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Abstract
A proper distance metric is fundamental in many computer vision and pattern recognition
applications such as classification, image retrieval, face recognition and so on. However, it is
usually not clear what metric is appropriate for specific applications, therefore it becomes more
reliable to learn a task oriented metric. Over the years, many metric learning approaches have been
reported in literature. A typical one is to learn a Mahalanobis distance which is parameterized by a
positive semidefinite (PSD) matrix M. An efficient method of estimating M is to treat M as a
linear combination of rank-one matrices that can be learned using a boosting type approach.
However, such approaches have two main drawbacks. First, the weight change across the training
samples maybe non-smooth. Second, the learned rank-one matrices might be redundant. In this
paper, we propose a doubly regularized metric learning algorithm, termed by DRMetric, which
imposes two regularizations on the conventional metric learning method. First, a regularization is
applied on the weight of the training examples, which prevents unstable change of the weights and
also prevents outlier examples from being weighed too much. Besides, a regularization is applied
on the rank-one matrices to make them independent. This greatly reduces the redundancy of the
rank-one matrices. We present experiments depicting the performance of the proposed method on
a variety of datasets for various applications.

1 Introduction
The choice of an appropriate distance or similarity measure over the input space is critical to
many computer vision and pattern recognition applications, including but not limited to
clustering and classification [1–3], image retrieval [4], shape detection [5], face recognition
[6–11], tracking [12]. There are many commonly used distance metrics, e.g. Euclidean
distance, L1-norm distance, χ2 distance, and Mahalanobis distance etc. However, it is
usually very hard to predict which distance measure is appropriate for a certain application
with specific inputs. Therefore, it is more apt to develop a task-dependent metric based on
the available knowledge of the inputs. It was shown [1, 3, 11] that a properly designed
distance metric, compared with the standard distances, can significantly improve the
performance for many applications.

There are a lot of metric learning algorithms in the literature. A good metric learning
algorithm should be able to learn a metric that can amplify informative dimensions (feature)
and squash non-informative dimensions. This is unlike Euclidean distance, which treats
every dimension equally and does not consider the correlation between them.

In most cases, metric learning algorithms are derived from the labeled training datasets, and
the goal of the algorithm is to learn a metric which can separate the instances of different
classes apart, and bring together the instances belonging to the same class. To be specific,
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the labeling of the inputs can be provided mainly in three ways. First, the input constraint is
(xi, yi) where xi ∈ ℝD is an instance and yi is its label. Second, the input constraint is ((xi,
xj),yij) where yij indicates whether xi and xj are “similar” or “dissimilar” [13]. An even
weaker representation often used in information retrieval [14] is the proximity relationship
over triplets (i, j, k), meaning that xi is closer to xj than to xk. Proximity relationships are the
most natural constraint for learning a metric, and are of the weakest representation because
proximity triplets can be derived from the other kinds of constraints, but not vice versa.

In this paper, we propose a doubly regularized metric learning algorithm, termed by
DRMetric. Our goal is to learn a Mahalanobis distance metric which tries to preserve the
proximity relationships over the input. Mahalanobis distance metric is parameterized by a
positive semidefinite (PSD) matrix [15, 16]1. It has been well studied and advantages were
shown over some other metrics such as multidimensional scaling (MDS) [17], ISOMAP
[18], and locally linear embedding (LLE) [19].

Several aspects of our DRMetric are novel. First, we use the total Kullbak-Leibler (tKL)
divergence [20] to regularize the evolution of the weights on the training triplets. tKL is a
recently proposed divergence which has been proved to be statistically robust [20]. The
regularization automatically ensures that the weight of the examples is upper bounded,
therefore, the weight can not be extremely large for outliers. Note that without
regularization, the weight of an outlier example will keep increasing, which may lead to
serious problems such as overfitting and inefficiency. Furthermore, for some noisy
examples, their weight may depict severe oscillations. This not only hampers the
convergence rate of the metric learning algorithm, but also leads to overfitting, and lowers
the accuracy. Second, we regularize the rank-one PSD matrices to minimize the dependence
between them. This regularization makes the rank-one matrices least correlated, and
therefore least redundant, which greatly decreases the number of rank-one matrices needed
and improves the efficiency.

The rest of the paper is organized as follows. In Section 2, we briefly review the metric
learning literature. In Section 3, we present the doubly regularized linear programming
metric learning algorithm, termed by DLMetric. In Section 4, we investigate DLMetric
empirically by evaluating our algorithm on a number of datasets for various applications.
We also compare our method with the state-of-the-art metric learning and other algorithms.
Finally, we conclude the paper in Section 5.

