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Abstract

The aim of this study was to characterize magnetic resonance diffusion tensor imaging (DTI) in proximal regions of the

spinal cord following a thoracic spinal cord injury (SCI). Sprague–Dawley rats (n = 40) were administered a control, mild,

moderate, or severe contusion injury at the T8 vertebral level. Six direction diffusion weighted images (DWIs) were

collected ex vivo along the length of the spinal cord, with an echo/repetition time of 31.6 ms/14 sec and b = 500 sec/mm2.

Diffusion metrics were correlated to hindlimb motor function. Significant differences were found for whole cord region of

interest (ROI) drawings for fractional anisotropy (FA), mean diffusivity (MD), longitudinal diffusion coefficient (LD), and

radial diffusion coefficient (RD) at each of the cervical levels ( p < 0.01). Motor function correlated with MD in the

cervical segments of the spinal cord (r2 = 0.80). The diffusivity of water significantly decreased throughout ‘‘uninjured’’

portions of the spinal cord following a contusion injury ( p < 0.05). Diffusivity metrics were found to be altered following

SCI in both white and gray matter regions. Injury severity was associated with diffusion changes over the entire length of

the cord. This study demonstrates that DTI is sensitive to SCI in regions remote from injury, suggesting that the diffusion

metrics may be used as a biomarker for severity of injury.
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Introduction

Measurements of water diffusion within the spinal cord

after an injury, including measurements in regions distant

from the injury site, may provide valuable insight into the severity

of injury. Water diffusion within biological tissues can be measured

noninvasively using magnetic resonance diffusion tensor imaging

(DTI). As diffusion barriers within the tissue change after injury,

DTI has provided researchers with an invaluable tool to monitor

histological changes to the spinal cord after a spinal cord injury

(SCI); however, most studies have focused on diffusion measure-

ments at or within a few segments of the site of injury.1–3 Although

DTI at the injury site provides information about the histological

structure of the injured spinal cord, imaging of the injury site after

trauma in humans can be challenging. After injury, the spine tissues

are disrupted, and stabilization devices are typically placed around

the lesion site, which causes imaging artifacts in an MRI and pre-

vents a physician from assessing the severity of an injury. The

purpose of the current study was to determine whether DTI at sites

rostral and caudal to the injury provided measures of injury severity

in graded contusion injuries in rats.

DTI parameters of the spinal cord are sensitive to histological

changes that occur after a traumatic injury. In addition to the pri-

mary injury, there is secondary damage to the spinal cord in regions

distant from the injury site that results in histological changes that

affect water diffusion, including degeneration of fiber tracts, is-

chemia, edema, and oxidative damage to the tissue membranes that

act as barriers to diffusion.4–6 This inflammatory response results in

impaired medullary circulation and changes to spinal cord struc-

ture, which consequently develops necrosis that has been docu-

mented throughout the entire length of the spinal cord, up to the

brainstem.7 The resulting demyelination of tracts at significant

distances away from the lesion continues for > 1 year.8 These

physical changes to the cellular microstructure, including axon

number and volume changes, as well as alterations in intracellular

and extracellular water balance, correlate with changes in apparent

diffusion, including both longitudinal diffusion (along the tracts)

and radial diffusion (across the spinal tracts).9 Axon morphometric

parameters in various white matter (WM) tracts appear to underlie

differences in overall diffusion, which could be useful in detecting

injury to spinal WM tracts.10 Therefore, DTI measurements of

diffusion throughout the spinal cord after an injury might be used as

a biomarker for injury severity.

There is evidence of decreases in diffusivity of water in the

spinal cord in regions rostral to a chronic injury, possibly as a result

of secondary injury processes throughout the entire spinal cord.

