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Knots and knotted fields enrich physical phenomena ranging from
DNA and molecular chemistry to the vortices of fluid flows and
textures of ordered media. Liquid crystals provide an ideal setting
for exploring such topological phenomena through control of their
characteristic defects. The use of colloids in generating defects and
knotted configurations in liquid crystals has been demonstrated
for spherical and toroidal particles and shows promise for the
development of novel photonic devices. Extending this existing
work, we describe the full topological implications of colloids
representing nonorientable surfaces and use it to construct torus
knots and links of type (p,2) aroundmultiply twistedMöbius strips.
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Controlling and designing complex 3D textures in ordered
media is central to the development of advanced materials,

photonic crystals, tunable devices or sensors, and metamaterials
(1–10), as well as to furthering our basic understanding of meso-
phases (11–13). Topological concepts, in particular, have come
to play an increasingly significant role in characterizing materials
across a diverse range of topics from helicity in fluid flows (14,
15) and transitions in soap films (16) to molecular chemistry
(17), knots in DNA (18), defects in ordered media (19, 20),
quantum computation (21, 22), and topological insulators (23).
Topological properties are robust, because they are protected
against all continuous deformations, and yet flexible for the same
reason, allowing for tunability without loss of functionality.
Some of the most intricate and interesting textures in ordered

media involve knots. Originating with Lord Kelvin’s celebrated
“vortex atom” theory (24), the idea of encoding knotted struc-
tures in continuous fields has continued in magnetohydrody-
namics (25), fluid dynamics (15), high-energy physics (26–28),
and electromagnetic fields (29, 30), and has seen recent experi-
mental realizations in optics (31), liquid crystals (32), and fluid
vortices (33). Tying knots in a continuous field involves a much
greater level of complexity than in a necktie, or rope, or even
a polymer or strand of DNA. In a field, the knot is surrounded by
material that has to be precisely configured so as to be com-
patible with the knotted curve. However, this complexity brings
its own benefits, for the full richness of the mathematical theory
of knots is naturally expressed in terms of the properties of the
knot complement: everything that is not the knot. In this sense,
knotted fields are ideally suited to directly incorporate and ex-
perimentally realize the full scope of modern knot theory.
Liquid crystals are orientationally ordered mesophases, whose

unique blend of soft elasticity, optical activity, and fluid nature
offers a fertile setting for the development of novel meta-
materials and the study of low-dimensional topology in ordered
media. Much of the current focus centers on colloidal systems––
colloidal particles dispersed in a liquid crystal host––which have
a dual character. On the one hand, the liquid crystal mediates
long-range elastic interactions between colloids, furnishing the
mechanism for formation of colloidal structures and meta-
materials (1–3, 10). On the other hand, the colloids, through
anchoring conditions imposed by their surfaces, generate defects
in the liquid crystal and so serve to induce and manipulate its
topological properties. For instance, multiple colloids exhibit
a variety of entangled defect configurations (34, 35), equally in-
teresting states without defects (36), and can even be manipulated

so as to form arbitrary knots and links (32, 37). More recently,
a significant advance has seen the fabrication of colloids with
different topology (38)––tori up to genus five––verifying experi-
mentally the relation between particle topology and accompanying
defect charge, and advancing a program to obtain topological
control of materials through topological design. Although the
phenomena displayed by these systems are indeed rich, as surfaces
these colloids (spheres, tori, etc.) all represent closed, orientable
surfaces.
In this article we extend these ideas to provide a complete

topological characterization of all compact colloidal surfaces in
a liquid crystal host. Nonorientable surfaces fully exploit the
nonorientable nature of liquid crystalline order (39). On all
nonorientable surfaces there are, by necessity, closed paths
around which the surface normal reverses its orientation. For
surfaces with normal anchoring this imprints a corresponding
reversal in the director field, the telltale signature of a dis-
clination line. In this way nonorientable surfaces enforce the
creation of topologically protected dislcination lines. By varying
the embeddings of the surface we exploit this topology to create
metastable disclination loops in the shape of ðp; 2Þ torus knots
and links, for any p, around multiply twisted Möbius bands.
Through this combination of geometry and topology we eluci-
date a natural setting for the creation and control of complex
knotted fields and the integration of mathematical knot theory
into experimental science.

