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Probability reigns in biology, with randommolecular events dictating
the fate of individual organisms, and propelling populations of
species through evolution. In principle, the master probability
equation provides the most complete model of probabilistic behavior
in biomolecular networks. In practice, master equations describing
complex reaction networks have remained unsolved for over 70
years. This practical challenge is a reason why master equations, for
all their potential, have not inspired biological discovery. Herein, we
present a closure scheme that solves the master probability equation
of networks of chemical or biochemical reactions. We cast the master
equation in terms of ordinary differential equations that describe the
time evolution of probability distribution moments. We postulate
that a finite number of moments capture all of the necessary
information, and compute the probability distribution and higher-
order moments by maximizing the information entropy of the
system. An accurate order closure is selected, and the dynamic
evolution of molecular populations is simulated. Comparison with
kinetic Monte Carlo simulations, which merely sample the probability
distribution, demonstrates this closure scheme is accurate for several
small reaction networks. The importance of this result notwithstand-
ing, a most striking finding is that the steady state of stochastic re-
action networks can now be readily computed in a single-step
calculation, without the need to simulate the evolution of the prob-
ability distribution in time.

stochastic models | information theory | entropy maximization |
statistical mechanics

The fabric of all things living is discrete and noisy, individual
molecules in perpetual random motion. However, humans, in

our effort to understand and manipulate the biological cosmos,
have historically perceived and modeled nature as large collec-
tions of molecules with behaviors not far from an expected av-
erage. Mathematical models, founded on such determinism, may
be excellent approximations of reality when the number of
molecules is very large, approaching the limit of an infinitely
sized molecular population (1–5). Of course, the size of bio-
molecular systems is far from infinite. And we know that the
behavior of a few molecules fluctuating from the average in
unexpected ways may forever seal the fate of a living organism. It
has thus been commonly recognized that models of small,
evolving molecular populations better account for the noisy,
probabilistic nature of outcomes (6–8).
The most complete model of stochastically evolving molec-

ular populations is one based on the master probability equa-
tion (9). The “master” in the name reflects the all-encompassing
nature of an equation that purports to govern all possible out-
comes for all time. Because of its ambitious character, the
master equation has remained unsolved for all but the simplest
of molecular interaction networks, even though it is now over
seven decades since the first master equations were set up for
chemical systems (10, 11). Herein we present a numerical so-
lution to master equations of small chemical or biochemical
reaction networks.
We first explain why efforts to solve the master equation have

been thwarted to date, and define master equations briefly. In
general, for a system of N molecular species, the state of the sys-
tem is described by an N-dimensional vector X = ½X1;X2; . . . ;XN �,
where Xs is the number of molecules of species s. The master

equation governs the evolution of the probability, PðX ; tÞ, that the
system is at state X at time t:
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This is a probability conservation equation, where T
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X
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�
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the transition propensity from any possible state X ′ to state X
per unit time. In a network of chemical or biochemical reactions,
the transition probabilities are defined by the reaction-rate laws
as a set of Poisson-distributed reaction propensities; these simply
dictate how many reaction events take place per unit time.
The reason analytical solutions to the chemical master equa-

tion remain elusive becomes clear when the master equation is
recast in equivalent terms of probability moments: the proba-
bility distribution average, the variance, and so on:

∂ μ
∂t

=A μ +A′μ′; [2]

where μ is the vector of moments up to order M, and A is the
matrix describing the linear portion of the moment equations.
On the right, μ′ is the vector of higher-order moments, and the
corresponding matrix A′. Generating the matrices in Eq. 2 can be
performed either analytically (12, 13) or numerically (14). For
linear systems with only zeroth or first-order reactions, A′ is
empty. For other systems, A′ is not empty and Eq. 2 becomes
infinitely dimensional, and thus intractable. Note that Eq. 2
assumes reaction networks are comprised of only polynomial
reaction-rate laws, as described in ref. 14.
To use Eq. 2, a closure scheme must be defined. A closure

scheme approximates the infinite set of moment equations with
a finite one that accepts a solution. Typically, a closure scheme is
an approximation:

μ′=F
�
μ
�
; [3]

where F is a function that uses the lower-order moments to approx-
imate the higher-order moments. There have been numerous
attempts to define F, either by assuming an underlying distribution
(12, 15, 16) or through numerical approximation (17–19). However,
closure schemes thus far exhibit limitedaccuracyanduncertainutility.
An alternative approach of modeling stochastically evolving

molecular populations is based on the numerical sampling of the
probability distribution. Gillespie developed the stochastic sim-
ulation algorithm (SSA) in the 1970s. This is a kinetic Monte
Carlo method that generates ensembles of stochastic trajectories
in state space (20). Although this algorithm and the numerous

Author contributions: P.S. and Y.N.K. designed research; P.S. performed research; P.S.
analyzed data; and P.S. and Y.N.K. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.
1To whom correspondence should be addressed. E-mail: yiannis@cems.umn.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1306481110/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1306481110 PNAS | August 27, 2013 | vol. 110 | no. 35 | 14261–14265

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

mailto:yiannis@cems.umn.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1306481110/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1306481110/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1306481110


improvements have found ample use by an ever-widening com-
munity (21, 22), this approach becomes cumbersome when re-
action rates span multiple time scales. Furthermore, this approach
does not facilitate important analysis methods, such as steady-state
and stability analysis, or perturbation and bifurcation analysis,
which are useful in the study of evolving molecular systems.
Herein we present a closure scheme that is accurate and may

be implemented on reaction networks with reaction rates of
higher order than one. The proposed method affords the de-
termination of how reaction networks evolve in time, when away
from the thermodynamic limit—that is, when the molecular
population size is infinite—offering an alternative to kinetic
Monte Carlo sampling methods. Perhaps more importantly, this
formulation facilitates the calculation of steady-state probability
distributions of reaction networks without resorting to dynamic
simulations. As such, it may facilitate the type of analysis of dynamic
or steady states that is either impossible or impractical using ki-
netic Monte Carlo techniques. It should be noted that the present
incarnation of the method necessitates the determination of
probabilities at all relevant states in the state space and thus
scales poorly as the reachable state space expands.

Zero-Information Closure Scheme
For the sake of brevity, we limit the discussion in this section to
one-dimensional state spaces. In particular, for a single random
variable that can attain a discrete set of values, ðx1; x2; . . .Þ, each
with probability PðxiÞ, the information entropy is defined as (23):

H = −
X
i

PðxiÞlnPðxiÞ: [4]

We conjecture that a finite number of probability moments may
capture all of the information needed to precisely construct the
probability distribution. In consequence, we maximize the informa-
tion entropy under the constraints of the firstMmoment definitions:
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; [5]

where λj is the Lagrange multiplier of the jth moment constraint.
These are readily computed with appropriate root-finding nu-
merical methods, such as the simple Newton–Raphson method
we present in the SI Appendix, section S1.
Trivially, the final form for the maximum-entropy probability

distribution is (24):

PHðxÞ= exp
�
−λ0 − λ1x−⋯− λMxM

�
: [6]

Now the ðM + 1Þ–th order moment can be computed from the
maximum entropy distribution:�

xM + 1	
H =

X
i

xM+1
i PHðxiÞ: [7]

Eqs. 2 are now closed and can be integrated to evolve the prob-
ability moments by a time step Δt. Given an initial condition

for the value of the probability moments, the system may be
propagated in time. With newly calculated moments up to
order M, the information entropy is maximized again, gener-
ating new values for the Lagrange multipliers, and so on.
It is important to note that, in a separate calculation without

simulations in time, the steady state of reaction networks can be
computed by determining the most likely distribution moments
that lie in the null space of the augmented matrix ½AjA′�. This
means that the steady-state moments are found so that they
maximize the information entropy as well as satisfy:

0 =A μ +A′μ′: [8]

We note that in this calculation there is no need to provide an
initial condition for the probability distribution in state space.
Because only a single optimization step is used this method is far
more efficient than traditional Monte Carlo approaches.
The algorithm that couples the optimization with the ODE

solver, and the algorithm for determining steady-state probability
distributions are detailed in the SI Appendix, sections S2 and S3.