Previously, our group has found changes in diffusion of water along

the entire length of the spinal cord after a moderate SCI to the
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eighth thoracic vertebrae in rats.11 Mean diffusivity (MD) signifi-

cantly decreases in regions away from the lesion site, consistent

with secondary injury processes such as cytotoxic edema, chronic

atrophy, and axonal loss. Changes in MD have also been docu-

mented in the high cervical spinal cord (rostral to an injury) in

humans with chronic SCI (cf. however, Petersen et al.).12–15 These

observations raise the question of whether changes in diffusivity in

regions distant from the injury are related to injury severity. Fur-

ther, it is expected that severity of injury changes the secondary

injury processes, as the extent of demyelination and remyelination

depend upon the number of axons that are disrupted by the injury.16

The severity of injury also determines the time course of recovery;

in cases of remyelination, smaller lesions acquire myelin sheath

faster than larger ones.17 Consequently, it might be possible to

predict the severity of injury from diffusion measurements of the

spinal cord over time. Recently, Kim et al. demonstrated that DTI

of the injury site in the hyperacute stage ( < 3 h post-injury) can be

used to predict functional recovery after a thoracic injury in rats.3

Although promising, there is limited additional evidence that DTI

of the injury site or elsewhere in the spinal cord correlates with

functional recovery. In the current study we hypothesized that

changes in DTI of the high cervical spinal cord are related to

functional recovery in rats with low thoracic spinal contusions.

In order to determine whether MD varies with injury severity, we

tested DTI in a contusion model of rat SCI using four different

injury severities (control, mild, moderate, and severe). Rats were

administered one of four severities of injury at the thoracic level

(T8) and ex vivo DTI of the entire spinal cord was conducted at 10

weeks post-injury. Changes in diffusion characteristics of the cer-

vical spinal cord were then correlated to behavioral tests of motor

and sensory function. We hypothesized that there would be greater

reduction in MD for specimens with more severe injuries.

Methods

Forty female Sprague–Dawley rats (200–250 g) were used for
this experiment. Rats were evenly divided into control, mild,
moderate, and severe groups (i.e., n = 10 for each group) and given
a contusion injury with the magnitude of the contusion severity
determined by group categorization. Rats were then allowed to
survive for 10 weeks, after which ex vivo DTI scans were performed
on the spinal cord. All procedures were approved by the Institu-
tional Animal Care and Use Committees (IACUC) at Marquette
University, the Medical College of Wisconsin, and the Zablocki
VA Medical Center.

SCI procedure

A contusion injury was produced in each rat. Rats were first
anesthetized with an intraperitoneal (IP) injection of 40 lL xyla-
zine, 0.1 mL of acepromazine, and 0.75 lL of ketamine hydro-
chloride diluted 1:1 with deionized water. The initial dose of the
anesthetic was 0.890 mL/kg of body weight, with additional anes-
thetic depending upon leg flexion-withdrawal and cornea reflexes.
The rats were then shaved, sterilized with a povidone-iodine scrub
pack, and secured to a surgical board. An incision was made over
the mid-thoracic region, and a laminectomy was performed on the
T7-T9 spinal segments. The rats were then placed in a MASCIS
impactor (W.M. Keck Center for Collaborative Neuroscience;
Piscataway, NJ) and a 10 g rod was dropped from a height of 0 mm,
10 mm, 25 mm, or 50 mm to induce a control, mild, moderate, or
severe injury with kinetic energy immediately before impact equal
to 0 J, 9.80*10 - 4 J, 2.45*10 - 3 J, and 4.90*10 - 3 J, respectively.

After surgery, rats were placed on postoperative care. The bi-
daily procedure involved bladder expression, one dose of enro-

floxacin (10 mg/kg subcutaneously; Bayer Healthcare LLC;
Shawnee Mission, KS), buprenorphine hydrochloride (0.1–0.5 mg/
kg subcutaneously; Rickitt Benckiser Health Care Ltd; Hull, UK),
and 6 cc of lactated Ringer’s solution. Animals were kept under
postoperative care procedures until bladder function returned and
specimens showed no signs of infection or stress. All rats survived
the injury procedures and recovered in good health.

Behavioral assessment

Open field walking was evaluated according to the Basso,
Beattie, and Bresnahan (BBB) rating scale every week after the
surgical procedure.18 Following the standard BBB protocol, rats
were placed on a flat, 1 M diameter surface and observed for 3 min.
Hindlimb function was assessed according to the 0–21 BBB scor-
ing, where 0 is flaccid paralysis and 21 is normal gait.

