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Recently, it has been demonstrated that DNA methylation, a co-
valent modification of DNA that can regulate gene expression, is
modified as a function of age. However, the biological and clinical
significance of this age-associated epigenetic drift is unclear. To
shed light on the potential biological significance, we here adopt
a systems approach and study the genes undergoing age-associ-
ated changes in DNA methylation in the context of a protein
interaction network, focusing on their topological properties. In
contrast to what has been observed for other age-related gene
classes, including longevity- and disease-associated genes, as well
as genes undergoing age-associated changes in gene expression,
we here demonstrate that age-associated epigenetic drift occurs
preferentially in genes that occupy peripheral network positions
of exceptionally low connectivity. In addition, we show that these
genes synergize topologically with disease and longevity genes,
forming unexpectedly large network communities. Thus, these
results point toward a potentially distinct mechanistic and bi-
ological role of DNA methylation in dictating the complex aging
and disease phenotypes.
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Aging is a complex process controlled by both environmental
and genetic factors (1). Most work in the genetic field has

focused on studying genes that are able to modulate the aging
process in model organisms including yeast, nematodes, or fruit
flies (e.g., ref. 2). In some instances, single gene mutants have
been observed to increase maximum life span by as much as 40%
(3). Other studies have focused on identifying genes that are
associated with longevity in humans—that is, genes observed to
have a higher allele frequency in centenarians (4–6). However,
such human longevity-associated genes (LAGs) seem to be very
rare, and although a few have been confirmed in independent
studies (2, 3), their existence remains controversial. More re-
cently, epigenetic changes associated with human longevity have
also been documented (7).
Age modulators and LAGs have also been studied in a systems

context. Several previous studies have analyzed LAGs and age-
related disease proteins by mapping them onto protein in-
teraction networks (PINs) (3, 8–14). For instance, Budovsky
et al. (3) studied the network formed by protein–protein inter-
actions of 211 human orthologs of longevity genes in different
species. Another more recent study (15) used a network-based
approach to attempt to elucidate the role of age-related genes in
connecting genetic diseases and found that LAGs and disease
genes occupy central positions in the network with high con-
nectivity and interconnectivity.
Other efforts have focused on identifying molecular genomic

features that change with age (16–19). Several genome-wide
(and hence less biased) approaches using microarrays have tried
to identify transcriptomic changes that correlate with age (20–
25). Although these studies report individual genes and pathways
that undergo age-associated changes in expression (20–26),
consistency of age-associated gene expression changes across
tissues and studies appears to be weak (23). Several more recent
studies have reported age-associated molecular signatures at the
copy number (27) and DNA methylation (DNAm) levels (28–

32). Although much of the DNAm age-associated changes ap-
pear to be tissue specific, there is also evidence of age-associated
DNAm signatures that are largely tissue independent (31). In-
deed, a meta-analysis of age-associated DNAm changes in human
tissue, focusing primarily on blood and brain tissue, concluded that
many age-associated changes are common to both tissue types
(33). Moreover, in contrast to gene expression and copy number,
consistency of age-associated DNAm signatures has been high,
and for instance, it has been possible to build remarkably accurate
DNAm-based predictors of age (34–36).
Although one study has explored age-associated gene expres-

sion changes in the context of a model interactome (37), no study
appears to have yet studied the network topological features of
age-associated DNAm changes in the human interactome. As
shown by many studies (29–32), age-associated DNAm changes
do not happen randomly across the genome. For instance, although
most of the genome undergoes age-associated hypomethylation,
promoters of high CpG density upstream of developmental genes
undergo preferential hypermethylation with age (29–32). More
recently, we have also demonstrated that age-associated DNAm
changes target specific molecular pathways important in stem-cell
differentiation (38).
The purpose of this study is to investigate the topological

properties of genes showing age-associated changes in DNAm in
the context of a PIN. In particular, we wanted to determine if
epigenetic drift happens randomly in the network or not. Initially
we focus on those DNAm changes localizing to gene promoter
regions, as there is a wealth of datasets available with this in-
formation, but later we also consider other genomic regions. For
brevity, we shall refer to genes with age-associated methylation
changes in their promoters as “GAMPs.” We also ask how these
GAMPs interact, in the context of the PIN, with other age-
related classes of genes, including LAGs (the “longevity” class),
genes whose expression (“GeneExpr”) and/or copy number levels
(“CopyNum”) change with age, and disease-related genes from the
Online Mendelian Inheritance in Man (OMIM) database. As we
shall see, our results demonstrate that GAMPs occupy preferen-
tially peripheral network positions, yet form extensive subnetworks
when combined with other age-related gene classes.