2 Literature review
A good task dependent metric has attracted extensive attention recently. The machine
learning community has done many researches to automatically learn a distance function
from available knowledge of the dataset [15, 21, 22, 13]. Most existing works assume the
metrics to be Mahalanobis distance, which are parameterized by PSD matrices.

Various techniques have been proposed to learn a PSD matrix from the dataset. Some
techniques force the negative eigenvalues in the learned symmetric matrix to be zero as in
[13]. Some others set the matrix to be the inverse of the covariance matrix of the centered
data points in small subsets of points with known relevant information [15]. In [22], the
matrix exponential gradient update was used which preserves symmetry and positive
definiteness due to the fact that the matrix exponential of a symmetric matrix is always an
SPD matrix. In [23], Iwasawa factorization was used to ensure the positive definiteness [23].

1Strictly speaking, this matrix should be symmetric positive definite (SPD) in order for it to be a metric. However, we relax the
requirement and allow two different instances to have zero distance.
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Most of these techniques are limited from a scalability or a computational complexity view
point.

More recently, some researchers [1, 14] adapted the boosting technique to metric learning.
This kind of metric learning is based on an important theorem that a PSD matrix with trace
one can always be represented as a convex combination of multiple rank-one PSD matrices.
This is a generalization of boosting [24] in the sense that the weak learner in these metric
learning algorithms is a rank-one matrix instead of a classifier. The main idea behind these
boosting-based metric learning algorithms is that at each iteration, they will learn a rank-one
matrix from the training examples that follow a distribution. The weighted rank-one matrix
is then added to the PSD matrix. This weight is typically related to the rank-one matrix's
ability to discriminate the examples from different classes. The higher the discriminatory
power, the larger the weight, and vise versa. After learning the rank-one matrix, the
distribution of the examples is updated. The examples are reweighted according to the rule
that misclassified examples tend to gain weight and correctly classified examples tend to
lose weight. Therefore, the rank-one matrices to be learned will be focused more on the
examples that were misclassified previously.

However, these methods are not statistically robust i.e., the learning process is sensitive to
noisy data and outliers [25, 26]. The reason is that the weight of noisy examples might
switch between severe increase and severe decrease frequently, which seriously slows down
the convergence of the learning process. Furthermore, the weight of outliers might keep
increasing, which largely affects the metric to be learned. To avoid these issues and inspired
by the regularized boosting [25, 26] techniques, we propose a regularized metric learning
algorithm, which regularizes the weight updating process involved in the training stage.
Furthermore, in order to reduce the redundancy of the learned rank-one matrices, we add
another regularization term to make the dependence between the learned rank-one matrices
as small as possible. In this way, we can use much fewer number of rank-one matrices (i.e.
much fewer number of iterations) to form the PSD matrix which parameterizes a suitable
metric. Experimental results illustrate that for a dataset of D dimensions, DRMetric is able
to learn a relatively good metric in D iterations.

3 Proposed method
Given a dataset X = {xi}, with xi ∈ ℝD, and its associated triplet set  = {(i, j, k)}, with (i, j,
k) meaning that xi is more similar to xj than to xk. Let N = | | denote the number of triplets in
. The goal is to learn a Mahalanobis distance which preserves the relationship in .

A Mahalanobis distance is parameterized by a PSD matrix M ∈ ℝD × D. The Mahalanobis
distance between xi ∈ X and xj ∈ X based on M is

(1)

To remove the scalability effect of the distance resulting from M, we require tr(M) = 1.
Since any trace-one PSD matrix can be decomposed as a convex combination of rank-one
trace-one PSD matrices, i.e.,

(2)

Liu and Vemuri Page 3

Comput Vis ECCV. Author manuscript; available in PMC 2013 September 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



To avoid notation clutter in later computations, we introduce a vector vn = [υnl], where υnl
corresponds to ul and the nth triplet (i, j, k), and is defined as

(3)

A potentially appropriate M should be able to maximize the soft margin defined in the
following linear programming,

(4)

where ζn is the slack variable, and α is a constant factor which penalizes the slack variables.