Ex vivo MRI protocol

Ex vivo images were obtained at 11 weeks after injury. Animals
were euthanized with an IP injection of sodium pentobarbital
(100 mg/kg body weight) and perfused through the heart with a
300 mL saline buffer followed by 600 mL of 10% formalin. The
spinal cords were extracted and post-fixed in a 10% formalin so-
lution. On the day of the ex vivo scanning session, the spinal cords
were embedded in an agarose gelatin mixture made of agarose
powder dissolved in distilled H20 following the protocol of
Ellingson et al.11 Specimens were then placed in a 9.4T Bruker
BioSpec 94/30 USR Spectroscopy Imaging System (Bruker
BioSpin; Billerica, MA). A quadrature coil was used for trans-
mitting and receiving radio signals (Doty Scientific; Columbia,
SC). Diffusion weighted images (DWIs) were acquired using a six
direction spin echo imaging sequence with a field of view (FOV)
size of 5.12 cm, echo/repetition time of 31.6 ms/14 sec, 25 slices
with a slice thickness of 2 mm, inter-slice gap of 1 mm, and number
of excitations (NEX) of two so that our scan sessions were roughly
13 h per scan. Our rationale for the 2 mm slice thickness was that it
provided an adequate signal-to-noise ratio (SNR) and adequate

FIG. 1. Typical placement of individual region of interest
drawings (ROIs) for dorsal, lateral, and ventral columns as well as
gray matter. ROIs are overlaid onto a spin echo image.
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resolution for this analysis and facilitated scanning in the desired
scan time. The matrix size was 512 · 512, and the b-values were 0
and 500 s/mm2. A b-value of 500 s/mm2 was chosen to image the
fast diffusion compartments and provide a relatively high SNR,
similar to the study by Ellingson et al.11

DTI analysis

DTI parameters were then calculated for the entire sample.
Images were imported into the Analysis of Functional NeuroI-
mages software package (AFNI; available at http://afni.
nimh.nih.gov/). The DWIs were then co-registered to the b0
images, using an iterative weighted least squares fit to the T2-
weighted images to correct for eddy current and susceptibility
distortions. Following registration, the resulting matrix volume
data were used to calculate the DTIs from the DWIs. The eigen-
values (k1, k2, k3) and vectors were calculated from the 3 · 3 dif-
fusion tensor. The eigenvalues were then used to calculate diffusion
indices. The indices included the longitudinal diffusion coefficient
(LD), represented by k1, and the radial diffusion coefficient (RD)
calculated by the mean of eigenvalues k2 and k3. The MD was also
calculated as the trace of the tensor (i.e., the mean of all three
eigenvalues). The fractional anisotropy (FA), which represents the
overall anisotropy of diffusion at a certain voxel, was calculated
using the formula prescribed by Basser et al.19

Image analysis was then completed in Matlab (The MathWorks
Inc; Natick, MA). Regions of interests (ROIs) were manually found
for each of the diffusion indices in each axial slice. One ROI was
defined as the entire transverse cord (i.e., the whole cord ROI).
Separate ROIs were also identified for gray matter (GM), as well as
dorsal columns (DWM), lateral columns (LWM), and ventral col-
umns (VWM) in the WM segments, as shown in Figure 1. The
average diffusion indices for the LWM and GM ROIs were found

by combining the left and right ROIs. The entire data set for a rat
was excluded if significant variations in image quality were found
as a result of image ghosting, low SNR ( > 2 SD of average group
SNR), or if the specimen produced an outlier during BBB scoring
that was not consistent with severity level (i.e., severe injuries were

FIG. 2. Regions of interest (ROIs) taken for fractional anisotropy (FA) (a) and mean diffusivity (MD) (b) over the entire length of
the cord. One rat was randomly selected from each group and the ROIs were extracted for the entire length of the cord. Separation
between white and gray matter was disrupted severely around injury sites for both FA and MD. Color-coded intensity values change as
severity of injury is increased across spinal segments.