Results
GAMPs Define a Topologically Distinct Class of Age-Related Genes of
Low Connectivity and Centrality. Given the epigenetic nature of
GAMPs, we asked if GAMPs differ from other age-related gene
classes in terms of their topological properties in the context of
a comprehensive and highly curated human PIN (Materials and
Methods). To this end, we collected Illumina 27k (39) DNAm
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datasets encompassing many different studies and tissue types
(SI Appendix, Table S1). Age distributions of the samples in each
study varied significantly, allowing us to assess the impact of
these age differences on our findings (SI Appendix, Fig. S1).
In each dataset, we used linear regressions to derive a list of
GAMPs and subsequently mapped these onto our PIN (Materials
and Methods). We focused first on whole blood, as most avail-
able datasets are for this tissue, thus allowing reproducibility
of findings to be assessed. We observed across two independent
cohorts of healthy individuals (ALSc and SZc datasets) that the
average number of interaction partners (i.e., the connectivity or
degree) of GAMPs was significantly lower compared with
genes not showing age-associated changes in DNAm (Fig.
1A). In fact, the median connectivity of GAMPs was only
around five, compared with a median connectivity of eight
for genes not identified as GAMPs (combined Fisher test
P= 2× 10−11). These results were validated in a third whole
blood set (labeled UKOPS), in which approximately half of
the blood samples were taken from women with ovarian
cancer (OvC) (pretreatment cases) (Fig. 1A). For this set, we
verified that GAMP selection was not influenced by disease
status and was only improved by pooling the data, thus
benefiting from increased power (SI Appendix, Fig. S2). That
disease status has no impact was only expected, as whole blood
tissue is causally unrelated to OvC. Nevertheless, to further
confirm that the relative low connectivity of GAMPs is in-
dependent of host disease status, we analyzed two additional
independent whole blood datasets (SZ and T1D) where the
blood samples were taken from schizophrenics (SZ dataset) and
type 1 diabetics (T1D set). In these sets too, GAMPs exhibited
a significantly lower connectivity (Fig. 1A). Next, to determine
tissue specificity, we asked if the result would validate in other
normal tissue types. Strikingly, GAMPs exhibited lower con-
nectivity across another six independent cohorts profiling other
normal tissue types, including four studies profiling brain tissue
from different anatomical locations (cerebellum, CRBLM;
frontal cortex, FCTX; pons, PONS; temporal-cortex, TCTX),
a study profiling normal skin (SKIN), and another profiling
buccal cells (BUC) (Fig. 1A). Remarkably, the lower con-
nectivity of GAMPs was also observed in a dataset profiling
OvC tissue (Fig. 1A). We also verified that GAMP selection and
their low connectivity was robust to the assumption of homo-
scedasticity used in the linear regressions (SI Appendix, Fig. S3).
All these results therefore suggest that the low connectivity of

GAMPs is not only a tissue-independent phenomenon, but that
it is also independent of the underlying disease state. Most
importantly, and in stark contrast to GAMPs, all other age-
related gene classes exhibited greater connectivity than their
complements, with LAGs having a median of around 50 in-
teraction partners (Fig. 1B).
In addition to connectivity, we also considered a measure of

