
Neutral and weakly nonneutral sequence variants
may define individuality
Yana Bromberga,1, Peter C. Kahna, and Burkhard Rostb,c,d,e,f

aDepartment of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901; bBioinformatics-i12, Department of Informatics, Technical
University of Munich (TUM), 85748 Garching, Germany; cInstitute of Advanced Study (IAS), TUM, 85748 Garching, Germany; dCenter of Life and Food Sciences
Weihenstephan (WZW), TUM, 85354 Freising, Germany; eDepartment of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032;
and fNew York Consortium on Membrane Protein Structure (NYCOMPS), New York, NY 10027

Edited by Michael Levitt, Stanford University School of Medicine, Stanford, CA, and approved July 12, 2013 (received for review September 27, 2012)

Large-scale computational analyses of the growing wealth of
genome-variation data consistently tell two distinct stories. The
first is expected: coding variants reported in disease-related da-
tabases significantly alter the function of affected proteins. The
second is surprising: the genomes of healthy individuals appear to
carry many variants that are predicted to have some effect on
function. As long as the complete experimental analysis of all
human genome variants remains impossible, computational meth-
ods, such as PolyPhen, SNAP, and SIFT, might provide important
insights. These methods capture the effects of particular variants
very well and can highlight trends in populations of variants. Dis-
eases are, arguably, extreme phenotypic variations and are often
attributable to one or a few severely functionally disruptive var-
iants. Our findings suggest a genomic basis of the different non-
disease phenotypes. Prediction methods indicate that variants in
seemingly healthy individuals tend to be neutral or weakly disrup-
tive for protein molecular function. These variant effects are pre-
dicted to be largely either experimentally undetectable or are not
deemed significant enough to be published. This may suggest that
nondisease phenotypes arise through combinations of many var-
iants whose effects are weakly nonneutral (damaging or enhanc-
ing) to the molecular protein function but fall within the wild-type
range of overall physiological function.
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Scientists have been exploring the genetic basis of disease ever
since the first forays into genome sequencing (1) and before

(2). Nonsynonymous single-nucleotide polymorphisms (nsSNPs)
(here, nonsynonymous single-nucleotide variants of any pop-
ulation frequency), variants that alter the amino acid sequence,
have been associated with many diseases (3). Because experi-
mental findings are rarely reported to databases in a standard-
ized form, metaresources, such as the Protein Mutant Database
(PMD) (4) and Swiss-Prot/UniProt (5), manually curate pub-
lications to map variants to diseases. Natural language process-
ing automates this mapping (6).
However, the experimental data are inherently biased for

variants affecting function (nonneutral; enhancing or damaging
protein function) over those that do not (neutral; no functional
difference between wild type and mutant). First, scientifically, it
is more interesting to study variants that have an effect than
those that do not. Second, proving that a mutation has an effect
requires only one successful experiment. Proving that a mutation
is truly neutral requires ascertaining neutrality for all possible
functional assays. In fact, we are not aware of any experimental
study to date that has conducted such a comprehensive explora-
tion of neutrality for any significant set of variants. Computational
predictions, although more accurate than some high-throughput
experiments (7), are never as specific as careful, detailed experi-
ments. Importantly, however, predictions do not have the neu-
trality problem; computational evaluation of variant effects (8, 9)
is inexpensive and fast, allowing rapid testing of all possible point
mutations without preselection.

At least one study suggests that healthy people carry hundreds
of severely functionally damaging mutations, some of which are
disease-associated (10). If so, their genomes may also contain
many weakly damaging (nonneutral) variants (11), as predictions
also indicate. Do computational methods overpredict functional
changes, or is the “neutral range” of variant effects wider than we
expect? Enough sequencing data are now available to consider
these questions in detail.
We used our computational method screening for nonacceptable