FIG. 3. Basso, Beattie, and Bresnahan (BBB) score depicting
rat recovery following spinal cord injury for each severity over 10
weeks. Error bars indicate the standard deviation.

DTI IS SENSITIVE TO SEVERITY OF SCI 1579



expected to have a BBB score < 7 on both limbs at 10 weeks fol-
lowing an injury, and control injuries were expected to have a BBB
score > 18 on both limbs at 10 weeks following an injury). The
resulting groups were as follows, control (n = 8), severe (n = 8),
moderate (n = 9), and mild (n = 10).

Statistical analysis

All statistical analyses were conducted using the Statistical
Package for Social Sciences (SPSS version 13.0; SPSS Inc., Chi-
cago, IL). A Student’s t test was performed to determine statistical
significance between the DTI indices of the SCI rats and controls on
a slice-by-slice basis as well as an average of the overall DTI index
in the cervical or thoracic region. Each ROI was averaged at each
slice location across all specimens. A two way, repeated measures,
analysis of variance (ANOVA) (fixed factors: injury group and
slice location [C1-T10 with roughly two slices per segment]; ran-
dom factor: specimen) was also completed to look at variations
across groups. P < 0.05 was considered to be statistically signifi-
cant. A Tukey post-hoc test for multiple comparisons was also
performed to compare between spinal levels. The correlation be-
tween injury group and BBB score was analyzed using the Spear-
man correlation.

Results

Images of FA and MD in axial slices of the spinal cord are shown

in Figure 2 for representative specimens from each severity group.

A distinction between white and GM regions was observed in all

specimens, especially for FA images. Near the injury site in mod-

erately and severely injured rats, the GM and WM tracts were

harder to distinguish visually. In addition, the MD appeared to be

lower in more severely injured specimens, and this lower diffu-

sivity was observed throughout the volume of the spinal cord, ex-

cept near the lesion. This separation was consistent with the BBB

functional motor tests at week 10, which corresponded to the

ex vivo scan time points. Interestingly, there was no significance

( p > 0.05) in the BBB scores at week 10, for mildly and moderately

injured rats, as seen in Figure 3.

DTI indices in the control group

DTI indices were consistent over the length of the spinal cord for

the control group. Mean ROIs within the control group, for FA,

MD, LD, and RD, had low within-group variations for each DTI

index (mean and SD for the DTI indices are given in Table 1). The

variation was smaller for the analysis of the whole cord ROI, with

the maximum coefficient of variation (CoV) occurring in RD

(2.32%). The WM and GM regions were slightly more variable,

with the largest CoV equal to 14.65% in the GM LD. Overall, SD

was low for each group, demonstrating consistency within the MRI

scanning. As shown in Table 1, the average FA in WM was greater

than the whole cord and GM ROIs; conversely, MD, LD, and RD

for WM were considerably lower than the whole cord values, but

within each WM/GM ROI, these DTI parameters were still con-

sistent over the length of the cord.

Whole cord ROI analysis

There was a strong correlation between mean MD across the

spinal cord and BBB score (r2 = 0.80), as seen in Figure 4. Mean

FA, MD, LD, and RD were calculated for each specimen, over the

C1-C7 cervical segments for each specimen, and compared with

individual BBB scores. The resulting correlations ranged from

r = 0.53 to 0.94 in WM ROIs, and between r = 0.33 and 0.82 in the

GM ROI, as shown in Table 2. The stronger correlations (r > 0.7)

occurred in MD, LD, and RD. All groups had a significance of

p < 0.001 with the exception of LD for LWM and FA for GM,

which were significant at the p < 0.01 level.