network centrality [defined here as log10ð1+ betweennessÞ] (40).
GAMPs tended to show an enrichment of more peripheral genes
with low centrality values between 1 and 2 (combined Fisher test
P= 2× 10−4; Fig. 1C and SI Appendix, Fig. S4). In contrast, lon-
gevity and gene-expression age-related classes showed significant
enrichment of highly central genes with centralities between 4
and 6 (Fig. 1D). However, centrality and degree are topological
measures that are normally highly correlated (indeed, in our PIN
the Spearman rank correlation was 0.8; SI Appendix, Fig. S5).
Hence, to address whether the observed low centrality of GAMPs
is independent of degree, we randomly sampled degree-matched
subsets of nodes in the network and computed z-statistics, testing
whether the observed GAMP centrality was higher than expected
(Fig. 1E). This showed that in 10 out of 12 datasets, the centrality
of GAMPs was greater than expected (P< 0:05 in four out of 12),
although interestingly this property was only consistently signif-
icant in the whole blood DNAm datasets. Thus, because in whole
blood age-associated changes could also reflect underlying changes
in blood cell type composition (41), it is plausible that this effect
is driven by such compositional changes. For the gene expression,
longevity, and disease gene classes, we observed significantly greater
degree-adjusted centralities than expected (P< 0:01 in all cases;
Fig. 1E). Thus, even when adjusted for degree, there is a striking
difference in the centrality values attained by GAMPs in com-
parison with other age-related gene classes. Finally, graphical
depiction of the GAMP locations on the human protein inter-
actome confirmed their lower connectivity and peripheral nature
in relation to, for example, LAGs (Fig. 2). All these results there-
fore clearly demonstrate that GAMPs define a topologically distinct
class of age-related genes.

GAMP Interactome Topology Is Independent of Transcription Factor
Enrichment. It is known that age-hypermethylated GAMPs are
strongly enriched for PolyComb Group Targets (PCGTs), which
are genes that play a key role in cellular differentiation (42),
in stark contrast to age-hypomethylated GAMPs, which are
not enriched for PCGTs (30–32). Many PCGTs encode for
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Fig. 1. GAMPs define a topologically distinct class.
(A) GAMPs identified in each of 12 distinct datasets
show lower than expected connectivity. P values
obtained from a one-sided Wilcoxon rank sum test
in comparison to non-GAMPs. Datasets and tissue
types are described in SI Appendix, Table S1. (B)
Other age-related and disease gene classes show
greater than expected connectivity. P values are
also from a one-sided Wilcoxon rank sum test against
genes not in the class. (C and D) Distribution of GAMPs
and other aging/disease gene class centralities across
all 12 datasets on the Infinium 27k platform. (E )
Barplot of z-statistics obtained by comparing median
centrality with the expected median centrality esti-
mated from degree-matched sampling.
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transcription factors (TFs) and these occupy peripheral positions
in the cellular signaling hierarchy. It follows that the unique
topological features exhibited by GAMPs could be driven by
the enrichment of TFs. We first checked that TF PCGTs were
indeed enriched among age-hypermethylated GAMPs (SI Ap-
pendix, Table S2), and also that TFs exhibited a significantly
lower connectivity and betweenness centrality than genes oc-
cupying more central positions in the signaling hierarchy, such
as, for example, kinases (SI Appendix, Fig. S6). To test if the
lower connectivity and betweenness of GAMPs is driven entirely
by the enrichment of TFs, we asked if non-TF GAMPs also
exhibited the same level of low connectivity and betweenness. As
expected, non-TF GAMPs generally exhibited a higher connec-
tivity than TF GAMPs, yet remarkably, still lower than genes not
identified as GAMPs (combined Fisher test P< 10−6; SI Ap-
pendix, Fig. S7). Centralities, however, were not different be-
tween non-TF GAMPs and non-GAMPs (SI Appendix, Fig. S7).
Interestingly, in only three of the 12 datasets did we observe
a lower connectivity and centrality for age-hypermethylated
GAMPs compared with age-hypomethylated ones (SI Appen-
dix, Fig. S8), further supporting the view that the topological
properties of GAMPs are not entirely driven by their TF en-
richment. Thus, it would appear that the low connectivity and
preferential localization to peripheral network positions seems to
be an intrinsic property of GAMPs and not necessarily driven
by their role in gene regulation.