Colloids, Surfaces, and Topology
Liquid crystals are typically composed of long, thin, rod-like
molecules, which align in the nematic state along a common
direction n called the director. This orientation is line-like rather
than vectorial, meaning n∼ − n and the local orientation takes
values in the real projective plane RP2, the ground-state mani-
fold for nematics (19, 20). The director field varies smoothly
everywhere except on points or lines of discontinuity, known as
topological defects, whose nature is captured by the way the
order changes in their vicinity. Line defects, called disclinations,
are characterized by the behavior on small loops around the
singular line and so may be classified by the fundamental group
of the ground-state manifold π1ðRP2Þ=Z2. Unique to liquid
crystals, these defects reflect the nonorientability of nematic
order with the molecules undergoing a π-rotation upon encir-
cling the disclination. Similarly, point defects, referred to collo-
quially as hedgehogs, are classified by the second homotopy
group π2ðRP2Þ=Z. This simple classification is augmented by the
topological content of interactions between defects [character-
ized in terms of the action of π1 on the higher homotopy groups,
or by various Whitehead products (40)] so that, in particular,
point defects of equal but opposite strength are equivalent
(meaning freely homotopic) in the presence of a disclination
and, whereas there is only one nontrivial element of π1ðRP2Þ,
disclinations that close up into loops fall into four distinct
homotopy classes (41). Loosely, these may be thought of as
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corresponding to whether the linking number with other defects
is even or odd and whether the loop carries an even or odd
hedgehog charge (20).
Defects can be induced and manipulated by immersing col-

loidal particles in the liquid crystal. This arises through the in-
compatibility of anchoring conditions on the particle surfaces
with the alignment imposed by the cell boundaries, or at large
distances. The topological type of this incompatibility, or ob-
struction, can be associated with elements of the homotopy
groups πkðRP2Þ so that different surfaces can (loosely) be
thought of as generating different types of defects. The nature of
the obstruction depends on the anchoring conditions at the
surface, but in the most common case of normal, or homeo-
tropic, anchoring (as we consider here) it depends only on the
topology of the colloid’s surface. The classification theorem of
surfaces (42) is a classic result of 2D topology, which states that
any compact surface can be classified up to homeomorphism by
its genus, orientability, and number of boundary components.
The genus is equal to the number of holes or handlebodies
possessed by a surface; for example, a torus has genus one and
a sphere genus zero. Orientability implies a consistent choice of
normal vector can be made on a surface. The one-sided Möbius
strip is the classic nonorientable surface; any normal vector on
the strip will be flipped by going around the strip once, forbid-
ding a consistent choice of surface normal. Finally, the number
of boundary components is simply the number of distinct con-
nected components in the surface boundary, e.g., a disk has one
boundary component and a torus has none.
Whereas this is a complete topological classification of surfa-

ces in an abstract setting, for applications they must also be
embedded (no self-intersections) into ordinary 3D space, R3.
Different embeddings are interesting in their own right––the
whole of knot theory concerns embeddings of a circle into
R3––but they do not affect the homotopy class of the defect
necessitated in the bulk, which we focus on first. Thus, with the
classification of surfaces in mind, it is natural to ask what topo-
logical implications each type of surface has for accompanying
defects in the surrounding liquid crystal. The complete classifi-
cation, summarized in Fig. 1, naturally separates into four classes
of surfaces: orientable or nonorientable and closed or with
boundary.
Closed, orientable surfaces are known to induce defects cor-

responding to the element 1− g= χ=2 of π2ðRP2Þ, where g is the
genus of the surface and χ is the Euler characteristic (38, 43, 44).

Briefly, this relation comes through computing the degree of the
Gauss map of the surface. The Gauss map G of a surface X is
a map G : X → S2 that sends every point of the surface to the
direction of the surface normal at that point. For orientable
surfaces with normal anchoring, the director can be given the
orientation of the Gauss map, so that G describes precisely the
molecular orientation at the surface. The degree of this map––
the number of times every point on S2 is visited, counted with
sign––is a homotopy invariant (43) characterizing the type of
defect that the surface generates (38, 44). Although experi-
mentally the same surface can produce seemingly different
defects, they are always characterized by this same element of
π2ðRP2Þ. For instance, spherical colloids can nucleate either
a point defect (1) or disclination loop (45) but the loop can al-
ways be shrunk continuously into a point (46), so that it is more
properly classified by π2ðRP2Þ. More generally, orientable sur-
faces can never generate elements of π1ðRP2Þ, i.e., disclinations,
as a topological requirement. Their orientability ensures that any
disclination loops formed can always be removed in pairs or
shrunk into points.
Closed, nonorientable surfaces cannot be embedded in R3