polymorphisms (SNAP) (8) to trace patterns in available variant
sets (Table 1 and SI Methods). SNAP uses machine learning (neural
network) to predict functional effects of amino acid variants on
the basis of protein sequence features, such as conservation, pre-
dicted secondary structure, and solvent accessibility. Although
other methods, such as sorting intolerant from tolerant (SIFT)
(12) and polymorphism phenotyping (PolyPhen) (9), address
similar objectives, they either do not exhibit the same ability to
stratify predictions by effect severity and/or focus on different
goals. Nevertheless, we also investigated results from SIFT and
PolyPhen-2. We find that (i) known disease-causing variants are
almost always predicted to have severe impact on function and
(ii) most variants in the genomes of healthy individuals are likely
to be experimentally classified as neutral (identical to wild type)
given current state-of-the-art laboratory techniques. However,
we also predict that (iii) nearly half of the variants from healthy
individuals render the affected genes/proteins functionally different
from the “reference” genome “wild type.” This suggests a fairly
wide range of physiologically acceptable levels of protein func-
tion that is spanned by human diversity. Individuals might then
differ from one another via many functionally minor changes
within this “physiologically wild-type range.”

Results
Predictions Accurately Distinguish True Neutrals from Nonneutrals.
We extracted variants with experimentally established functional
effects from PMD (SI Methods and Table 1) and applied SNAP
to predict their functional effects. First, we established SNAP’s
accuracy limits for large datasets: not all variants with severe
effects are predicted with highest nonneutrality scores (+100;
Fig. 1A, “PMDsevere”; and Fig. 2, mean/median: 37/44) and not
all synonymous variants (Fig. 1A, “Synonymous”; Fig. 2, mean/
median: −47/−53) or variants between enzymes with identical
function [defined by Enzyme Commission (“EC”) numbers;
Fig. 1A, EC; and Fig. 2, mean/median: −49/−55] are predicted

Author contributions: Y.B. designed research; Y.B. performed research; Y.B. and B.R.
contributed new reagents/analytic tools; Y.B., P.C.K., and B.R. analyzed data; and Y.B.,
P.C.K., and B.R. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.
1To whom correspondence should be addressed. E-mail: yanab@rci.rutgers.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1216613110/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1216613110 PNAS | August 27, 2013 | vol. 110 | no. 35 | 14255–14260

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1216613110/-/DCSupplemental/pnas.201216613SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1216613110/-/DCSupplemental/pnas.201216613SI.pdf?targetid=nameddest=STXT
mailto:yanab@rci.rutgers.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1216613110/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1216613110/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1216613110


with the highest neutrality scores (−100). Because both SNAP
predictions and experimental annotations contain some error,
it is expected that these distributions do not exactly follow the
theoretical ideals (dashed lines at −100/+100 in Fig. 1A).
However, the distributions of effect and neutral predictions
were significantly different from each other (Tables S1 and
S2). These results might slightly over-estimate the power of
SNAP because PMDsevere and EC had been used for SNAP
training [i.e., SNAP might predict these variants better (closer
to −100 for EC and closer to +100 for PMDsevere) than if it
had never “seen” them before]. However, SNAP performance
differed only marginally between training and testing (8).
Hence, we do not expect this effect to be large. SNAP had
never been trained to recognize synonymous variants as neu-
tral. The Synonymous distribution in Fig. 1A (overlaying the
ECs) is, therefore, conservative.

Prediction Scores Represent Functional Severity of Mutations. Over
4,000 mutants in LacΙ repressor and over 2,000 in bacteriophage
T4 lysozyme (“L&L”) were experimentally evaluated for func-
tional impact (13, 14). The experimentally measured effect mag-
nitudes agreed with the computational predictions (Figs. 1B and 2;
“L&Lneutral” mean/median: −14/−14; “intermediate” mean/
median: 11/15; “severe” mean/median: 30/39). Similarly for
PMD, most variants experimentally shown to have an effect
mapped into the range of predicted effects (scores, >0; Fig. 1C),
with more severe mutations having higher (stronger) scores than
less severe ones (Figs. 1C and 2; PMDsevere mean/median: 37/44;
“PMDmoderate” mean/median: 28/35; and “PMDmild” mean/
median: 16/22). Thus, although SNAP was not trained to dif-
ferentiate levels of functional effect, the absolute value of the
prediction score correlated with the experimentally observed
severity of effect. If the experimental neutrals followed the same
pattern, their score distribution would be significantly shifted to the
left. The “PMDneutrals,” however, were split rather evenly into
positive/negative predictions (Figs. 1C and 2; mean/median: −1/1).

