. We

will write pe,Y if we want to make explicit dependence on the parameter set Y. For each type e, by :e

we denote the complementary event. Hence, for example, :d denotes the event of loosing an edge,

while :m + denotes the event of not introducing an edge that was not previously present. Clearly we

have p:e = 1 - pe.

Our model consists of two levels: the observable level, which is represented by datasets of measured

protein–protein interactions, and the hidden level that represents the true extant interactions together with

all protein interactions that were present during the evolution from the ancestral species to the extant

species. The speciation and duplication events are internal in the hidden level, while the measurement event

serves as a bridge between the hidden and the observable levels.

Let us denote by X the set of all possible states of experimental outcomes and by x = (x1‚ . . . ‚ xn) 2 X the

particular instance observed in the data, where xi is equal to 1 when the i-th experimental reading (a

particular experimental observation for a given protein pair) was positive and 0 otherwise. Similarly denote

by y = (y1‚ . . . ‚ ym) 2 Y one particular instance of all hidden interactions chosen from the set Y of all

possible states of these random variables. In this case yi equals 1 if the i-th pair of proteins interact with

each other and 0 otherwise. Observe that information about the states x and y uniquely describes all graphs

of interactions between proteins in extant as well as ancestral species.
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For a type e 2 E and for a state of the hidden variables y, we denote by Ae(y) the number of events of

type e in the model defined by y (and x). We assume that x is known, and therefore, we do not write the

explicit dependence of Ae(y) on it. In a similar way we define A:e(y).

2.2.1. The Q function. We now derive the Q function for our model. For two parameter sets Y and

Yt we define

Q(YjYt) =
X

y

P(yjx‚Yt) log P(x‚ yjY): (1)

The probability of the data given the parameters Y can be expressed as the product of the probabilities of

the initial interactions and the transition probabilities:

P(x‚ yjY) =
Y

e2E

(pAe(y)
e‚Y � (1 - pe‚Y)A:e(y)):

Applying usual transformations we obtain the following formula for Q

Q(YjYt) =
X

e

(E(Ae) log pe‚Y + E(A:e) log (1 - pe‚Y))‚ (2)

where the mean values are taken with respect to the probability distribution P( - jx, Yt). The details of these

transformations are given in the Supplementary Material (available online at www.liebertonline.com/cmb).

2.2.2. The E-step. In the E-step we compute the mean values E(Ae) and E(A:e), with e ranging over

all types. The mean values are taken with respect to the probability distribution P( - jx, Yt). They are

computed using Pearl’s message-passing algorithm. Again the details are given in the Supplementary

Material.

2.2.3. The M-step. The M-step of the algorithm determines new parameter values that maximize the

Q function. The terms of the expression (2) can be maximized separately with respect to one of the model

parameters:

E(Ae(y)) log ( pe) + E(A:e(y)) log (1 - pe)‚ for each type e:

For a given e, we find p�e for which the derivative is equal to 0:

qQ
qpe

=
E(Ae)

p�e
-

E(A:e)

1 - p�e
= 0

p�e =
E(Ae)

E(Ae) + E(A:e)
:

Notice that qQ
qpe
>0 for pe<p�e and qQ

qpe
<0 for pe>p�e . Thus p�e is the optimal value and is selected as pe in

the new set of parameters Yt + 1.

2.3. Discriminating between selective and neutral evolution

To learn the parameters associated with conserving and neutral network evolution, we use protein

interactions among members of functional modules as training samples for the conserving model, and

interactions in random network regions for the neutral model. We run the EM procedure separately to

obtain these two sets of parameters. Afterward, the two estimated models can be used to discriminate

between the conserving and neutral cases. For a given pair of protein families (f1, f2) we define the log-

likelihood ratio (LLR score) as:

LLR(f1‚ f2) = log
P(xf1‚ f2 jYconserving)

P(xf1‚ f2 jYneutral)
‚

where xf1‚ f2 denotes all experimental readings for interactions between the members of families f1 and f2.

The LLR is the logarithm of the ratio of the likelihood of the data under the model of conserving evolution

and under the model of neutral evolution. If LLR > 0 then the data are more likely under the conserving

model.
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3. RESULTS AND DISCUSSION

We applied the proposed framework and reference datasets to estimate two types of parameters of

network evolution (Fig. 1). The first type was estimated based on known examples of functional modules,

which are assumed to evolve under a conserving evolutionary scenario. The second type was estimated

based on randomly selected parts of the network. We expected that the difference between these parameter

sets would reflect the difference in interaction conservation among functional modules and remaining

network regions evolving at a background rate.