The Lagrangian dual problem of (4) is

(5)

where d, c, and q are non-negative regularizes. After some simple algebraic manipulation
we arrive at the dual problem of (4) given by,

(6)

3.1 Regularization on d
The regularization on d is very important because for the non-regularized metric learning
algorithm, the weight of the training examples might change very severely, i.e., the weight
of a training example might oscillate significantly when it is misclassified or correctly
classified by the weak learners (rank-one matrices) as shown in Fig. 1. This instability will
seriously affect the learning efficiency, accuracy, and also lead to overfitting. With
regularization, severe oscillations and instabilities can be prevented, which makes the
algorithm converge faster, i.e. need fewer number of rank-1 PSD matrices. Fig. 1 depicts
that, using regularization, the resulting weight change of the training data is stable.

To overcome the aforementioned instabilities, we add a regularization term to the update of
d in (6), i.e.,

(7)

where η is the regularization coefficient that balances the margin and the smoothness. η is
set to be a fixed number 2 as in [25] to make the number of iterations upper bounded by a
constant without hurting the accuracy. δ(d, d̂) is the tKL divergence [25, 27], and
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(8)

Note that the regularization term δ(d, d̂) ensures that the evolution of d is smooth.

Here, d ̂ can be chosen in different ways. In this paper, we set d̂ = d0, where d0 is the
initialized distribution, this means d should not be far away from the initialized distribution.
Since d0 is user defined, it is usually set according to the application problem and the data.
One tends to initialize larger weight on the examples with more importance, so we use δ(d,
d0) as the regularizer. Note that the dn is upper bounded by α as in (6), therefore the weight
of the noisy examples and outliers is prevented from being too large leading to possible
domination in the learning3.

To directly compute dt from (7) is complicated, instead, we will first find its Lagrangian and
use it to compute dt. To find the Lagrangian, we rewrite (7) into the following form

(9)

The Lagrangian Ψ of (9) is given by,

(10)

where, ωl, l = 1, ⋯, t, ξn, n = 1, ⋯,N and γ are non-negative regularizers. Using some
simple calculus and the KKT condition [28], we can simplify (10) and get the partial
Lagrangian

(11)

Now differentiating Ψ with respect to d, setting it to 0, and normalizing d, we get,

(12)

and Zt is the normalization parameter to make . Here if , then we manually

set .

2 , where N is the number of training samples, D is the dimension of each training sample, and ∊ is the error
tolerance of the margin between different classes based on the learned metric [25].
3To make such a d exist, we should require α ≥ 1/N. It was shown in [26] that α = 1/s, and s ∈ {1, ⋯, N} is a favorable choice.
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3.2 Regularization on u
We put two constraints on u. First, we want it to maximize the margin. Second, we require u
to be independent of the previously learned ul, l = 1, 2, ⋯, t, so that the learned {u} will not
be redundant. Therefore, the number of rank-one matrices needed to form a good metric is
reduced. The dependence between u and ul is measured by ║uT ul║2 ∈ [0, 1]. The larger
║uT ul║2 is, the more dependent they are. When ║uT ul║2 = 0, u and ul are independent.

The two constraints on u are described as

(13)

where λ is the regularization coefficient to penalize the dependence. (13) can be rewritten as

(14)

Let matrix , then ut+1 is
the eigenvector corresponding to the largest eigenvalue of At.

The weight vector w for the rank-one matrices should satisfy the linear programming
problem (4) which can be solved using column generation [29] or a gradient based method.

3.3 Building the Triplets

For each xi ∈ X, we first find the a instances  which are in the same category as xi but
are most different from xi. After that, we find the a nearest neighbors  in a different
category, then (i, j, k) will form a triplet. If the size of X is small, we will use a larger a,
otherwise, we will use a smaller a. Furthermore, if the number of triplets is very large, we
will randomly select 10 ∼ 50% of the triplets for training.

As a summary, the algorithm for the proposed DRMetric is presented in Algorithm 1. The
proof of the convergence is very similar to the proof from Schapire and Singer [30].

4 Experimental Results
The proposed algorithm is evaluated on a number of public domain datasets for a variety of
applications. We use the UCI machine learning repository [31] for classification, use the
COREL image dataset for content based image retrieval, and use the Labeled Faces in the
Wild (LFW) [32] dataset for face recognition. We compare our method with many state-of-
the-art metric learning and other techniques. The results show that our proposed metric
learning method is very promising for many applications.

Algorithm 1 Doubly Regularized Metric Learning

Input: Dataset X = {xi}, xi ∈ ℝD

Triplet set  = {(i, j, k) | xi is closer to xj than to xk}. N = | |, the number of triplets in .