This result can be explained in two ways: (i) although SNAP suc-
ceeded for other neutral sets (EC, Synonymous, and L&Lneutral),
it could have failed for PMDneutral; or (ii) the PMDneutral set
might contain many incorrect annotations.

Other Methods Do Not Capture Effect Severity. The two tools most
commonly used to gauge functional effects of nsSNPs are SIFT
(12) and PolyPhen-2 (9). Because PolyPhen-2 was developed for
human proteins, we compared its performance to those of SNAP
and SIFT using only the human protein variants in the PMD/EC
set (“PMD/EC-Human”). Neither SIFT nor PolyPhen-2 was ex-
plicitly developed to reflect the effect severity. Still, the percentage
of these methods’ nonneutral predictions (at default thresholds;
SI Methods) varied with experimentally determined effect se-
verity (e.g., PMD/EC-Human severes were predicted nonneutral
more often than moderates and moderates more often than milds).
The SIFT and PolyPhen-2 scores, however, were not informative
of effect severity. In Fig. 1D, only the SNAP scores separate the
gray (experimentally determined milds) and black (severes) dis-
tributions throughout the score range (i.e., SNAP scores correlate
best with the observed effect severity).

Disease-Associated Mutations Have a Severe Effect on Function. The
prediction distribution for “SWISSPROTdisease” variants (Figs.
1E and 2; mean/median: 33/38) was very similar to that of PMD-
Human severes [Kolmogorov–Smirnov distance (KSD) = 0.04;
Fig. 1E and Table S2]. SNAP had not been trained on Swiss-Prot
variants, i.e., these data illustrate the method performance for
cases not seen before. In contrast, “SWISSPROTpolymorphism”

predictions (Figs. 1E and 2; mean/median: 8/10) overlapped those
for PMD-Human neutrals (Fig. 1E) and milds but distributed dif-
ferently from either of these (KSD = 0.11 and 0.13, respectively).
The SWISSPROTpolymorphisms have no established disease as-
sociation. Thus, it is expected that these contain many functionally
neutral and weakly nonneutral (nondisease) variants in agreement
with our predictions (Fig. 1C).

Table 1. Functional annotations of variant datasets

Set Total Subset Contents
Exp.
Pos

Exp.
Neg

SNAP
Pos

SNAP
Neg

Total in
subset

EC 26,787 # Single amino acid differences in enzymes of same function 0 26,787 1,344 25,443 26,787
Syn 9,228 # Variants of form XposX in all positions (pos) of PMDneutral 0 9,228 423 8,805 9,228
PMD 5,5704 Neut Experimentally annotated “no” effect on protein function 0 14,651 7,366 7,285 14,651

Mild Experimentally annotated “mild” functional effect 20,884 0 14,346 6,538 20,884
Mod Experimentally annotated “moderate” functional effect 4,393 0 3,501 892 4,393
Sev Experimentally annotated “severe” functional effect 15,776 0 13,582 2,194 15,776

PMD/EC-
Human

20,143 EC Subset of the ECs affecting human proteins 0 4,105 232 3,873 4,105
Neut Subset of the PMDneutrals affecting human proteins 0 3,271 1,623 1,648 3,271
Mild Subset of the PMDmilds affecting human proteins 4,886 0 3,353 1,533 4,886
Mod Subset of the PMDmoderates affecting human proteins 933 0 721 212 933
Sev Subset of the PMDseveres affecting human proteins 6,948 0 5,674 1,274 6,948

PMDstr 8,326 # Experimentally annotated structure/stability effect 4,087+* 1,139+* 5,557 2,769 8,326
L&L 6,056 Neut Experimentally annotated L&L “no” functional effect 0 3,644 1,211 2,433 3,644