without self-intersection, meaning that a true representation of
any of these (e.g., the real projective plane or the Klein bottle) in
a liquid crystal is not possible. For this reason, we do not con-
sider closed, nonorientable surfaces any further.
Orientable surfaces with boundaries have trivial topological

implications for the surrounding liquid crystal. Their orient-
ability, as in the closed case, forbids them from generating ele-
ments of π1ðRP2Þ as a topological necessity. In addition, because
they have a boundary, they cannot generate any elements of
π2ðRP2Þ. We argue as follows. Closed, orientable surfaces sep-
arate space into an inside and an outside and they generate point
defects in both regions. If one cuts a hole in the surface, creating
a boundary component, then these defects can be combined to
leave a defect-free texture. Cutting more holes in the surface will
not change things as one could always make the texture on the
new hole identical to the surface normal that was removed.
Nonorientable surfaces with boundary necessarily generate

a nontrivial element of π1ðRP2Þ. A generalization of the Gauss
map to nonorientable surfaces G : X →RP2 assigns to every point
of the surface the line element (point in RP2) corresponding to
the direction of the (unoriented) surface normal. [It is more
common, and more useful in general, to think of the nonorientable
version of the Gauss map as a map to the Grassmannian
Gr2ðR3Þ––e.g., ref. 47––but because Gr2ðR3Þ is canonically ho-
meomorphic to RP2 there is no loss in our discussion.] Now
consider the loop space of our surface ΩX . Composition with the
nonorientable Gauss map G creates a set of representatives of
π1ðRP2Þ. If X is nonorientable then there must be at least one
map in this set which represents the nontrivial element (and
generates a disclination). Suppose there was no such map, then
every map in G½ΩX � could be lifted from RP2 to S2 and we
would have created an orientable Gauss map G, implying the
surface is orientable, a contradiction. The disclinations created in
this way must entangle the surface, because any disk spanning
a nonorientable loop on the surface must be pierced by
the defect.
With closed, orientable surfaces, different elements of π2ðRP2Þ

could be generated according to the genus of the surface. In the
same way, we might ask if different nonorientable surfaces with
boundary can act to generate different kinds of disclination loops
in the bulk liquid crystal. Although there is only one nontrivial
element of π1ðRP2Þ, there are four distinct homotopy classes of
disclination loops (20, 41) (the four types may be thought of as
corresponding to even/odd linking number with other disclinations
and even/odd hedgehog charge). We must, therefore, determine
which of these is generated by the surface. We cannot force the
existence of linked loops in a path-connected domain. If we have

Surface Orientable Non-Orientable

Closed Generates ( ). Does Not Embed.

With Boundary Topologically Trivial. Generates ( ).

Fig. 1. Topological characterization of compact surfaces with homeotropic
boundary conditions, embedded in a 3D, nematic liquid crystal. Closed ori-
entable surfaces generate elements of π2ðRP2Þ, equal to 1 minus the genus
of the surface. Nonorientable surfaces with boundary generate the non-
trivial element of π1ðRP2Þ, which forces the nucleation of disclination lines in
the bulk.
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a connected domain then a single disclination loop can go through
all of the nontrivial cycles created by the surface. Because we will
then have only one disclination, it cannot be linked. Furthermore,
it must have zero hedgehog charge. The surface simply acts to
smoothly align the director field in some region of space so that
the texture is equivalent to one containing a lone disclination loop,
without the colloid but with the same director orientation in its
place, which must have zero charge. Thus, all nonorientable sur-
faces with boundary, independent of their topological type, have
the same topological implication for the liquid crystal, in contrast
with the closed, orientable case. These four classifications are
summarized in Fig. 1.

Möbius Strips and Knotted Defects
Nonorientability of the surface enforces the existence of a dis-
clination loop but it leaves open the precise form of the defects
and their equilibrium configuration. These are determined by
energetics and by the nature of the embedding of the surface.
Whereas surfaces with boundary are unavoidably 2D, experi-
mentally realizable, but topologically equivalent, surfaces may be
constructed by using thin material with homeotropic boundary
conditions on the faces and planar anchoring on the thin edges,
as shown schematically in Fig. 2. In this way a colloid with
varying surface anchoring conditions can be made to faithfully
represent a 2D surface. Such boundary conditions are essential
to mimic nonorientable surfaces and ensure the topological
properties we describe––fully homeotropic boundary conditions
simply replicate an orientable torus. Modern fabrication tech-
niques allow for the manufacture of such exotic surfaces (38).
As the Möbius strip is the prototypical nonorientable sur-