Models
To illustrate the utility of the closure scheme (henceforth called
ZI closure) in generating both dynamic trajectories and steady-
state results, we investigate three models, described in Table 1.
Model 1 represents a simple reversible dimerization reaction
network with a second-order reaction. There is a single in-
dependent component, A, as conservation arguments can be used
to eliminate B. Model 2 represents a Michaelis–Menten reaction
network (25). There are two independent components, the sub-
strate S and the enzyme E. Model 3 represents the Schlögl model
(26), a four-reaction network that can produce bimodal dis-
tributions. There is a single free component, X, and two reser-
voirs, A and B, assumed constant. It may be noted that the values
for A and B are incorporated into the first and third reaction-rate
constants whenever specified. All systems are considered iso-
thermal, well mixed, inside a volume 10−15 L, a typical size for
common bacteria. In all cases the initial conditions in Table 1
define the initial probability distributions as Kronecker delta
functions. For example, for model 1, PðA; t= 0Þ= δA;10.Compar-
isons of dynamic and steady-state results are made between the
ZI-closure method and the widely used SSA improvement pre-
scribed by Gibson and Bruck (21).
Although it is understood that the chosen models are simple,

the presence of second- and higher-order reactions necessitates
moment closure (i.e., matrix A′ is not empty). Here, we use these
models to show that the proposed closure scheme meets three
important goals. First, the method remains accurate regardless of
the separation of time scales in the reaction rates. Second, the
method remains valid for systems with multiple degrees of freedom.
Third, the method is accurately implemented for higher-order
closures (e.g., 12th-order closure is successfully implemented for
the Schlögl model).

Results and Discussion
The time trajectory is shown in Fig. 1A for the average and the
variance (Inset) of the number of A molecules in model 1, as

Table 1. Model description for comparison of ZI closure to SSA

Model Reversible dimerization Michaelis–Menten Schlögl

Reactions 2A ����!k1 B S+ E ����!k1 S : E 2X +A ����!k1 3X
B ����!k2 2A S : E ����!k2 S+E 3X ����!k2 2X +A

S : E ����!k3 P +E B ����!k3 X
P ����!k4 S X ����!k4 B

Degrees of freedom A S, E X
Initial condition A0 = 10 S0 = 10; E0 =10 X0 = 15
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calculated with ZI closure. The results are also shown for the
stochastic simulation algorithm, as improved by Gibson and
Bruck (21) and implemented in Hy3S, an open-license software
package for simulating stochastic reaction networks (22). In all
comparisons the results are shown for 106 SSA trajectories, un-
less otherwise stated.
Four distinct dynamic trajectories are shown for different

equilibrium constant values spanning four orders of magnitude.
The comparison is favorable between the ZI-closure method and
the SSA. It is interesting to find that although at the extremes of
equilibrium constant K values, second-order closure is adequate,
the match becomes relatively poor when k1 is equal to k2 (SI
Appendix, Fig. S1). Despite the simplicity of model 1, fourth-
order closure is necessary for accurate results across all studied
kinetic values. This presents a major advantage of ZI closure
over previous closure schemes, most all of which cannot be as-
sumed to remain accurate as closure order is increased to an
arbitrarily high order.
We note that the ZI-closure scheme is not as computationally

efficient as the SSA is for simulating the dynamic evolution of
reaction networks. This drawback is due to the computation-
ally taxing optimization step present at each time step. There
may be benefits in using the ZI-closure method for stiff re-
action networks, but exploring these is beyond the scope of the
present manuscript.
The steady state of model 1 is shown in Fig. 1B across seven