Early and Late Life Epigenetic Drift Affects GAMP Interactome
Topology Equally. Given that the age distributions of the studies
varied significantly (SI Appendix, Fig. S1), it would appear that
the topological properties of GAMPs are independent of when
the molecular changes happen. To validate this further, we an-
alyzed a whole blood DNAm dataset from a pediatric population
with ages all in the range of 3–17 y (43) [pediatric whole blood
(WB-PED) cohort; SI Appendix, Table S1]. Remarkably, GAMPs

derived from this pediatric set also exhibited a much lower con-
nectivity than genes not identified as GAMPs (SI Appendix, Fig. S9).
We also wanted to assess the effect of epigenetic drift hap-

pening in early life on GAMP topology inferred in an older
population. We thus asked if the topological properties of GAMPs
derived from whole blood in a much older population (UKOPS,
ages ≥ 50) would in any way be affected by the topological changes
induced earlier. Specifically, we recomputed the connectivities
of the GAMPs from the UKOPS study after removing age-
hypermethylated GAMPs derived from the WB-PED set, thus
mimicking the potential effects of epigenetic silencing. Even after
removal of these nodes, GAMPs identified in later life still exhibited
a significantly lower connectivity (SI Appendix, Fig. S10).

Topological Synergy of GAMPs with Longevity and Disease Genes. To
put the distinct topological properties of GAMPs into context,
we next computed the overlap of GAMPs with the other age-
related gene classes. Without restricting to the PIN, we observed
that GAMPs, identified from a pooled meta-analysis (SI Appendix,
Table S3), were largely independent of the other gene classes,
exhibiting no significant overlaps (Fig. 3A, Fisher P> 0:05), de-
spite the fact that some of the absolute overlaps were substantial
(Fig. 3B). For instance, we observed 301 genes undergoing both
age-associated copy number and DNAm changes, yet this was
not statistically significant (Fig. 3B). Incidentally, we also verified
that this lack of significant overlap between GAMPs and genes
with age-related changes in copy number was independent of
whether the copy number changes were copy number neutral,
gains, or losses (Fisher P> 0:05 in all cases). In contrast, all other
age-related gene classes were found to significantly overlap be-
tween them (Fisher P< 0:05 in all cases). Upon restriction to the
PIN, all age-related gene classes, including GAMPs, were found
to significantly overlap with the class of disease-related genes,
albeit only marginally so for GAMPs (Fisher test P= 0:04 for
GAMPs, P< 0:001 for others; Fig. 3A).
Given that GAMPs do not overlap strongly with any of the

other are-related gene classes, even when restricted to the PIN,
it is of interest to study how closely GAMPs colocate with these
other gene classes in the context of the PIN. By mapping the
genes from two different classes onto the PIN, and then con-
structing the maximally connected subnetwork generated by con-
necting (neighboring) pairs, one can obtain a synergistic measure of
the topological impact of these different gene classes on the net-
work as a whole. Indeed, this approach was used in ref. 15 to show
that disease and longevity genes generate a larger connected com-
ponent than expected by chance. To see if a similar topological
impact synergy is observed for GAMPs with other age-related
gene classes, we computed the sizes of their induced maximally
connected components and compared them to those expected
by random chance (SI Appendix, Fig. 3C). The disease-longev-
ity–induced subnetwork pair was found to be the most sig-
nificant (P< 10−15; Fig. 3C), confirming the result in ref. 15.
However, many other gene class pairs induced larger subnet-
works than expected by chance, including disease–gene expres-
sion, longevity–gene expression, and even disease–copy number.
Interestingly, GAMPs also formed two highly significant pairs
ðP< 10−4Þ with disease and longevity genes (Fig. 3C), suggesting
that age-associated promoter methylation changes affect genes that
frequently interact with genes implicated in disease and longevity.

Validation in Illumina 450k Data. So far we have focused on
methylation changes within promoters, as this region is known
to be of regulatory significance. However, it is important to
study if results differ had we used other gene regions, which can
be assessed using data (36) generated with the more compre-
hensive Illumina 450k arrays (44). Consistent with our previous
result, genes with age-associated changes in the TSS200 region
[i.e., within 200 bp of the transcription start site (TSS)]
exhibited significantly lower connectivity than their complement.

LEGEND

GAMP (DNAmethylation) LAG (Longevity Genes) Other

Age-associated epigenetic drift mapped

onto the human interactome

Fig. 2. Peripheral nature of GAMPs. Graphical depiction of the human
protein interactome (8,969 nodes) with proteins/genes colored as indicated.
GAMP, gene undergoing age-associated methylation change in promoter;
LAG, longevity-associated gene; Other, all other genes not in these classes.
Observe how GAMPs locate preferentially in the network periphery com-
pared with LAGs, which occupy much more central positions.