Output: , ul ∈ ℝD, ║ul║ = 1, w ∈ Δt, t is the number of iterations.

Initialization: Initialize , the weight of the nth triplet, n = 1, ⋯, N, according to the importance, or set  by
default.
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for l = 1 to t do

Find the optimal ul according to (13);

Update the distribution d according to (12);

Update the weight w according to (4)

end for

Return .

4.1 Classification
The classification experiments are performed on the UCI machine learning repository [31],
which is a collection of datasets that have been extensively used for analyzing machine
learning techniques. The repository contains a large variety of datasets, including very noisy
datasets (e.g. the Optical Recognition of Handwritten Digits dataset, the wine dataset) as
well as relatively clean datasets, which is optimal for testing the robustness and accuracy of
classification algorithms. We selected 9 datasets from the UCI repository. The selected
datasets include noisy and clean datasets, cover small size to large size datasets in terms of
number of instances in the datasets, and range from low dimension to high dimension in
terms of number of attributes per instance of the datasets. The description of the selected
datasets is shown in Table 1.

We use 5-fold cross validation to evaluate the proposed algorithm. The regu-larization
parameters α, η and λ are determined during the training and validation stage, and they are
set to be the numbers which maximize the performance on the training dataset. The final
result is the average of the results obtained over the 5 runs. The proposed DRMetric is
compared with many other non-metric learning and metric learning algorithms, including
Euclidean distance, L1-norm distance, χ2 distance, BoostMetric [11], MatrixBoost [1],
ITML [16], and COP [13]. The code for metric learning methods is obtained directly from
the corresponding authors or downloaded from the authors' webpage. The classification
performance is measured based on neighbor accuracy curves. The neighbor accuracy
measures the percentage of correctly classified instances based on the kth (k = 1, 3, 5, 7, 9)
nearest neighbor. The average neighbor accuracy is shown in Fig. 2. The comparison depicts
that in general DRMetric yields higher classification accuracy.

We also evaluate the 3-nearest-neighbor voting classification accuracy on several UCI
datasets including the Glass Identification dataset, the Adult dataset, the Optical Recognition
of Handwritten Digits dataset, and the Wine dataset. The classification results are shown in
Table 2, which reflects that the proposed method outperforms the other methods.

Besides, for DRMetric, we examined the relationship between the classification accuracy
change and the number of iterations. The results are shown in Fig. 3, which implies that
when the number of iterations is less than D (the dimension of the dataset), the classification
accuracy increases at a higher rate. However, when the number of iterations is larger than D,
the classification accuracy improves very slowly. This means that, using our method, D
rank-one matrices can form a relatively high quality Mahalanobis distance.

4.2 Content based image retrieval
The task for image retrieval is that given one image in a category, find the images in the
same category. We use the COREL image database [33] to evaluate our method on content
based image retrieval. The database contains 3400 real-world images with 34 different
categories, and 100 images per category.
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Each image is represented as a 33 dimensional feature vector, which is a combination of low
level features including color features, edge features and texture features. For color features,
we first represent the images in the HSV color space, and then compute the mean, variance,
skewness of the HSV color to get a 9 dimensional feature vector. For edge features, the
Canny edge detector [34] is first applied to images to detect the edges, and the histogram for
edge direction was quantized into 9 bins of every 40 degrees, which resulted in 9 different
edge features. For texture features, we use the multi-resolution simultaneous autoregressive
(MASAR) model [35] to get 15 features. In total, there are 33 features for each image.

We use 10-fold cross validation to evaluate the proposed algorithm, i.e., 90% images are
used to learn the metric, and 10% images are used for evaluation. We use every image in the
test dataset as a query, if the retrieved image belongs to the same category as the query
image, the retrieval is correct. We measure the retrieval performance based on the neighbor
accuracy curves. Neighbor accuracy measures the percentage of correctly retrieved images
in the kth nearest neighbors of the query images (k = 1, ⋯, 40 in our experiments).

We compared our method to many algorithms, including Euclidean distance, L1-norm
distance, χ2 distance, BoostMetric [11], MatrixBoost [1], ITML [16], and COP [13]. The
retrieval results are shown in Fig. 4. The results illustrate that our proposed method achieves
a higher neighbor accuracy when using 1st ∼ 25th and 34th ∼ 40th nearest neighbors.
However, it's a little worse than MatrixBoost when using the 26th ∼ 33rd nearest neighbors.