FIG. 1. Estimating the parameters of conserving and neutral evolution of protein interaction networks: (A) Phylo-

genetic trees representing the evolution of specific protein families marked with duplication (filled box) and speciation

(horizontal line) events are downloaded from the TreeFam database. The trees are pruned to consider only the seven

species of interest. (B) Protein–protein interactions are downloaded from three major databases and are associated with

the corresponding proteins in the leaves of the phylogenetic trees. Only pairs of trees for which there exist at least one

interaction between member proteins are collected. (C) A filter is applied to the available pairs of trees to select for the

conserved training set of pairs of families in which member proteins coexist either in the same KEGG pathway or a

MIPS complex. (D) The second training set is comprised of an equal number of randomly selected pairs of trees. The

model parameters for the conserving evolution scenario are estimated using the EM procedure based on the evidence

from the conserved training set. The parameters for the neutral evolution scenario are derived based on evidence from

the random set. Subsequently, the two estimated sets of model parameters are used to classify interactions between a

new pair of protein families as either conserved or evolving under the neutral scenario.
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3.1. Data acquisition

We downloaded the TreeFam database (Li et al., 2006) as a reliable source of protein families and

phylogenies. TreeFam contained over 18,000 gene family trees of which 1,314 (in TreeFam A) were

manually curated and are therefore attributed greater confidence. From TreeFam A we selected 573

families that have a representative from each of the seven species: H. sapiens, M. musculus, R. norvegicus,

D. melanogaster, C. elegans, S. cerevisiae, and A. thaliana. Next we downloaded all available protein–

protein interactions for these species from the IntAct (Hermjakob et al., 2004), DIP (Salwinski et al., 2004),

and MINT (Chatr-aryamontri et al., 2007) databases.

Reference datasets of protein pathways and complexes were downloaded from the KEGG and MIPS

databases. Based on the reference datasets we prepared two separate sets of examples of conserving PPI

evolution. First for the KEGG-based dataset we extracted pairs of different yeast proteins that were together

members of the same pathway. For each such pair of proteins, we added the corresponding pair of protein

families (to which the proteins belonged to) to our set of conserved examples, but only if there was at least

one protein–protein interaction observed between members of these families (in the input PPI databases).

We refer to such family pairs as conserved. We identified 553 conserved pairs altogether. Analogous steps

were performed for the MIPS dataset identifying 347 family pairs.

Next we generated a random dataset, equal in size to the larger of the two conserved sets, drawing only

pairs of protein families for which there was at least one interaction observed between their members. Thus

both the conserved and the random set contained pairs of protein families for which some evidence for

interaction existed. Pairs in the conserved sets fulfill an additional condition—each family in the pair has at

least one protein member in the same KEGG pathway or MIPS complex. Note that in both cases a protein

family is allowed to form a pair with itself.

3.2. Parameter estimation

Next we estimated the parameters of the evolutionary model ( ps, ds, pd, dd, p*) based on the three training

datasets (KEGG-based, MIPS-based, and random). Table 1 shows important differences between the three

resulting models. Most notable is the conservation of interactions during speciation ( ps), which is greater

for the conserved KEGG and MIPS-based models than for the random model. This result supports the

notion that interactions within functional modules are strongly conserved across species. Perhaps less

expected is the weaker conservation of these interactions during duplication ( pd). One plausible expla-

nation is that it allows duplicate members of the functional modules to change function more easily. While

the conservation of essential interactions is critical, once a protein duplicates one of the copies may be

allowed to diverge and gain new functionality. This provides potential for higher interaction loss as well as

for formation of new interactions by adapting old interfaces. It is also interesting to observe that parameter

values estimated based on the MIPS data are more extreme than those based on KEGG. This suggests that

interactions within complexes are more strongly conserved that those within pathways that generally define

broader functional categories (often composed of several complexes).

Finally, we notice that in all three models the prior probability of interaction is close to one, suggesting

that the vast majority of present interactions have their evolutionary predecessors in the ancestral species.

Note that based on the present day interactomes, the overall prior probability of interaction between ancestral

proteins is expected to be *0.001. Here however, we only consider a specific subspace of the interactome

defined by pairs of protein families for which at least one interaction is observed experimentally.