orders of magnitude for the kinetic constant (10−3 to 103). Again,
fourth-order closure accurately describes the mean and variance
for all constant values (SI Appendix, Fig. S2). Steady-state results
are produced quickly, because only a single optimization step is
needed. For demonstration purposes, we calculated 10,000
steady states varying the equilibrium constant value. Simply put,
this is implausibly many points for SSA to compute. As such,
these results suggest a use of ZI closure in accurately and effi-
ciently performing steady-state and sensitivity analysis of sto-
chastic reaction systems, important topics that have only seen
slow progress in the past.
We also tested the ZI-closure scheme for the Michaelis–Menten

model. In Fig. 2, the evolving average and variance for molecules
S and E are shown for a range of kinetic constants. Additional

results are provided in the SI Appendix for kinetic constants
across three orders of magnitude (SI Appendix, Fig. S3).
Steady-state results for the Michaelis–Menten model are pre-

sented in Fig. 3 for a wide range of the four kinetic parameters
over multiple orders of magnitude. Evidently, the ZI-closure
steady-state optimization algorithm is applicable to multicom-
ponent systems. Again, the steady-state results were produced
relatively quickly compared with the SSA. The Michaelis–Menten
results in particular demonstrate that this type of optimization
may be used efficiently to perform sensitivity analysis. The slopes
of the trajectories are equivalent to sensitivities of the mean and
variance of the steady-state distribution to the four kinetic con-
stants. Here again we observe that although second-order ZI
closure is for the most part adequate, it diverges slightly in several
cases. In all cases fourth-order ZI closure is accurate (SI Ap-
pendix, Fig. S4).
Fig. 4A shows the time trajectories for the Schlögl model with

kinetic constants chosen to result in extreme bimodality (Fig. 4B,
Inset). This complex network was chosen because many moments
are necessary to accurately describe the system evolution. The
results clearly demonstrate how ZI-closure can accurately cap-
ture even complex distributions. Fig. 4A shows 6th-, 8th-, 10th-,
and 12th-order ZI closure compared with results of one million
SSA trajectories. It is demonstrated that 12th-order closure is
necessary to accurately match the mean of the SSA trajectories.
These results show that the ZI-closure scheme is able to achieve
accuracy even when high-order closure is necessary. SI Appendix,
Fig. S5 provides additional time trajectory data.
Fig. 4B shows the probability distributions through time for

both 12th-order ZI closure and the SSA. The distributions
computed with ZI closure match the actual SSA distributions
remarkably well throughout time. These results provide a most
convincing argument for ZI closure as a powerful closure
scheme. Indeed, the bimodal distribution of the Schlögl model is
particularly challenging to simulate. SI Appendix, Fig. S6 shows

Fig. 1. Dynamic trajectory and steady-state results for reversible nonlinear
dimerization. (A) Evolution of the average and variance (Inset) of number of
A molecules using fourth-order ZI closure. Different symbols represent var-
ious values of equilibrium constant K = k2/k1. The forward reaction rate is
constant at k1 = 1 (1/molecules-s). The initial distribution for the trajectory
results is a Kronecker-delta function, P0 = δA;10. Solid lines are from fourth-
order ZI closure and circles are results from 100,000 SSA trajectories. Colors
refer to dissociation constants with orange (K = 10), yellow (K = 1), green
(K = 0.1), and blue (K = 0.01). (B) Steady-state results for a range of K values
using fourth-order ZI closure (line), compared with SSA results (squares). The
10,000 k2 values were modeled ranging from 10−3 to 103 (1/s) [k1 = 1 (1/
molecules-s) SSA results for 20 k2 values, each with 100,000 trajectories. The
variance results are shown in the Inset.