14140 | www.pnas.org/cgi/doi/10.1073/pnas.1307242110 West et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1307242110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1307242110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1307242110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1307242110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1307242110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1307242110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1307242110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1307242110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1307242110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1307242110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1307242110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1307242110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1307242110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1307242110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1307242110/-/DCSupplemental/sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1307242110


Strikingly, out of all gene regions considered (TSS1500, TS200, 5′
UTR, first Exon, Gene Body, 3′UTR), it is age-associated probes in
TSS200 that mapped to genes with the lowest connectivity in the
PIN (Fig. 4A). Interestingly, genes implicated by age-associated
methylation changes in all other regions (referred to as “GAMs”)
also showed lower connectivity, except for genes selected due to
changes in the gene body and 3′UTR regions (Fig. 4A). Further-
more, selecting genes on the basis of significant age-associated
probes [Benjamini–Hochberg FDR ðfalse  discovery  rateÞ< 1%]
encompassing increasing numbers of different regions showed a
correspondingly lower connectivity (SI Appendix, Fig. S11). For
instance, there were 604 genes with at least five regions con-
taining at least one probe discovered to be age associated, and
these genes had a median connectivity of only five (compared
with eight for their complement). Due to variable numbers of
probes in the different genomic regions (between 0 and over 30
on the 450k platform), we checked for a potentially confounding
anticorrelation between the connectivity of each gene and the
number of probes annotated to its TSS200 region. We did not
observe any anticorrelation, but in fact only a very weak positive
correlation, which was nevertheless highly significant due to the
large numbers of genes involved [PCC (Pearson Correlation
Coefficient) = 0.06, P< 10−8, SI Appendix, Fig. S12]. Thus, be-
cause this correlation was positive, our observation that genes

with age-associated TSS200 probes exhibit a lower connectivity
cannot be driven by any intrinsic bias of the 450k array. Fi-
nally, we checked that the topological impact synergy ob-
served between GAMs and longevity genes as well as disease
genes was reproducible when considering methylation changes
in other regions (Fig. 4B). Confirming the previous results on
whole blood 27k data, we found that GAMs also showed greater
degree-adjusted centrality than expected by chance (Fig. 4C).

Discussion
We have here taken a systems approach, mapping GAMPs/
GAMs onto a comprehensive PIN and showing that they form
a distinct topological class of age-related genes, characterized by
a lower connectivity and centrality. It is striking that these to-
pological properties are in stark contrast to those of other age-
related gene classes including those modulating longevity, those
with age-associated expression or copy number changes, and fi-
nally also those implicated in disease. These other gene classes
typically have a much higher network connectivity and centrality
and, moreover, exhibit significantly higher degree-adjusted cen-
tralities than random, in contrast to GAMPs (or GAMs), where
degree-adjusted centralities were not consistently high and some-
what dependent on tissue type. Importantly, we also found that
GAMPs/GAMs formed significantly larger than expected network
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topological synergy, reflecting their frequency of interactions in the PIN, with −log10ðPÞ values shown. Inset shows the derived null distribution for the
GAMPs–longevity pair, with observed maximum connected component (MaxCC) size indicated by blue diamond.
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components when combined with longevity and disease gene
classes, indicating that they frequently interact with LAGs and
disease genes. This in turn suggests that GAMPs/GAMs, being
enriched for TFs, may play an important regulatory role in
modulating longevity and disease predisposition genes.
This last result is particularly intriguing in view of the fact that