Inter Experimentally annotated L&L “intermediate” functional effect 1,071 0 680 391 1,071
Sev Experimentally annotated L&L “severe” functional effect 1,341 0 1,100 241 1,341

SWISSPROT 65,654 Dis Annotated by Swiss-Prot as disease variants * * 23,337 3,672 27,009
Poly Annotated by Swiss-Prot as polymorphisms * * 23,395 15,250 38,645

1KG 384,062 # Variants from the 1000 Genomes Project * * 171,066 212,996 384,062
HapMap 4,076 # Variants from HapMap present with MAF > 0.1 in all

populations
* * 1,873 2,203 4,076

FullProt 498,706 Pos All SNP-possible single amino acid changes in 100 human
proteins

* * 113,810 98,392 212,202

Imp All multi-NP single amino acid changes in 100 human proteins * * 185,710 100,794 286,504

Dataset details are in SI Methods. In column headers: Exp, experimental functional effects; Neg, neutral variants; Pos, nonneutrals; SNAP, computational
predictions. In rows: subset names are shortened; # indicates the whole set.
*Variants for which no functional annotation is available.
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Discussion
PMDneutrals Are Enriched in Variants with Weak Functional Effects.
Experimental annotation accuracy is especially important for
large datasets, because misinterpreted results can lead to a waste
of follow-up time and resources (15). Independent studies assess-
ing annotations add important value. For example, we find that
nearly half [44% (1139 of 2615); Dataset S1] of the variants an-
notated in the PMD as functionally neutral and evaluated for
structural changes have been shown by experiments cited in the
PMD to affect protein structure/stability. Because structural dis-
turbance often changes function (16), these, and likely other,
annotations of functional neutrality require deeper exploration.
Moreover, the shape and position of the PMDneutral distribution
suggests a set of weakly disruptive variants, closer to the PMDmilds

(Fig. 1C) than to the true neutrals (“EC/Synonymous”; Fig. 1A and
Tables S1 and S2).
The difference between the prediction distributions for the

neutrals of the LacΙ repressor and bacteriophage T4 lysozyme set
(L&Lneutrals) and that of the PMD is particularly interesting
(Tables S1 and S2). The landscape of the L&L variants is com-
plete in that all residues have been probed in the same manner.
These homogeneous experimental annotations correspond to the
ideal neutrals (EC/Synonymous) somewhat better (Fig. 2 and
Tables S1 and S2). Additionally, the L&Lneutral and interme-
diate distributions are more distinct (KSD = 0.31) than the
PMDneutrals and milds (KSD = 0.20; Fig. 1 B and C). Numer-
ous different laboratories worked on PMDneutrals using differ-
ent protocols, introducing more noise in annotations. Predictions