We compare the computational time of BoostMetric [11], MatrixBoost [1], and DRMetric to
learn the distance metric on the COREL database. All algorithms are run on a laptop with
Intel(R) Core(TM)2 CPU L7500 @ 1.6GHz, 4GB memory, GNU Linux and MATLAB
(Version R2011a). The average CPU time taken to converge for our algorithm is 167.68s,
while BoostMetric takes 244.81s, and MatrixBoost takes 239.28s.

4.3 Face recognition
In this scenario, the goal for face recognition is to do pair matching: given two face images,
determine if these two images belong to the same person. We use the Labeled Faces in the
Wild (LFW) [32] dataset. This is a fairly difficult dataset for face recognition, because it has
a large range of the variation (varying pose: straight, left, right, up; expression: neutral,
happy, sad, angry; eyes: wearing glasses or not; clothes: wearing different clothes; size:
small, medium or large) seen in real life. It includes 13233 images of 5749 people collected
from news articles on the Internet. The number of images per person ranges from 1 to 530,
and 1680 people have two or more distinct images in the dataset. This is a popular dataset
which has been used by many researchers [6, 8, 36, 10, 37] to evaluate their face recognition
frameworks.

In this experiment, we have compared the proposed DRMetric to the state-of-the-art
methods for the task of face pair-matching problem. To ensure fairness, we used the same
features as used in the literature [6–11, 38]. Features of face images are extracted by
computing the 3-scale, 128-dimensional SIFT descriptors [39], centered on 9 points of facial
features extracted by a facial feature descriptor, as described in [7]. In this way, we get 3 ×
128 × 9 = 3456 features in total for each image. PCA is then performed on the feature
vectors to reduce the dimension to 400 (because the result in [11] showed that dimension
400 is a good compromise between performance and efficiency) for training. The triplets are
built according to Section 3.3. The number of generated triplets is 44794, out of which, we
use 20% (i.e. 8960) for training. We compared our method with LDML funneled [40],
Hybrid aligned [38], V1-like funneled [10], Simile [8], Attribute + Simile [8], Background
sample [41] Multiple LE + comp [6], and FrobMetric [11]. All these methods except
FrobMetric are more complicated than our method, because they either use additional
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information, hybrid descriptors or combination of classifiers. The performance is described
using an ROC curve 4 on which each point represents the average over the 10 runs of (false
positive rate, true positive rate) for a fixed distance threshold. The results from all other
techniques were taken from their latest published results. The comparison is shown in Fig. 5,
which depicts that our method is only slightly worse than the two leading techniques
(Attribute + Simile [8] and Background sample [41]) that are much more complicated.
Furthermore, our method is comparable to or better than other state-of-the-art techniques on
face recognition.

5 Conclusions
We proposed an efficient and robust doubly regularized metric learning algorithm
DRMetric. It has two regularization parts. First, we use tKL to regularize the update of the
weight of the training examples. This avoids instabilities in the weight change, and
consequently avoids overfitting and make it more robust to noisy data as well as outliers.
Second, we add a regularization to the rank-one matrices enforcing them to be as
independent as possible. In this way, the redundancy of the learned rank-one matrices as
well as the number of necessary rank-one matrices are significantly reduced, which leads to
higher efficiency. Furthermore, DRMetric is robust and capable of handling a variety of
datasets for different applications. Though the idea behind DRMetric seems simple, its
robustness and applicability can not be undervalued.
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Fig. 1.
Change in the weight of a training example in the Heart disease dataset from the UCI
repository, under metric learning without regularization and with regularization.
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Fig. 2.
The neighbor accuracy curves from different metrics on the Heart disease, Australian sign
and Blood transfusion service center datasets in the UCI repository.
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Fig. 3.
The change of classification accuracy with related to the number of iterations using
DRMetric on the Heart disease (left), Australian sign (middle), and Blood transfusion
service center (right) datasets. The black disk corresponds the classification accuracy when
the number of iterations equals to the number of attributes.
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Fig. 4.
Comparison of using different metric learning methods for content based image retrieval on
the COREL dataset.
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Fig. 5.
False positive (FP) rate versus true positive (TP) rate on face recognition using different
metric learning methods on the LFW dataset.
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Table 1

Description of the selected UCI datasets.

dataset # instances # attributes

Heart disease 303 74

Australian sign 6650 14

Blood transfusion service center 748 5

Artificial characters 6000 7

Glass identification dataset 214 10

Adult dataset 48842 14

Handwritten digits 5620 64

Wine dataset 178 13
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