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Abstract
Two-dimensional liquid chromatography (LC×LC) is quickly becoming an important technique
for the analysis of complex samples, owing largely to the relatively high peak capacities attainable
by this analytical technique. With the increase in the complexity of the sample comes a
corresponding increase in the complexity of the collected data. Thus the need for chemometric
methods capable of resolving and quantifying such data is ever more urgent in order to obtain the
maximum information available from the data. To this end, we have developed a chemometric
method that combines iterative key set factor analysis and multivariate curve resolution-alternating
least squares analysis with a spectral selectivity constraint that is shown to be capable of resolving
chromatographically rank deficient, non-multilinear data. (Spectrally rank deficient compounds
can only be quantified if the peaks having the same spectra are chromatographically resolved.)
Over 50 chromatographic peaks were found in a relatively small section of a LC×LC-diode array
data set of replicate urine samples (a four-way data set) using the developed method. The relative
concentrations for 34 of the 50 peaks were determined with % RSD values ranging from 0.09 % to
16 %.
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1. Introduction
Comprehensive two-dimensional liquid chromatography (LC×LC) is potentially a very
powerful separation technique for the quantitative analysis of multiple analytes in complex
mixtures due to the high peak capacities that can be achieved. In comprehensive LC×LC
methods, a sample is passed through two independent column systems such that all of the
effluent from the first dimension separation is sequentially introduced into the second
dimension separation system to achieve a separation [1,2]. A major drawback to the
practical implementation of LC×LC is the extended run times necessary to achieve the
desired increased peak capacities. Until recently, typical run times required for a single
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injection could be hours or even days [3]. However, considerable advancements in
instrument design by Stoll et al. [4] have resulted in a significant reduction in single
injection run times to as low as fifteen to thirty minutes. With the advantages of increased
resolving power directly related to the orthogonality of LC×LC separations and of reduced
run times currently achieved through the implementation of high temperatures on the second
column, comes the ability to analyze very complex biological samples in a more efficient
and effective manner.

Complex samples arising from genomic, proteomic and metabolomic studies are excellent
candidates for analysis by fast LC×LC, due to the demand in these fields for resolution of
hundreds or thousands of constituents with concentration ranges that can exceed nine or ten
orders of magnitude [2,5]. A wide range of sample types (including cell cultures, microbes,
body fluids and tissues, and plants) have been used in metabolomic studies which involve
the collection of quantitative data for the characterization of metabolites; i.e., low molecular
weight molecules [6,7]. Urine is replete in both endogenous and xenoboitic metabolites and
the highly responsive nature of human urine to metabolic stressors such as disease or
toxicity (a direct consequence of the body’s autonomic response to eliminate substances in
an attempt to maintain homeostasis) offers several overwhelming advantages [8,9]. Due to
this autonomic response, detection of the changes in the endogenous metabolites in urine has
the potential to increase our understanding of the mechanisms of disease and drug action;
and detection of the changes in the xenobiotic metabolites in urine has the potential to aid in
the discovery of biomarkers for drug efficacy and toxicity and of biomarkers for disease risk
[7,10,11]. LC and/or nuclear magnetic resonance (NMR) are techniques commonly
employed in metabolomic profiling of urine centered around the identification of just a few
known metabolites and/or the use of pattern recognition techniques applied to unidentified
signals [12]. Non-targeted, global profiling of metabolites in human urine has been
accomplished in recent studies using GS-MS [10,13,14].

Peak quantification is an important factor involved in metabolomic analysis. The ability to
accurately quantify small metabolites present in a sample is essential in the identification of
potential biomarkers in metabolomic studies where the biomarker signature is not the
presence of unique compounds, but is rather the presences of unique concentrations or
concentration ratios. While LC×LC is well reported and has been employed in the fields of
proteomics [15] and metabolomics [3], and for the separation of polymers [16] and organic
acids, [17] to date, there are only a few papers in the literature that broach the subject of
peak quantification of data collected from comprehensive LC×LC analysis. Thekkudan and
Rutan recently performed simulation experiments in which LC×LC chromatographic data
were simulated varying both first dimension retention time and peak widths. The accuracy
and precision of the determined simulated peak concentrations were evaluated by either
summing the areas of the second dimension chromatograms or by fitting the first dimension
peaks to Gaussian peak shapes [18] Peters et al. have developed an automated algorithm for
peak detection for two-dimensional chromatography that provides quantitative results for the
detected peaks [19]. Mondello et al. [20], Reichenbach et al. [21]and Marriott et al. [22]
have also proposed algorithms for quantitative analysis of LC×LC data. However, none of
these works have addressed the quantitative analysis of overlapped peaks, which is the focus
of the present work.