Fig. 1. Distribution of variant functional effects. In A–E, the right side of the graph is nonneutral and the left side is neutral for all scoring functions. Curves
were generated using SynergySoftware KaleidaGraph v.4.1.3 smoothing via Stineman function (32). (A) Ideally, neutral substitutions should score −100 (vertical
gray dashed line) and nonneutrals +100 (vertical black dashed line). Neutral distributions are represented by the Synonymous (gray line) and the EC sets (thin
gray dashes). Nonneutrals are the experimental severe functional effect variants (PMDsevere, black line). (B) The L&L variants of severe effect (black line) score
higher than intermediates (black dashes). Both sets differ from neutrals (gray dashes). (C) PMDseveres (thick black line) are more right shifted thanmoderates (thin
black line), milds (black dots), or neutrals (gray line). (D) Differentiating the severity of functional effects (PMD/EC-Human set effects: gray, mild; black, severe) using
PolyPhen-2 (dashed lines) or SIFT (dotted lines) is impossible. However, higher SNAP scores (solid lines) mean more severe effects. Default binary prediction cutoffs
(black vertical lines) are PPc, SNc, and SIc (PolyPhen-2, SNAP, and SIFT, respectively). (E) SWISSPROTdisease variants (thin black line) are as nonneutral as the PMD-
Human severes (thick black line). SWISSPROTpolymorphisms (gray dotted line) are slightly more nonneutral than PMD-Human neutrals (solid gray line).
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for these show higher/more-nonneutral scores (Figs. 1C and 2).
Selective mutagenesis and subjective annotations of experimen-
tally observed function loss thus can miss real effects.
Mutation selection. PMD entries summarize literature reports of
mutations with experimentally measured functional significance.
Mutations chosen for experimental evaluation, however, are rarely
randomly selected. Rather, experimentalists generally suspect that
these are disease related [e.g., genome-wide association studies
(GWAS)], affect protein function (e.g., alanine scans for catalytic
sites), or have structural significance (e.g., targeted mutagenesis in
crystallography). Such hypothesis-driven results are enriched in
effect variants compared with neutrals (PMD nonneutral:neutral
ratio, ∼3:1; Table 1). In comprehensive mutagenesis studies, on
the other hand, there is an over fourfold increase in the proportion
of experimentally neutral mutations (L&L nonneutral:neutral
ratio, ∼0.7:1). Removing this selection bias shifts the distribution
for the L&Lneutrals to the left (more neutral) compared with
PMDneutrals (Fig. 1 B and C).
Choice of functional properties for experimental follow-up. The depth
and comparability of experimental annotations is problematic.
First, proteins may have many functional sites, and a given mu-
tation may affect only some of these. Second, most experiments
test only one particular reaction/functional assay. A variant
neutral to one may affect another. Third, the threshold of
identifying a variant as affecting function is not universal. A
twofold decrease in e.g., binding may be deemed critical in one
protein and accepted as within the wild-type range for another.
Given these issues, we expect many PMDneutral variants will
affect function.

Variants Affecting Structure Are Often Well Tolerated.Many disease-
causing mutations affect protein structure or stability (17). We
found that of the disease-associated variants that were experi-
mentally tested for structural impact, 75% (367 of 488 variants)
have such an effect (Dataset S1). However, excluding variants
that alter function in addition to affecting structure drastically
decreases this percentage. Of 348 disease-associated variants ex-
perimentally evaluated for effects on both function and structure
only, 20 (6%) are strictly structural, with no effect on function.

One example is a histidine-to-tyrosine mutation at residue 107 of
carbonic anhydrase 2, which is associated with mental retardation
(18). The mutation renders the protein too unstable to purify (19),
but the residual function of the mutant is reported to be un-
changed: “kcat/Km [and the] pKa for the hydration of CO2 are
identical to wild-type” (PMD entry A931076). More commonly,
the variant affects both function and structure (64%) or only
function with no effect on structure (27%). The finding that 11
(3%) of the disease-associated variants are experimentally anno-
tated to have no effect on structure or function may point to
a limited resolution of the experiments. Our numbers suggest that
structurally disruptive variants often cause disease via changes to
function. In other words, variants that disturb structure but leave
function intact infrequently cause disease.
We have shown previously (20) that protein structure/stability

change does not strictly correlate with function. Experimental
evidence confirms this (Dataset S1) [i.e., of the PMD mutants
with altered structure/stability and available function annota-
tions, 22% (1139 of 5226) are experimentally functionally neutral
and 41% have only mild effects (2158 of 5226)]. The predictions
of structurally disruptive variants in PMD (“PMDstr”) distribute
like those of weak effect variants [PMDmild; KSD = 0.03;
Welch’s t test P value (WT-P) = 0.085]. Disease-associated nsSNPs,
on the other hand, are enriched in variants predicted to severely
disrupt function (21). SWISSPROTdisease mutations (Fig. 1E)
distribute similarly to PMD-Human severes (KSD = 0.04). The
difference between the SWISSPROTdisease and PMDstr func-
tional effect distributions (KSD = 0.21; WT-P = 7.35 × 10−306)
confirms the idea that structurally significant mutations, unless
specifically disruptive of function, rarely cause disease.