Fig. 2. Michaelis–Menten trajectory results. For the Michaelis–Menten
model, 27 combinations of free parameters were simulated. Shown here are
the average number of species E and species S (plots A and B, respectively),
and the variance of species E and species S (plots C and D, respectively) for
five of these combinations. Results from ZI closure in solid lines and from SSA
as circles. Colors refer to different kinetic rates with gray ([k2, k3, k4] = [1, 10,
0.1] 1/s); orange ([k2, k3, k4] = [10, 0.1, 1] 1/s); yellow ([k2, k3, k4] = [0.1, 10, 1]
1/s); green ([k2, k3, k4] = [10, 1, 0.1] 1/s); and blue ([k2, k3, k4] = [10, 1, 1] 1/s).
The initial distribution is a Kronecker-delta function, P0 = δS;10 · δE;10.
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steady-state probability distributions using lower-order closure,
illustrating the poor fit of lower-order closures.
Steady-state results are presented in Fig. 5 for the Schlögl model

over a wide range of values for the four kinetic constants. Only the
12th-order closure is shown for the mean and variance results
compared with SSA results. A quantitative sensitivity analysis is
now possible, investigating the impact of kinetic constants on the
behavior of the network. The steady-state optimization method
renders a thorough analysis feasible, where none was previously
available. Sampling the probability distribution with SSA quickly
becomes untenable because of the combinatorial explosion of

necessary trajectories. (Additional lower-order closure data are
provided in SI Appendix, Fig. S7).
For all of the appeal of the ZI-closure scheme, drawbacks exist.

First, in its present form, the algorithm tends to be less efficient in
producing trajectories through time than SSA. This is because
optimization, the complexity of which scales with the state-space
size, is needed in every time step. Second, the number of moment
equations scales as ðN +MÞ choose M, although ODE or sto-
chastic differential equation models for chemical networks scale
with the number of components, N. This challenge inherently
limits all moment closure schemes, and it likely limits the utility to
relatively small networks until large-scale algorithms are de-
veloped. Finally, ZI closure, in its present form, faces numerical
implementation challenges, in particular when delta functions best
describe the probability distributions. At this limit the λ parameters
diverge to infinity, although, in principle, starting from a multivari-
ate Gaussian distribution addresses this drawback.

Conclusions
Since the days of Newton and Leibnitz, mathematical models
have been at the heart of physical and engineering sciences.
Founded on universally accepted physicochemical laws, these
models capture the essential aspects of systems, phenomena,
and processes, all in a way fit for analysis, explanation, un-
derstanding, and then for design, engineering, optimization,
and control.
There are many reasons why mathematical models are not

presently at the heart of biological sciences. To name a few: we are
still discovering the parts that comprise living organisms; there are
very many of these components; the kinetic parameters and ther-
modynamic strength of interactions are not known, or at least not
known in all relevant contexts; there are environmental, exogenous
dependencies that dictate biological behaviors; there are evolu-
tionary, historical links that determine the nature of biosystems.
They all impose significant epistemological hurdles, let alone the
practical ones involved in reliable model development.
Another important challenge facing scientists is related to

capturing random molecular events that determine all too fre-
quently the fate of a living organism. It has been argued that
probabilistic fluctuations are a defining feature of biomolecular
systems, conferring necessary elasticity under environmental
stresses. Living organisms can then explore a distribution of
states with finite probability. As a result, stochastic outcomes

Fig. 3. Steady-state results for Michaelis–Menten model. The steady-state
results for a wide range of kinetic parameter values [centered around k1 =
1 (1/molecules-s), k2 = 1 (1/s), k3 = 1 (1/s), and k4 = 1 (1/s)] for the Michaelis–
Menten model (S0 = 10; E0 = 10). (A) Both the mean substrate (S, red) and
enzyme (E, blue) count are shown for fourth-order ZI closure (solid lines)
and compared with SSA simulations (squares) with one million trajecto-
ries. (B–D) Identical conditions as in A except for k2, k3, and k4, re-
spectively. Note that as each parameter is ranged in A–D the rest are held
constant. Insets show variances for S (line for ZI closure, circle for SSA), and
E (line for ZI closure, square for SSA).