face––all nonorientable surfaces contain the Möbius strip as
a subset––it serves as an elementary guide to the behavior of
nonorientable surfaces in liquid crystals. A Möbius strip with
homeotropic boundary conditions will generate a nontrivial el-
ement of π1ðRP2Þ as one passes around the strip and hence must
be threaded by a disclination loop of zero hedgehog charge,
entangling the surface. The shape of disclination loops around
colloidal particles is governed largely by the requirement to
minimize the distortion energy of the surrounding director field.
A simple heuristic for this can be constructed as follows. As one
passes through a disclination line a rotation of approximately π=2

is induced in the director. This rotation mediates the transition
from the surface normal orientation to that of the far field and
will best minimize the distortion in the director field when it is
concentrated along those parts of the surface where the local
anchoring and far-field directions are perpendicular. Because we
consider colloids with homeotropic anchoring, this simply gives
the requirement that

Sn ·n0 = 0; [1]

along the disclination, where Sn is the surface normal and n0 is
the far-field director. For a spherical particle in a uniform far
field, this predicts that the disclination will lie on a great circle in
a plane perpendicular to this far-field direction, which is the
observed position of Saturn ring defects (45). Likewise the
twisted shape of disclinations around spherical colloids in a cho-
lesteric (37, 48) is correctly predicted by the same heuristic.
The preferred defect configuration for a Möbius strip can be

found by numerical simulation using continuum Landau–de
Gennes modeling (Materials and Methods). As shown in Fig. 2,
the minimum energy configuration is a single disclination loop
entangling the strip, in the location predicted by [1]. Of course,
the precise configuration depends on the strip’s orientation rel-
ative to the far field, but we have found that the orientation
shown, with the strip’s centerline in a plane perpendicular to the
far-field orientation, has the lowest observed energy. The cross-
section of the disclination loop shows a twisted −1=2 profile on
the outside of the strip and a + 1=2 twisted profile on the inside,
as it has to in order to carry no hedgehog charge (49). This
hedgehog charge may be computed by several methods. The
recently developed Pontryagin–Thom construction (13) and
methods related to disclination profile switching (49) both assert
that the charge of the disclination is zero, as required on
topological grounds.

Fig. 2. Simulation results of a Möbius strip with homeotropic boundary
conditions on the flat faces, shown schematically in black along the strip.
Note the planar anchoring on the short edge required to correctly represent
a 2D surface. The 2D surface can then be thought of as living in the center of
the strip. The defect line (red) is clearly visible entangling the strip, as pre-
dicted by [1]. (Insets) Local director profile near the defect, showing the +1/2
twist disclination on the inside of the strip; there is a corresponding −1/2
twist profile on the outside.

Fig. 3. Knotted and linked disclinations in chiral nematics stabilized by the
presence of twisted surfaces with homeotropic boundary conditions on the
flat faces, and planar on the thin edges. They are torus knots and links of the
form ðp; 2Þ. Shown are (A) p= 2 Hopf link, (B) p= 3 trefoil knot, (C) p= 4
Solomon’s knot, and (D) p= 5 cinquefoil knot. The defects in the center are
hedgehogs, existing in pairs above and below the strip.
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Perhaps the simplest generalization of the Möbius strip to-
pology is to vary its embedding in R3. Different embeddings can
be obtained by changing the number p of half-twists that the strip
contains. The “canonical”Möbius strip has one half-twist ðp= 1Þ,
but more generally if p is odd then the surface is still non-
orientable and has the same topology as the Möbius strip. When
p is even the surface is orientable and has the topology of an
annulus. Nonetheless, the embeddings are distinct and carry
their own topological embellishments. The boundary of a
Möbius strip is a circle. For a single half-twist this is a simple
unknot, but for p half-twists it is a ðp; 2Þ torus knot (p odd) or link
(p even). To see this, note that the boundary of a p-twisted strip
(p odd) lives on a torus whose major radius is that of the strip
and whose minor radius is half the strip width. The curve the
boundary draws on this torus goes round the meridional cycle p
times––once for each half-twist––while traversing the longitudi-
nal cycle twice, which is the definition of a ðp; 2Þ torus knot. The
story is the same for orientable strips with p even, except that
there are two components to the boundary and they form a link.
Can this structure, coming from the nature of the embedding,