There was variation in DTI indices along the length of the spinal

cord, with notable differences at the injury site. DTI indices for each

slice were analyzed from - 40 mm rostral to the injury site to 20 mm

caudal to the injury site as shown in Figure 5. Visually, there was a

clear separation among severity groups throughout the entire length

of the cord, with the greatest difference occurring in mean diffu-

sivity, which showed an 18% reduction for regions cephalad to in-

jury. This separation is also represented in Figure 6 with mild,

moderate, and severe groups being significantly different than the

control group when comparing average MD across the C1-C7 cer-

vical segments for each specimen. Comparing GM and WM tracts

(Fig. 7), the separation among groups was consistent over the length

Table 1. DTI Metrics for Control Spinal Cords

FA MD (x10 - 3 mm2/sec) LADC (x10 - 3 mm2/sec) TADC (x10 - 3 mm2/sec)

Whole cord 0.51 – 0.003 0.75 – 0.004 1.01 – 0.012 0.56 – 0.013
White matter 0.58 – 0.060 0.71 – 0.048 0.93 – 0.003 0.45 – 0.049
Gray matter 0.31 – 0.095 0.78 – 0.052 0.71 – 0.104 0.68 – 0.052

The mean and standard deviation for DTI metrics in different ROIs.
DTI, diffusion tensor imaging; FA, fractional anisotropy; MD, mean diffusivity; IADC, isotropic apparent diffusion coefficient; TADC, transverse

apparent diffusion coefficient; ROI, region of interest.

FIG. 4. Whole cord mean diffusivity (MD), averaged across
slices, correlated to individual Basso, Beattie, and Bresnahan
(BBB) scores. An r2 = 0.80 demonstrates a strong correlation be-
tween MD of the cervical spinal cord compared with average BBB
score of rats at week 10.
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Table 2. BBB Score Correlation with Whole Cord ROI for DTI Metrics

FA MD LADC TADC

Whole Cord - 0.548 ( < 0.001) 0.935 ( < 0.001) 0.785 ( < 0.001) 0.868 ( < 0.001)
VWM 0.609 ( < 0.001) 0.759 ( < 0.001) 0.700 ( < 0.001) 0.575 ( < 0.001)
DWM 0.575 ( < 0.001) 0.829 ( < 0.001) 0.681 ( < 0.001) 0.565 ( < 0.001)
LWM 0.565 ( < 0.001) 0.752 ( < 0.001) 0.527 (0.001) 0.899 ( < 0.001)
GM 0.329 (0.006) 0.783 ( < 0.001) 0.531 ( < 0.001) 0.818 ( < 0.001)

Spearman correlation coefficients ( p values in parentheses) for the correlation between BBB scores for individual rats and their ROIs across the
individual DTI metrics (FA, MD, lADC, and TADC).

BBB, Basso, Beattie, and Bresnahan; ROI, region of interest; DTI, diffusion tensor imaging; FA, fractional anisotropy; MD, mean diffusivity; IADC,
isotropic apparent diffusion coefficient; TADC, transverse apparent diffusion coefficient; VWM, ventral columns in white matter; DWM, dorsal columns
in white matter; LWM, lateral columns in white matter; GM, gray matter.

FIG. 5. A comparison between severity groups rostral and caudal to the injury site. Here the injury site is located at 10 mm. Fractional
anisotropy (FA), mean diffusivity (MD), longitudinal diffusion coefficient (LD), and radial diffusion coefficient (RD) are shown for a
whole cord region of interest (ROI) that includes white and gray matter. Spinal cord regions at and around the lesion site (0 mm)
demonstrated drastically altered diffusion values compared with distal regions of the spinal cord. The clearest separation of diffusion
values for each of the severity groups was observed in the mean diffusivity metric. Error bars indicate the standard deviation.
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of the cord for WM tracts. The GM also showed separation based on

severity, which was most visually apparent in MD and RD.

Statistical differences were found among severity groups for

the DTI indices and ROIs, with some exceptions. In comparing

the different severity groups over the entire length of the cord

(Table 3), VWM, DWM, LWM, and GM were statistically dif-

ferent ( p < 0.01) between the severe injury group and the other

groups in all indices except when compared with moderate in-

juries for FA and MD in VWM, DWM, LWM, and GM. LD and

RD showed significant differences ( p < 0.01) among groups in all

of the ROIs except between the mild and control groups in VWM,

and the mild and moderate groups in VWM and DWM for LD

only. Conversely, the control and mildly injured rats were not

significantly different for any of the DTI metrics ( p > 0.05).