3.3. Distinguishing conserved pathway and complex regions

The differences between the models (conserving and neutral) enable us to apply the likelihood ratio score

to assess the relative interaction conservation between members of arbitrary protein families. First, we

Table 1. Parameter Estimates Obtained for Three Different Training Datasets

(Random, KEGG, and MIPS) Using the EM Procedure

Data ps ds pd dd p*

Random 0.85 0.02 0.59 0.001 1 - (4.8e-06)

KEGG 0.93 0.04 0.55 3.1e-6 1 - (2.2e-16)

MIPS 0.98 0.05 0.49 3.8e-5 1 - (1.1e-16)
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analyze the scores among pairs of families used for training the two conserving models. The distribution of

LLR scores for pairs of families derived based on KEGG and MIPS data are plotted in Figure 2. For KEGG-

based pairs, the conserving model used to calculate the LLR scores was based on the KEGG database. The

MIPS-based pairs were scored using the MIPS-based conserving model. Additionally, each pair was scored

in the neutral model. As expected, in both cases most KEGG and MIPS-based pairs scored higher under the

conserving model (LLR > 0). However, we also identified a considerable fraction of pairs that were more

likely under the neutral scenario (255 KEGG- and 140 MIPS-based pairs). The histograms (see Fig. 2 A, B)

suggest a bimodal distribution where some of the KEGG- and MIPS-based family pairs are significantly

more conserved than others. Based on this observation, we selected a stringent LLR threshold value, at

which other highly conserved pairs can be identified. Figure 2 provides an overview of the top-scoring

KEGG-based associations with LLR > 0.2 grouped according to the KEGG pathways that support them.

Among the most conserved pathway regions, we identified those involved in proteolysis, cell cycle,

metabolism, and DNA replication.

3.4. Maps of highly conserved associations

Next we computed the LLR score for all remaining pairs of protein families using the MIPS-based

conserving model and the neutral model. Further, we constructed a network of protein families in which the

edges are weighted by the LLR score, representing the level of conservation of interactions between the

members of adjacent families. Based on the considerations outlined above, we selected a threshold value of

0.4 and retained only the edges in the network with weights above this threshold. Family pairs with no

edges above the selected threshold were discarded. Overall 251 protein families and 358 edges were

retained.

The resulting network is visualized in Figure 3 (a high-resolution version is also available as

Supplementary Fig. 1). The network has a giant component composed of 192 nodes and 316 edges.

Additionally there are 29 considerably smaller components. Approximately half of the edges in the network

correspond to protein family pairs, which were previously known to be associated within functional

modules. In total, 105 of these correspond to pairs present in the MIPS-based dataset used for training. An

additional 38 pairs (marked by yellow edges) are present only in the KEGG-based dataset—these were not

present in the training set. The remaining 173 edges represent predicted novel family associations.

We further raised the LLR threshold value to identify multiple coherent network modules. Table 2

presents the results of gene ontology (GO) enrichment analysis (Bauer et al., 2008) of the 26 connected

components of the family network identified as LLR = 0.7 (components are presented in Supplementary

Fig. 2). We find that 24 of the 26 modules are significantly enriched for a biological process term ( p-

value < 0.01 after correcting for multiple testing). The first two modules correspond to the proteasome

complex involved in proteolysis (see above). Other modules are responsible for highly conserved biological

processes such as translation, cell cycle regulation, protein folding, and phosphorylation. Most of the

modules have enriched annotations to the same term in multiple species. Our analysis also uncovers

possible missing annotations (denoted by NA in Table 2) and suggests candidate GO terms for the cor-

responding proteins. For example, based on the evidence from four other species, Arabidopsis proteins in

component number 20 might be considered for annotation to the cell division term, while rat proteins

belonging to the 7-th module are suspected to take part in DNA replication.

To take advantage of the information coming from weaker connections between families, we clustered

the original network using the affinity propagation algorithm (Frey and Dueck, 2007), producing a map of

83 family–family interaction modules (Fig. 3). Repeating the GO enrichment analysis for the identified

clusters, we found that 76 of them (92%) have statistically significant biological process annotations in at

least one species ( p-value < 0.01 after correcting for multiple testing) and 52 (63%) have significant

annotations to the same term in at least two of the seven species. Supplementary Table 1 lists the anno-

tations of 39 clusters, which have significant annotations to the same term in at least two of the seven

species at a more stringent p-value < 0.001.