be exploited to controllably produce knotted and linked dis-
clination loops in liquid crystals? Disclination lines that follow
the surface of such a multiply twisted Möbius strip will have the
same shape and properties as the colloid boundary, yielding
precisely constructed knots and links. Here we show that such
configurations can be stabilized in chiral nematics; examples for
doubly-, triply-, quadruply-, and quintuply twisted strips are
shown in Fig. 3. They produce the p= 2 Hopf link, the p= 3
trefoil knot, the p= 4 Solomon’s knot, and the p= 5 cinquefoil
knot, respectively. All these knots and links obey the topological
requirements set out in the previous section; the strips with an
even number of twists are topologically trivial and the strip is
entangled by an even number of disclinations, those with an odd
number of twists are nonorientable and so enclose an odd
number of disclinations.
The stabilization of these knotted structures is not just

a question of topology; energetics also comes into play. In this
regard, the chirality (inverse pitch) of the system has an impor-
tant role in the stability of these configurations. Indeed it is
generally true that chiral systems allow for more exotic structures
(4, 37). In the achiral nematic system, the knotted defects are
unstable and the liquid crystal assumes a ground-state configu-
ration consisting of p small disclination loops entangling the strip
along the contours where Sn ·n0 = 0, as predicted by [1]. A sim-
ilar configuration, with slightly twisted loops (Fig. 4), is also the
ground state in cholesterics––the knots are metastable––al-
though the difference in energies is small (of order 1–2%) and
decreases both with increasing chirality and knot complexity p.
The behavior with increasing p can be understood in terms of the
total length of disclination line, which scales as p for the isolated

loops and as
ffiffiffiffiffiffiffiffiffiffiffiffi
4+ p2

p
for the knots. If the chirality is increased

such that the pitch becomes smaller than the width of the colloid,
then the disclinations develop twists analogous to those around
spherical colloids (37, 48).
Like cholesterics, torus knots have a handedness––the ðp; 2Þ

and ðp; − 2Þ knots are mirror pairs––and it is not surprising to
find that the relative handedness influences the stability of the
textures. The handedness of the knot is set by the shape of the
colloid, and if this matches that of the cholesteric then knotted
textures are stable, otherwise the system tries to expel the reverse
twist in the configuration, resulting in an unstable knot.
The disclination lines themselves represent just a small portion

of the entire system. Their knottedness imprints a complex ori-
entational order on everything that is not the knot. Fig. 5A shows
a slice through the director field of a quintuply twisted Möbius
strip in a cell with fixed normal boundary conditions. To match
the boundary conditions of the cell, the knotted disclination is
accompanied by two hyperbolic hedgehogs, expanded into small
loops, above and below the strip. The disclination–colloid pair
has a constant profile that simply rotates uniformly as one moves
around the strip; qualitatively, this structure does not depend on p,
the number of half-twists. The cross-section through the colloid
has a profile reminiscent of a double-twist cylinder (50), split apart
by the colloid into two separate + 1=2 twist disclinations.
These configurations bear a striking similarity to the recently

discovered “toron” textures (4). Torons come in several flavors,
but the ones that concern us have two hyperbolic defects above
and below a double-twist torus; that is, a double-twist cylinder,
the building block of blue phases (50), bent around such that it
forms a torus. Like the knots of Fig. 3, these textures are stabi-
lized in thin cells of chiral nematics, with uniform alignment at
large distances. More than a superficial similarity, the knotted
field configurations we present here can be thought of as the
result of expanding the central part of a toron locally into two
+ 1=2 twisted defects, which then rotate to form knots. The
whole configuration is then stabilized by the colloid; indeed, if
the colloid is artificially removed from the simulation after

Fig. 4. Comparison of configurations for a quintuply twisted strip. (A)
Ground-state configuration consisting of five small disclinations loops at the
locations predicted by [1]. They have a slightly twisted profile, caused by
both the twisting of the strip and the chiral nature of the system. (B) A ð5; 2Þ
torus knot entangling the strip, with two hyperbolic hedgehogs nucleated
above and below. The energy difference between these configurations
is ∼1.2%.