There was also no significant difference ( p > 0.05) between RD

values at, and caudal to, the site of injury. In addition, no sig-

nificant difference ( p > 0.05) was observed for FA in GM be-

tween the mild and severe injuries. Other comparisons between

groups showed that FA was not significantly different between

the control group and the mild group for any ROIs or for the

control group and the moderate group in VWM, DWM, LWM,

and GM.

Discussion

Results from this study suggest that DTI is sufficiently sensitive

to detecting secondary injury rostral to a contusion injury site.

These secondary injury effects were manifested as a decrease in

mean diffusivity in the cervical spinal cord following a thoracic

(T8) contusion that was proportional to the severity of injury. We

observed a strong correlation (r2 = 0.80) between MD of the cer-

vical spinal cord and functional outcome, measured by the BBB

motor score. Changes in diffusivity were also noted at the primary

injury site, with relative changes along the length of the spinal cord

that were consistent with reported results at or near the injury.1,11,20

The decreases in MD as well as the changes in FA may appear

counterintuitive to previous literature that has focused on the injury

site.1,11,20 Our results demonstrated an increase in MD at the injury

site compared with the rest of the cord, similar to those previous

studies; however, in remote regions, MD is decreased. The new

findings verify the decrease in MD found in rodents and humans

following an SCI.12,14 We believe the counterintuitive nature of the

changes in diffusivity remote from the region site could be reflec-

tive of changes in axon and myelin structure, intracellular and

extracellular water balance, and edema or inflammatory processes.

Diffusivity measures reflect documented histological
changes in the spinal cord

Variations in diffusivity measures away from the injury site

likely reflect changes in tissue structure. Our results include a clear

decrease in mean diffusivity following SCI at regions distal to the

injury. These results support similar data from Takahashi et al.,

who reported a decrease in diffusion in regions remote from the site

of injury during the degeneration and regeneration of sea lamprey

axons.21 The decrease in diffusivity in our results could reflect

membrane structural changes associated with myelin and axonal

degeneration. We observed decreases in both RD and LD in the

cervical spinal cord in the current study. Changes in RD have been

associated with cell membrane and myelin sheath permeability to

water, although RD has been shown to not be strongly correlated

with myelin sheath thickness.22,23 Conversely, LD decreases with

decreased myelin thickness and smaller axon diameter, and LD is

associated with neurofilament and microtubule density.3,9,22,24 The

LD and RD metrics do not always change in parallel; LD has been

shown to change when RD does not, suggestive of axonal degen-

eration and not myelin degeneration.25 Therefore, the decreases in

both longitudinal and radial diffusivity observed in the current

study could be associated with changes in axon and myelin struc-

ture that accompany Wallerian degeneration.

Extra-axonal tissue changes could also have affected the diffu-

sivity measurements in WM tracts. The decrease in diffusivity that

we observed was correlated with the severity for up to 40 mm

rostral to the injury site, which is consistent with a cellular reaction.

Wallerian degeneration in the cervical dorsal columns from a

thoracic injury results in microglial and astroglial reactions, with an

eventual astroglial scar.4,15,26–28 This cell proliferation and scar

formation would be expected to decrease diffusivity in all direc-

tions, consistent with our observations. In addition to the cell and

scar tissue itself, changes in extracellular matrix proteoglycans,

which are increased after central nervous system (CNS) injury,

could also affect water diffusion.29 Scarring and other changes in

the extracellular matrix likely account for the decreased diffusivity

of the cervical spinal cord after thoracic injury that was observed in

the current study; however, the influx of a cellular response to

injury may also play a role.