Fig. 4. Schlögl model trajectory results and steady-state distribution. The ZI-closure trajectory results for the Schlögl model [k1 · A = 0.15 (1/molecules-s), k2 =
0.0015 (1/molecules2-s), k3 · B = 20 (molecules/s), and k4 = 3.5 (1/s)]. The initial distribution is a Kronecker-delta function, P0 = δX;25. (A) The mean output of X
through time; for 6th-order ZI closure (dotted line), 8th-order ZI closure (dot–dash line), 10th-order ZI closure (dashed line), and 12th-order ZI closure (solid
line). The trajectories are compared with one million SSA trajectories (circles). Inset shows corresponding variance results. (B) To demonstrate how this method
replicates the actual underlying distribution found using 12th-order ZI closure (lines) is plotted with the SSA-simulated distribution (circles). Time flows from
red to blue, demonstrating good reproduction of the actual underlying distribution throughout time. Inset compares the steady-state 12th-order ZI closure
(line) to the steady-state SSA distribution (circles).
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become a double-edged sword: they equip a population of
organisms with adaptation potential under evolutionary pres-
sures, but they may also doom an individual organism.
The modeling framework for capturing probabilistic outcomes in

evolving molecular populations has been cast for over seven dec-
ades with the work of Delbrück and McQuarrie on chemical master
equations. However, a solution has been elusive thus far, when
there are second- or higher-order reactions. It is inconceivable

to describe biomolecular systems without the presence of inter-
acting molecular partners. In consequence, master equations
have not inspired biological discovery.
Here we presented the ZI closure scheme for master proba-

bility equations that govern the evolution of small molecular
populations reacting with reaction rates of order higher than one.
We demonstrate progress in three main areas. First, ZI closure
works on single or multicomponent reaction networks. Second,
ZI closure is applicable across a wide range of kinetic parameters
in simple models. Third, ZI closure can be applied for high-order
closure with commensurate accuracy gains.
ZI closure represents a closure scheme that renders the moment

viewpoint a viable alternative to kinetic Monte Carlo methods for
stochastic chemical simulation. Although beyond the scope of the
current study, more efficient algorithms with improved or guar-
anteed convergence can be developed. ZI closure may then sup-
plant the SSA for stochastic chemical simulations, especially for
small reaction networks.
Importantly, ZI closure represents a unique method for de-

termining steady-state distributions without having to simulate
reaction networks through time. ZI closure requires only a single
optimization step to determine steady-state distributions. This is
significantly more efficient than kinetic Monte Carlo simulations.
As such, ZI closure facilitates the use of many well-defined de-
terministic analysis tools previously considered impractical for
stochastic systems. Even in its present form the method can be
used to investigate eigenvalue problems, to determine more ac-
curate bifurcation diagrams for small systems, and quickly ana-
lyze small networks.
We believe these results to be of special importance with

utility in the biological sciences. For example, with a microscopic
definition of irreversible processes, a wide range of experimental
observations of biomolecular interactions may be mathematically
conceptualized. As a result, general principles and laws that
govern biological phenomena may ultimately be established.
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Fig. 5. Steady-state Schlögl model results. Sensitivity analysis where the
four kinetic constants are varied around the values used in the trajectory
simulation such that the entirety of the bimodal region is represented. (A)
The mean steady-state output of X was simulated for 450 k1 · A values be-
tween 0.13 and 0.175 (1/molecules-s) using a 12th-order ZI closure (line), and
compared with 28 points simulated using an SSA (squares). (B) Results for
200 k2 values between 0.001 and 0.002 (1/molecules2-s) using a 12th-order ZI
closure (line), compared with 25 points simulated using an SSA (squares). (C)
Results for 250 k3 · B values between 10 and 35 (molecules/s) using a 12th-
order ZI closure (line), compared with 25 points simulated using an SSA
(squares). (D) Results for 300 k4 values between 2 and 5 (1/s) using a 12th-
order ZI closure (line), compared with 30 points simulated using an SSA
(squares). Insets show variance comparisons.
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