Fig. 5. Field structure. (A) Director field profile of a ð5; 2Þ torus knot and the
two accompanying hyperbolic hedgehogs, opened up into small rings, above
and below the strip, with disclinations bound to the colloid’s surface. Local
disclination–colloid profile is largely constant up to a rotation as one moves
around the strip. Although this profile is for a p= 5 configuration, qualita-
tively the director field does not change as one varies p. The far-field di-
rector is fixed to be vertical on the boundary of the cell. (B) Pontryagin–
Thom surface (13) for the trefoil knot–colloid pair. The surface is constructed
by considering all points where the director field is perpendicular to the far
field. The surface is then colored with the remaining RP1 degree of freedom
(Inset). Defects, disclination line, and two accompanying hedgehogs are
shown in black. The color winding around the hedgehogs establishes them
as unit charge defects. The surface can be patched by removing the
hedgehogs, and allowing the surface to pass through the colloid. One then
obtains a Seifert surface for the knot, composed of two disks (top and
bottom) connected by three (generally p) twisted bands. It is readily verified
that this surface has genus 1 [generally ðp− 1Þ=2, for p odd], the genus of the
trefoil knot. Although there is also a color winding around the disclination,
this is a fourfold winding, giving the disclination even (equivalent to zero)
hedgehog charge, as required.
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equilibration, the configuration collapses into a toron. This
connection may provide a potential route for the production of
these textures using Laguerre–Gaussian polarizing beams.
A more quantitative investigation of the texture can be made

through use of the Pontryagin–Thom (PT) construction (13),
allowing us to examine the full topology of the field structure and
even perform rudimentary “experimental knot theory;” we can
use the texture around the knot to compute the knot genus,
a classical knot invariant (51). The PT construction involves
drawing the surfaces on which the director field is perpendicular
to a given direction: such a surface is shown in Fig. 5B. Surfaces
constructed this way must end either on topological defects or, as
in our case, colloids. For a knotted disclination, this PT con-
struction then yields a Seifert surface for the knot, and it is
a classic result that the minimal genus over all possible Seifert
surfaces is a knot invariant for the given knot (52). To obtain
a proper Seifert surface, the PT surface must be continued
through the colloid and the points corresponding to the hedge-
hogs filled in. (Alternatively, because the hedgehogs are actually
small loops in the simulations, an equivalent procedure is to take
those loops as additional boundaries of a Seifert surface for the
link consisting of the torus knot and two unlinked unknots. The
genus of this Seifert surface is the same as that of the other one.)
Since our disclinations are torus knots, they have genus ðp− 1Þ=2
for p odd and ðp− 2Þ=2 for p even (52). Whereas, in principle, the
genus of the PT surfaces is only bounded from below by this
number, in the simulations presented here the limit is always
reached, and we may read off the correct genus.
In conclusion, we have demonstrated the design and construc-

tion of elegant knotted and linked disclinations in liquid crystals,
exploiting natural embeddings of twisted strips and a complete
classification of the topological implications of homeotropic col-
loids. These knotted disclinations impose a complex structure on
the director field, allowing knot invariants to be computed from
the texture and facilitating the full introduction of knot theory into
experimental soft matter systems. The configurations themselves
are intimately related to the recently discovered toron textures,

suggesting a route for experimental realization. Future work will
further explore the value of knot theory in understanding the
subtleties of knotted fields and their potential for novel devices.

Materials and Methods
To simulate the twisted strip colloids we use the standard Landau–de Gennes
Q-tensor formalism. The liquid crystal order parameter is taken to be
a traceless, symmetric tensor field QðrÞ. The free energy of the system F is
then given as

F =
Z
Ω

�
A0ð1− γ=3Þ

2
  tr

�
Q2�−A0γ

3
  tr

�
Q3�+A0γ

4

�
tr
�
Q2��2

    +
L
2
  tr

�
ð∇×Q+ 2q0QÞ2

��
d3r

 +
Z
S

W
2
  tr

��
Q−Q0�2�d2r:

[2]

The domain Ω is the volume of the liquid crystal, and S is the surface of the
colloid. The constant A0 defines the bulk energy scale of the material and γ
represents an effective temperature. L, the elastic constant, controls elastic
distortions in the director field. q0 is the chirality of the liquid crystal and is
equal to 2π=P, where P is the cholesteric pitch. q0 > 0 denotes a right-handed
material and the pitch was set to be of the order of the colloid diameter,
although the configurations were found to be stable at higher chiralities.
Finally, W controls the strength of the anchoring on the colloid surface, with
the preferred orientation given by Q0. The free energy is minimized by
evolving the Q tensor according to Landau–Ginzburg relaxational dynamics.
These equations are then solved using finite-difference methods on a cubic
mesh of size 250× 250× 250 or 260×260×150 grid points. Simulation param-
eters ðA0 = 0:16;    L= 0:03;    γ= 3:2;    W = 0:2Þ were chosen to match typical
values for a cholesteric liquid crystal with pitch comparable to the colloid radius
(varied between 1 and 2 times this) and strong surface anchoring.
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