Many Variants in Genomes of Healthy Individuals Predicted to Impact
Function. SWISSPROTpolymorphisms (Fig. 1E) are slightly more
functionally disruptive than PMD-Human neutrals (KSD = 0.11).
As polymorphism annotations are subjective, this needs additional

Fig. 2. Summarizing the dataset distributions. The box-and-whisker plots
and the distribution means capture the per-dataset trends. For each set,
upper/lower box bounds represent the corresponding quartiles with the
median shown as the crossbar. The “whiskers” of each box are the set’s
minimum/maximum values with the outliers (points >1.5 times the inter-
quartile distance away from the quartile bounds) not included in the cal-
culations. A star in each box indicates the set mean. Solid gray and white
boxes indicate functionally significant and neutral variants, respectively.
Vertical shading indicates functionally unannotated variants, expected to be
enriched for functional nonneutrals. Diagonal shading indicates that no
inference of functional effect can be made for the set.

Fig. 3. Distribution of human variant functional effects. A and B were
created as in Fig. 1. (A) Both 1KG (black dots) and HapMap (gray dots) dis-
tributions are similar to PMD-Human neutrals (gray line). (B) FullProt-Imp
(SNP impossible) mutations (black line) are, on average, more deleterious
than FullProt-SNP (SNP possible) ones (gray line). 1KG variants (black dots) do
not encompass the whole diversity of SNP possible mutants. This suggests
a physiologically acceptable range of nonidentical protein functionality (the
neutral range, black box): 0 < SNAP ≤ 23, where mildly nonneutral SNPs are
still retained by the human proteome.
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confirmation. We predicted the functional effects for variants
in apparently healthy individuals in both the 1000 Genomes
(“1KG”) (22) data and the subset of HapMap (Haplotype Map)
(23) variants (“HapMap”) that exist in all probed populations
(SI Methods) (24). As expected from their healthy human origin,
both sets contain few predicted severely nonneutral mutations.
However, other studies (10) and experimental findings (PMD)
identify at least some nonneutrals in the 1KG data. HapMap’s
distribution (Figs. 3A and 2; mean/median: −3/−3) is similar to
that of the PMD-Human neutrals (KSD = 0.07). That is, we find
that common SNPs (>10% frequency) are only a little more
likely (54%) to be functionally identical to the reference than
different from it (46%). The nonneutral common SNPs are ei-
ther weakly advantageous or weakly deleterious and subject to
balancing selection. The neutrals are maintained in a population
as long as no negative selection pressure is applied. These find-
ings are consistent with recent work that highlights the modest
contribution of common variants to complex traits (25). Com-
pared with HapMap, the 1KG distribution is very different in
shape and shifted more to the left (neutral; KSD = 0.89; mean/
median: −8/−5; Figs. 3A and 2). This difference is not surprising
because HapMap is a unique and small subset of all human var-
iants. As a nonneutral percentage of the total, however, the two sets
are similar. The rare variants of healthy individuals (bulk of 1KG)
are also only slightly more likely to be functionally identical to
reference (at SNAP score, 0; 55%) than different from it (45%).
This is also expected, because severely deleterious variants would
not be present in a healthy population, and advantageous variants
would spread to become common.
“Wild type” as applied to individual proteins refers to the

biochemical properties of a reference sequence, whereas “wild
type” at the level of the whole organism’s physiology refers
to a range of protein functionality consistent with the absence
of disease. We show that proteins translated from specific allele
sequences in the genomes of healthy individuals are often
functionally different from reference sequences. Currently, the
database reference protein activity is defined as wild type. If an
individual’s specific protein has a different activity, it is not wild
type. Our results thus describe the existence of a physiologically
wild-type range, a selectively neutral range of non–wild-type
protein activity that presents as a wild-type phenotype on the
whole-organism level.