The change in diffusion barriers associated with tissue break-

down and influx of inflammatory cells as time progresses could also

explain the decline in diffusivity that we observed away from the

injury site. Following cortical impact and the resulting axonal

damage, there is a decrease in MD and an increase in FA suggestive

of cytotoxic edema.30 Changes in tissue structure in regions outside

the lesion site attributed to cytotoxic inflammatory products were

implicated in this brain study.30 In general, there is strong evidence

of changes in the number of inflammatory cells at locations away

from the injury site and even outside of the spinal cord.31–35 The

activation of the inflammatory processes helps to explain the

FIG. 6. Average mean diffusivity (MD) over the cervical seg-
ments of the spinal cord for each severity group. Mild, moderate,
and severe injuries were significantly different than the control
group (*p < 0.05). Error bars indicate the standard deviation for
each group.
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changes in water diffusion following SCI in regions remote from

the injury site, although changes in water balance between intra-

cellular and extracellular compartments cannot be excluded.

Diffusivity and changes in water balance

Results from this study are also consistent with the concept that

DTI is sensitive to changes in intracellular and extracellular water

compartments. The decrease in water diffusion that we observed

following injury has also been reported following injury to the

CNS.36–38 It has been proposed that the primary reason for this

decrease is the relationship between the intra- and extracellular

water compartments, specifically, the resulting decrease in intra-

cellular water diffusion.39 In cerebral ischemia, the intracellular

water compartment is the overall determinant of changes in water

diffusion.40 These studies raise the possibility that ischemia within

the spinal cord after an injury might underlie the reduction in ap-

parent diffusion coefficient (ADC).

In addition, the observed changes in diffusivity that we saw

might have been reflected by a change in water balance caused by

edema or other inflammatory processes. Upregulation of the pri-

mary water channel, aquaporin-4, has been reported in areas away

from the lesion site in chronic injury, suggesting altered water

transport, edema, and syringomyelia.41 Changes in water balance

are thought to greatly affect the diffusion of water within

tissue.2,11,42 The significant decrease in the diffusion values for MD,

LD, and RD appear to suggest that the changes to the cellular fluidic

environment could be a direct cause of the changes to water diffu-

sion; however, further investigation into the water volume shift be-

tween intracellular and extracellular compartments is needed.

Diffusivity in GM

Changes in GM diffusivity in the current study suggest that the

decreased diffusivity of the cervical spinal cord cannot be entirely

attributed to changes in structure of the WM tracts associated with

FIG. 7. A comparison between white and gray matter values for fractional anisotropy (FA) and mean diffusivity (MD). The comparison
extended over 20 mm rostral and caudal to the injury site (0 mm). Drastic difference in white and gray matter values are shown, with the
most severe changes in diffusion occurring around the lesion site. FA and MD were sensitive to diffusion changes at the lesion site for
white matter. FA was less altered in gray matter at the lesion site when comparing groups. Error bars indicate the standard deviation.
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Table 3. Analysis of Differences Among Groups

FA MD

WC Mild Moderate Severe Mild Moderate Severe

Control 0.274 0.233 < 0.001 < 0.001 < 0.001 < 0.001
Mild - 1.000 0.001 - < 0.001 < 0.001
Moderate - 0.001 - < 0.001

LD RD

Control 0.004 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
Mild - < 0.001 < 0.001 - 0.039 < 0.001
Moderate - < 0.001 - < 0.001

FA MD

VWM Mild Moderate Severe Mild Moderate Severe

Control 0.977 0.017 < 0.001 0.039 < 0.001 < 0.001
Mild - 0.050 < 0.001 - < 0.001 < 0.001
Moderate - 0.065 - 0.061

LD RD

Control 0.760 0.001 < 0.001 0.914 < 0.001 < 0.001
Mild - 0.016 < 0.001 - < 0.001 < 0.001
Moderate - < 0.001 - < 0.001

FA MD

DWM Mild Moderate Severe Mild Moderate Severe

Control 0.516 0.182 < 0.001 < 0.001 < 0.001 < 0.001
Mild - 0.006 < 0.001 - < 0.001 < 0.001
Moderate - 0.014 - 0.707

LD RD

Control 0.728 0.004 < 0.001 < 0.001 < 0.001 < 0.001
Mild - 0.066 < 0.001 - < 0.001 < 0.001
Moderate - 0.001 - < 0.001

FA MD

LWM Mild Moderate Severe Mild Moderate Severe

Control 0.842 0.144 < 0.001 0.989 < 0.001 < 0.001
Mild - 0.020 < 0.001 - < 0.001 < 0.001
Moderate - 0.074 - 0.052