GAMPs/GAMs do not exhibit any significant overlap with genes
showing age-associated changes in gene expression. Indeed, the
association between age-associated DNAm and gene expression
changes appears to be weak, with the effect only seen in large
sample set studies (36, 38) and possibly driven by changes in
underlying cell type composition (41). The lack of a convincing
association between age-associated DNAm changes and the cor-
responding ones at the transcriptional level thus raises questions
as to the biological significance of GAMPs/GAMs, yet many other
explanations for a missing genome-wide correlation exist. First,
gene expression data are notoriously noisy in comparison with
a more stable DNA-based signal such as DNAm. Therefore, it
might be difficult to detect the expected anticorrelation between
GAMPs and gene expression, thus requiring large sample sizes.
Second, GAMPs are enriched for TFs, and gene expression is a
poor surrogate for TF activity (see, for example, ref. 45). Thus,
focusing on the expression levels of TF targets might provide
better measures to correlate to DNAm. Finally, a weak genome-
wide correlation does not exclude GAMP/GAM-expression asso-
ciations at a small fraction of important loci (36, 38).
From an evolutionary viewpoint, the observed topological

properties of GAMPs are perhaps not too surprising given that it
has been shown (e.g., in yeast) that the most highly connected
and central proteins are the most phenotypically important and
critical for the survival of the organism (46). Many integral
housekeeping cellular functions are carried out by proteins oc-
cupying these highly central positions in the network (46). These
hubs not only are essential, but also modulate longevity, and may
also play a key role in promoting and regulating the observed
robustness of cells that are constantly being battered by intrinsic
and extrinsic perturbations (47, 48). It is therefore plausible that
gene promoters undergoing age-associated epigenetic drift should
be of typically lower degree, as otherwise induced changes in gene
expression at hubs could likely compromise essential cellular
functions. For instance, a number of recent studies have shown
that epigenetic drift is detectable even in pediatric populations
(i.e., well before the reproductive period) (43, 49) and that DNAm
patterns in newborns are correlated with maternal age (50), sug-
gesting that a fraction of the changes caused by epigenetic drift
may be heritable. Thus, if age-associated epigenetic drift kicks in
straight after birth—that is, well before the reproductive period—
it is then entirely plausible that natural selection would weed out
any age-associated epigenetic silencing of integral housekeeping
genes, including for instance those involved in embryogenesis. In
this sense, natural selection would allow age-associated epigenetic
drift to occur only at genes of low connectivity, as the overall
functional impact there would be minimal. According to this same
evolutionary model, the detrimental effects of age-associated epi-
genetic drift would eventually only surface after the reproductive
period ends (i.e., typically after the age of 50), ultimately leading
to functional changes that may underlie the age-associated de-
cline in stem cell function. Indeed, in addition to age-associated
accumulation of genetic mutations and telomere attrition (51),
epigenetic drift has recently been proposed as another key con-
tributing mechanism leading to the eventual decline of stem cell
function and to the aging phenotype (52). Thus, although epige-
netic drift has been proposed as a mechanism for fostering stem
cell plasticity and adaptability, ultimately it also leads to an un-
derlying fragility by driving the aging phenotype (52). This is
particularly interesting in light of recent evolutionary theories
suggesting that biological organisms, and multicellular species in
particular, represent states of highly optimized tolerance, providing
robustness to common perturbations, but simultaneously, and also

inevitably, implicating costly tradeoffs, such as an increase in
fragility (as exemplified by the aging phenotype) (48).
In mapping the age-associated epigenetic drift onto a human

protein interactome, we have implicitly assumed that the inter-
actome is tissue independent. Although this assumption is clearly
invalid, comprehensive tissue-specific interactomes are not yet
available. Furthermore, many of the reported age-associated
DNAm signatures are to a large extent tissue independent (see,
for example, refs. 31, 36), hence mapping them onto a common
interaction network seems like a sensible starting point. Although
results reported here were also largely independent of tissue type, it
will be interesting to conduct tissue-specific analyses once tissue-
specific interactomes become available. Dynamic age-associated
changes of the underlying interaction network may also affect some
of the conclusions of this study. For instance, it would be in-
teresting to investigate epigenetic drift in the context of a dynami-
cally changing network in which the time ordering of the epigenetic
changes is taken into account. With extensive longitudinal and
matched DNAm/gene expression data, it will be possible in future
studies to investigate the temporal impact of epigenetic drift. In the
absence of such extensive longitudinal data, we have taken a cross-
sectional approach using two very large whole blood cohorts,
separated by over 30 y, with one involving a pediatric population
(<17 y) and another involving donors over the age of 50. This
allowed us to assess if the topological properties of epigenetic drift
are age-dependent and whether epigenetic drift in early life influ-
ences the properties of GAMPs inferred from older age groups.
On both accounts, we have seen that the age group does not have
a major impact on the topological properties of GAMPs, nor does
the topological impact of early epigenetic changes affect the net-
work properties of GAMPs inferred from much older populations.
In summary, our data suggest a model in which epigenetic drift