Genes Under Selective Pressure Diversify but Are Predicted to Maintain
Functionality. The evolution of the genetic code is constrained by
a balance between robustness and changeability (26). That is,
protein-coding sequences balance the ability to tolerate and/or
potentially put to use genetic “spelling errors.” It is accepted that
the nucleotide-sequence similarity of the codons encoding bio-
chemically similar amino acids has evolved to allow for phenotypic
flexibility (27) (i.e., nucleotide variations have minimal effect on
the gene product). Our results confirm this view. The set of all
single amino acid substitutions possible via a SNP (“FullProt-
SNP”) is overall predicted as more functionally neutral than the
SNP-impossible set (“FullProt-Imp”) in the same proteins (Figs. 2
and 3B). Additionally, we show that the human proteome is ac-
tually intolerant of a significant portion of even the SNP-possible
variants. The distribution of the real nsSNPs in healthy human
genomes (1KG; Fig. 3B) is more neutral than either of the Full-
Prot sets (i.e., we do not observe a large fraction of the possible,
albeit functionally nonneutral, nsSNPs). This finding is in line with
the notion of variant purifying selection (28, 29).
A similar observation can be made using PolyPhen-2. “Poly-

Phen-natural” variants (all known human nsSNPs, SI Methods)
exhibit a roughly 5:3 ratio of neutral to nonneutral predictions,
even though some of these may be disease associated. On the
other hand, “PolyPhen-SNP”mutants (all SNP-possible mutations

in all human genes) display a 5:9 ratio instead: a threefold increase
in nonneutral SNPs compared with the naturally occurring set.
SNPs affecting functionally critical sites, such as catalytic res-

idues or binding hotspots, are rarely tolerated. Functionally es-
sential (and ultraconserved) proteins (e.g., ubiquitin or histones)
contribute to the lack of allowed variability. However, this rel-
atively small set of residues should be easily counter balanced in
length by the regions of low conservation present in almost every
protein. The neutral lean of the 1KG scores compared with the
FullProt-SNP distribution suggests that not all functional varia-
tion is acceptable on the organism level. The overlap between
the two distributions in the region of functional significance
(SNAP score, >0) constitutes the physiologically wild-type range
of protein activity, the territory in the protein functional land-
scape where activity is not equivalent to reference but not yet
different enough to cause whole-organism level changes. To es-
timate where this transition occurs, we observe that more SNPs
with scores >23 are excluded from the proteomes by selective
pressure than are acceptable (intersection of FullProt-SNP with
1KG; Fig. 3B). Over 70% (3705 of 5194) of PMD disease
mutants score ≥23. On the other hand, ∼79% of all human
variants (1KG) are predicted below this cutoff and, as such, are
in the physiologically wild-type range of protein function. The
variants predicted to affect function in any way (0 < score ≤ 23;
∼23% of 1KG) are still not entirely “safe” because their com-
binations may contribute to complex disease. In a sense, the
concept of wild type is, thus, redefined from the exact level of
functionality of “the most common allele in a population” to
a wild-type range of activity that is tolerated without significant
phenotypic changes on the organismal level.

Limitations and Potential Pitfalls of Large-Scale Computational Variant
Studies. Although, in terms of time and effort required for large-
scale analyses, computational predictions are preferential to de-
tailed experiments, the latter are significantly more accurate.
SNAP is ∼80% accurate in identifying binary (neutral/nonneutral)
variant functional effects. This incomplete resolution could affect
our conclusions. Here, we consider the potential problems of
our analysis.
First, we note that in prior work (8), we showed that SNAP is

as accurate for variants it has never seen as for those that it has
seen in training. Here, we demonstrate SNAP’s ability to identify
new neutral variants: the distribution of Synonymous predictions
is very similar to our best benchmark performance on the EC set
(KSD = 0.08). Second, we compare score distributions over large
variant sets. Arguably, because in a comparison, both distributions
are subject to the same errors, their difference more accurately
represents reality than either of the distributions alone (i.e., even
if SNAP was 95% accurate per prediction, the difference between
any two prediction distributions would likely remain the same).
Note that comparison-based inferences are subject to the statistical
testing limitations. For this reason, we used different statistical
methods to examine distribution differences (Tables S1 and S2).
Third, computational evidence suggests that experimental anno-
tation of neutrality is imprecise [i.e., the distribution of PMDneu-
trals is different from that of other neutrals (Tables S1 and S2) but
similar to that of FullProt-SNP (KSD = 0.06; WT-P = 0.44)]. Bi-
ologically, this concordance of the distributions of neutral variants
with that of all SNP-possible variants is unlikely. Furthermore, at
the SNAP-defined physiological wild-type cutoff of 23, over 72%
of the PMDneutrals are correctly identified. This suggests that ex-
perimental evaluations of variant neutrality often report effects on
the overall organism phenotype instead of on the specific protein
functions. Finally, although it is theoretically possible that SNAP
misannotates PMDneutrals more than other sets, there is no way
of confirming or refuting this without extensive experimental
follow up of thousands of variants.
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Functional Neutrality Is Nondiscreet. Here, three conclusions are
salient:

1) At least a fifth (21–45%, at the physiological wild-type cutoff
of 23 and the default neutral cutoff of 0, respectively) of the
variants in the genomes of healthy individuals render affected
proteins functionally different from reference genome proteins
(i.e., individuals differ from each other via an extensive collec-
tion of small changes). Assessing the “combinatorial load” of
these nonneutral variants in relevant pathways will likely con-
tribute to understanding the genetics of complex disease.

2) Common variants in healthy individuals, on average, affect
protein function as much as the rare SNPs. This is not surpris-
ing: to spread through the population common SNPs should
be either advantageous with respect to reference or selectively
neutral. An advantageous variant, by definition, significantly
affects function. Selectively neutral variants can be within the
physiologically wild-type range if they carry no (dis)advantage
to the organism as a whole, even if they are not neutral with
respect to the individual protein’s reference function. Nonneu-
tral rare variants, however, which have an effect well beyond
the physiologically wild-type range, are arguably infrequent in
healthy genomes. Rare variants are enriched in functional non-
neutrals compared with a neutral model of evolution (25). We
suggest that these are often of weak effect, may have entered
the population recently (30), and are, thus, “fuel for evolution.”
The fraction of common variant nonneutrals in healthy indi-
viduals (46% nonneutrals in HapMap) is at least as high as of
rare variants (45% nonneutrals in 1KG) because (i) selection
pressure causes advantageous variants to be fixed (become
common) quickly, (ii) neutrals and weak nonneutrals are
normally fixed at about the same rate via genetic drift (31), and
(iii) in the presence of an evolutionary bottleneck, weakly
nonneutral variants contribute to species fitness (chance of
survival) (30). In individuals affected by complex diseases,
which are often attributable to additive effects of many variants,
the fraction of nonneutral rare variants is likely higher than that
of nonneutral common variants (30).

3) Regardless of SNAP’s accuracy in neutral/nonneutral classi-
fication of mutations, the similarity of the 1KG, HapMap, and
PMDneutral distributions suggests that most nsSNPs in the
genome of a healthy individual would be deemed experimen-
tally neutral given current experimental methods. However, it
is likely that many of these mutations are actually weakly
nonneutral with respect to reference protein function. Al-
though indicative of a certain deficiency in experimental res-
olution, this finding is consistent with the level of observed
whole-organism tolerance to protein functional changes
within the physiologically wild-type range.

Conclusions
We show that healthy individuals differ by a large collection of
variants that are often invisible to current state-of-the-art “wet
lab” experimentation. The variants are within the organism-level
physiologically wild-type range even as they change specific protein
function. In nature, they are fuel for evolution. For humans, they
may be a key to development of personalized medicine. Complex
disease analysis of the future needs to account for both the lower-
than-expected sensitivity of the experimentalmethods to the effects
of polymorphisms and for the inherent variation of functionality in
the individual genomes.

Methods
Dataset extractions (Table 1, Table S3, and Dataset S1), comparison methods
(Tables S1 and S2), and prediction runs are described in SI Methods. Note
that the KSD is computed on discreet distributions in the presence of ties
and is, thus, approximate. It is used here solely for comparison of distribu-
tion-pair distances and does not indicate the statistical significance of dis-
tribution similarities (SI Methods).
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