LD RD

Control 0.647 0.441 < 0.001 0.001 < 0.001 < 0.001
Mild - 0.046 < 0.001 - < 0.001 < 0.001
Moderate - < 0.001 - < 0.001

FA MD

GM Mild Moderate Severe Mild Moderate Severe

Control 0.325 0.148 0.015 0.136 < 0.001 < 0.001
Mild - 0.972 0.515 - < 0.001 < 0.001
Moderate - 0.781 - 0.064

LD RD

Control 0.308 0.807 < 0.001 0.084 < 0.001 < 0.001
Mild - 0.829 < 0.001 - < 0.001 < 0.001
Moderate - < 0.001 - < 0.001

The differences among group means for each severity group are shown above. P values from analysis of variance (ANOVA) results for the differences between
each of the severity groups for each diffusion tensor imaging (DTI) metric are shown for whole cord (WC), ventral white matter (VWM), dorsal white matter
(DWM), lateral white matter (LWM), over all white matter (WM) and overall gray matter (GM) region of interest drawings (ROIs). Comparisons were made for
the fractional anisotropy (FA), mean diffusivity (MD), longitudinal diffusivity (LD), and the radial diffusivity (RD) diffusion metrics.
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Wallerian degeneration. The diffusivity changes in cervical GM

and WM were very similar. Whereas changes in diffusivity related

to Wallerian degeneration has been a focus of DTI studies after

injury, GM diffusion changes suggest that the entire spinal cord is

involved.23,43–45 A limited number of studies have reported diffu-

sion characteristics from GM regions, and it is thought that some of

these changes occur because of astrocytic activity in GM triggered

by Wallerian degeneration in WM.28,38,46 The similarity of changes

in diffusion of both GM and WM is also consistent with a gener-

alized change in water balance throughout the spinal cord.

Study limitations

Changes in MD were consistently observed in the GM and in-

dividual tract ROIs, although the statistical tests were less con-

clusive than the whole cord ROI. The increased variability caused

by the smaller size of the individual tract ROIs most likely ac-

counted for the differences in the statistical tests. There has been a

persistent interest in imaging specific tracts of the spinal cord fol-

lowing an injury in order to ascertain whether functional outcomes

might be associated with particular tract loss.2,3,12 As such, there

has been a desire to obtain improved resolution images with higher

SNR.47–49 The current study benefited in this regard from the use of

ex vivo scans; however, additional resolution and improved SNR

might be obtained with new coil designs and improved image se-

quences. Although image quality is important, especially with the

use of the lower quality in vivo scans, the current results suggest

that a whole cord ROI provides reasonable estimates of useful DTI

metrics. As similar changes occur throughout GM and WM, a

whole cord ROI, for which it is relatively easy to delineate between

cord and the surrounding cerebrospinal fluid, might be the best

option for identifying a DTI parameter that reflects injury severity.

The primary and secondary damage resulting after an SCI are

complex events occurring throughout the spinal cord. Although

there are several hypotheses to account for changes in spinal cord

tissue diffusivity away from the injury site, a more accurate

assessment using histological and immunohistochemical tech-

niques is needed. Staining for neurofilament density with SMI-31

and SMI-32 for example, has been associated with changes to water

diffusion.3,24 Measurements of astrocyte and macrophage interac-

tions in the cervical segments of the spinal cord might offer better

insight into the severity-related changes that are picked up by dif-

fusion measurements. Examining the degradation of glial fibrillary

acidic protein (GFAP) to assess the axonal degradation along the

cord may also be a promising avenue of future research.

Conclusion

In conclusion, we have demonstrated that diffusivity in the

spinal cord rostral to the injury site varies with injury severity, and

that ex vivo DTI is sufficiently sensitive to these changes. There-

fore, rostral DTI may be a valuable biomarker for varying injury

severity in more caudal levels of the spinal cord. Our results support

the hypothesis that injury severity is associated with respective

diffusion changes over the entire length of the spinal cord.
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