occurs preferentially in parts of the cellular network that are not
central to an organism’s (cell’s) survival. However, the observa-
tion that GAMPs are so strongly enriched for developmental and
bivalently marked genes means that epigenetic drift could even-
tually lead to epigenetic deregulation of a small number of key
TFs, thus modulating longevity, stem cell function, and disease
predisposition. Indeed, recent studies have already demonstrated
the potential of GAMPs to indicate the prospective risk of cancer
(31, 53, 54). Further elucidation of the biological and potential
clinical significance of the observed age-associated epigenetic drift
is warranted.

Materials and Methods
PIN.Weused a PIN of 8,969 nodes (unique Entrez identifiers, corresponding to
around 38% of the ∼23,300 genes in the human genome) and 120,141
documented interactions. It was built by incorporating interaction data from
the following sources: the Human Protein Interaction Database (55), the
National Cancer Institute Nature Pathway Interaction Database (pid.nci.nih.
gov), the Interactome (www.ebi.ac.uk/intact/), and the Molecular Interaction
Database (http://mint.bio.uniroma2.it/mint/). Protein interactions in this
network include physical stable interactions such as those defining protein
complexes, as well as transient interactions such as posttranslational mod-
ifications and enzymatic reactions found in signal transduction pathways,
including 20 highly curated immune and cancer signaling pathways from
NetPath (www.netpath.org) (56). We focused on nonredundant interactions,
only included nodes with an Entrez gene ID annotation, and focused on the
maximally connected component. All connectivity and centrality computa-
tions were performed using this interaction network using the iGraph
package available for the R environment. Each of the 27k datasets typically
mapped to around 7,500 nodes in the PIN.

GAMPs. For the 12 Illumina Infinium 27k datasets considered here, the
probe closest to the transcription start site provided by the manufacturer
annotation data was used as the estimate of methylation at the promoter.
For each dataset, age was regressed (under a homoscedastic error model)
against these promoter methylation estimates, including any potential tech-
nical confounding factors as covariates. A GAMP was defined to be a gene in
the top 200 genes ranked by P value with a Benjamini–Hochberg FDR of less
than 30%. The impact of using a heteroscedastic regression model (57) on

14142 | www.pnas.org/cgi/doi/10.1073/pnas.1307242110 West et al.

http://pid.nci.nih.gov
http://pid.nci.nih.gov
http://www.ebi.ac.uk/intact/
http://mint.bio.uniroma2.it/mint/
http://www.netpath.org
www.pnas.org/cgi/doi/10.1073/pnas.1307242110


GAMP selection and results was also considered. To generate a single list of
GAMPs, we pooled the GAMPs from the UKOPS, T1D, ALSc, SZc, BUC, SKIN,
and OvC datasets, resulting in 855 GAMPs, with 715 of these being repre-
sented on the PIN (SI Appendix, Table S3). In the Illumina Infinium 450k
dataset (36), linear regressions (adjusting for ethnicity) were performed for
each probe within each annotated region of each gene, and age-associated
sites were selected with a 1% FDR.

Longevity Genes. The longevity class of genes considered was taken from the
GenAge database build of August 2012. GenAge is part of the Human Aging
Genomics Resources (http://genomics.senescence.info) (58). The GenAge
database is collated from an extensive literature review. Each gene in
the database was selected based on its association with aging in a variety
of different model organisms, with priority to organisms evolutionarily

closer to humans. Upon restriction to the PIN used in the study, there were
245 distinct genes remaining of the 262 in the database.

Disease Genes. The disease class of genes were obtained from the OMIM
database (www.ncbi.nlm.nih.gov/omim) in February 2013 following
earlier work on networks of disease-related genes (59). Upon restriction
to the PIN, there were 1,907 disease genes remaining of the 2,961 in the
OMIM database.
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