3.5. Assessing robustness

Our initial analysis was focused on exploring the parameter space and identifying unknown conserved

family associations. To this end, we used all known MIPS-based family pairs to learn the conserving model

and identify novel associations that evolve as restrictively as the known functional components. An
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FIG. 2. Histograms provide the distribution of log-likelihood ratio (LLR) scores among pairs of protein families

containing proteins belonging to common KEGG pathways (A) or MIPS complexes (B). (C) A pathway view of the

top-scoring family associations (KEGG ID and description are given). Nodes correspond to protein families. Edges

denote conservation of protein interactions between two families with LLR > 0.2. The edges backed only by KEGG

evidence are colored yellow. Those additionally supported by MIPS complexes are green.
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FIG. 3. TreeFam family network identified at LLR threshold of 0.4 and clustered using the affinity propagation

algorithm. Identified clusters are numbered and color coded. Thick edges correspond to known associations either based

on MIPS (blue), KEGG (yellow), or both (green).

Table 2. GO Term Enrichment Among the Connected Components

of the Protein Family Network (Identified at LLR > 0.7)

ID Description Arabidopsis Yeast Rat Mouse Human

1 Ubiquitin-dependent protein catabolic process < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

2 Protein catabolic process < 0.0001 < 0.0001 0.0097 0.02 1.0E-4

3 Translation < 0.0001 1.0E-4 0.6338 < 0.0001 < 0.0001

4 Regulation of cell cycle < 0.0001 0.0080 4.0E-4 < 0.0001 < 0.0001

5 Phosphorylation < 0.0001 1 0.9318 2.0E-4 0.01

6 Regulation of transcription, DNA-dependent < 0.0001 0.0035 0.9998 0.0014 < 0.0001

7 DNA replication 0.13 0.0081 NA 0.09 3.0E-4

8 Protein folding < 0.0001 0.93 0.3797 < 0.0001 < 0.0001

9 DNA replication 0.1 0.23 0.0072 0.0033 0.07

10 Transcription 0.05 1 1.0 1 < 0.0001

11 RNA splicing < 0.0001 0.04 0.9999 1.0E-4 < 0.0001

13 Protein amino acid phosphorylation 0.02 1 0.0505 0.0047 2.0E-4

14 Mitotic metaphase/anaphase transition 0.12 0.0013 NA 0.31 < 0.0001

15 Protein amino acid deacetylation NA 0.85 NA 0.5 3.0E-4

16 MAPKKK cascade during cell wall biogenesis NA < 0.0001 NA NA NA

17 Phosphorylation NA 0.74 < 0.0001 < 0.0001 < 0.0001

18 Mitotic spindle organization and

biogenesis in nucleus

NA 0.0022 NA NA NA

19 Pentose-phosphate shunt, nonoxidative branch < 0.0001 NA NA 0.03 0.03

20 Cell division NA 0.0039 0.0033 < 0.0001 < 0.0001

21 DNA recombination < 0.0001 0.23 NA 0.4 0.38

22 Proline biosynthetic process 0.06 0.25 < 0.0001 < 0.0001 < 0.0001

23 Fatty acid transport NA 2.0E-4 NA NA 0.33

25 Reproduction < 0.0001 NA NA NA NA

26 Protein amino acid phosphorylation 0.62 0.98 0.9732 < 0.0001 < 0.0001

The p-values are reported for five of the seven species. At most one significant term is considered for each module. The p-values

smaller than 0.01 are presented in bold. NA indicates missing annotation (see text in Section 3.4).
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important outstanding question is if our method is able to identify MIPS associations held out from training

and if it is robust to perturbations in the input data. To investigate this we applied the cross-validation

procedure by iteratively learning the evolutionary parameters on 4 of 5 (approximately equal in size)

subsets of the data and classifying the pairs in the subset that was held out from training. The held out

portion of the data was subsequently used to validate the method’s predictions. Note that each of the five

subsets contained *1/5 of the 347 MIPS-based pairs and *1/5 of the 347 pairs selected at random.

Notably, we found that our method, having only five parameters, does not overfit to training data and

produces a generalizable discriminant. As a result, we recovered 95 MIPS pairs (84%) above the 0.4 LLR

threshold–each pair was identified based on the training data that did not include this pair. At the selected

threshold, only 18 pairs (16%) from the random set were identified. Of the 95 true positive pairs, 91 were

among the 105 MIPS pairs identified by the original method, which was based on all available data.

4. CONCLUSIONS

We have presented a maximum likelihood approach for learning the probabilities of network rewiring

events under a simple duplication-and-divergence model. Our method provides insights into the rates of

acquisition and loss of interactions under various evolutionary scenarios. It also allows differentiation

between the neutral and conserving modes of evolution, thus pointing to regions of enhanced conservation

that typically correspond to key functional modules. We anticipate that model-based approaches such as the

one proposed here will be essential for understanding the processes shaping biological networks and

inferring and transferring functional information across species.
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