The comprehensive LC×LC-DAD (diode array detection) data used in this work were
determined to lack a quadrilinear structure; thus, we chose to employ multivariate curve
resolution (MCR) techniques in the data analysis to aid in the determination of the number
of spectral components and in the chemometric resolution of overlapped peaks. Due to areas
of the data where there is a loss of the linear relationship between absorbance and
concentration resulting from detector saturation, a section of the data where the detector was
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not saturated was chosen for chemometric analysis. In addition, due to the complexity and
size of the data section, the data were further divided into thirty-four subsections. The
subsequent steps involved rank determination (N = number of unique spectra) in the data
subsection to be analyzed, followed by curve resolution of that subsection using an in-house
MCR-alternating least squares (ALS) algorithm. Following curve resolution, relative peak
concentrations were ascertained by a manual baseline determination method, and the % RSD
values for the resolved peaks in replicate standard mixture samples and control urine
samples were determined.

2. Theory
In the simplest case, the data from a single chromatographic experiment (1D-LC-DAD data,
which gives rise to 2-way data) can be contained in a matrix X, which consists of
absorbance values as a function of elution time and wavelength, and can be represented as
follows:

(1)

where C is the chromatographic matrix, S is the spectral matrix and E is an error matrix
[23]. The columns of the data matrix X are absorbance measurements that vary with time
(chromatograms) and the rows are intensity measurements that vary with wavelength
(spectra). The columns of matrix C contain the chromatograms of the individual pure
components present in the sample represented by matrix X, while the columns of matrix S
contain the spectra of those components. In this work, the LC×LC-DAD data were collected
by the instrument as 2-way data for each separate 1st dimension injection as seen in Figure
1A in which all of the 2nd dimension injection chromatograms are sequenced end to end. We
can represent the data as either a two-way data matrix, X, with dimensions IJK×L (Figure
1A), or as a four-way data array with dimensions I×J×K×L (shown at one wavelength for
one sample in Figure 1B). Here, I is the number of data points in each 2nd dimension
chromatogram, J is the number of data points in each 1st dimension chromatogram, K is the
number of different samples that were analyzed and L is the number of points in each
spectrum.

2.1 Iterative Key Set Factor Analysis (IKSFA)
The IKSFA method was developed by Malinowski and is a preferred set selection method
that assumes the purest spectra in the data set are mutually more dissimilar than the mixture
spectra [24]. IKSFA is an iterative improvement over KSFA which seeks to find the
minimum number (N) of spectra (out of IJK total spectra) required to represent the entire
data set through the characterization of the most orthogonal spectra that typify the original
data matrix [25,26]. This approach is not restricted to the spectral information of the data
matrix; however, for simplicity the following discussion will focus only on the
determination of the key set of spectra, because this is the method we used in our analysis.
To determine the number of significant spectral factors (N) and to create a spectral initial
guess for the curve resolution step, IKSFA was applied to the two-way data matrix X. Keep
in mind that in our work, the columns of X are a combination of the first and second
dimension chromatograms and the sample injections (IJK) and the rows of X are the spectra
(L) as described above, refer to Figure 2 for a schematic representation of the unfolded data
and the data decomposition. IKSFA first decomposes the data using singular value
decomposition (SVD) such that

(2)
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where U and V matrices contain the left and right singular vectors, and the D matrix is
diagonal and represents the relative contribution of each principal component, i.e., the
singular values. The search for a key set of orthogonal spectra uses the matrix U, that
contains the left singular vectors. Each row vector, ur, of the matrix, U, is first normalized to
unit length

(3)

where ũr is the normalized row vector and the denominator is the norm of the row vector,
since only the directions (row vectors that are perpendicular) and not the magnitudes of the
row vectors are of interest in determining the most orthogonal rows. It is important to note
that this is row-wise normalization as opposed to column-wise normalization.

The first key row corresponds to the row whose ũ r,1 value has the largest absolute value and
we denote this row as ũ key1. This is a deviation from IKSFA as utilized by Schostack and
Malinowski [27] where the first key row contained the minimum of the ũ r,1 value. This
change was implemented due to the significance and uniqueness of the background spectra
known to exist in the data set. A determinant is found for this key row and each remaining
row, r, and the row with the maximum determinant

(4)

is the second key row, ũ key 2 This procedure is continued by adding a third row and finding
the row that gives the maximum 3 × 3 determinant, etc., until N key rows are identified. It is
at this point that iteration begins. The first key row, ũ key1 is replaced by the first row vector
ũ1. If the absolute value of the determinant for the new key set is greater than that of the
initial key set, the first row vector replaces the initial first key row; if the value is less than
that of the initial key set, the key set remains unchanged, and ũ key1 is then replaced with the
second row vector. This procedure is continued for the first key row for all r row vectors.
The same logic is followed for all key rows completeing one iteration cycle. Iteration
continues until no change in the key set occurs after the completion of one complete
iteration cycle [25,28]. The key rows of X, key1 through keyN, are then used as an initial
estimate for the MCR-ALS algorithm as follows.

(5)

2.2 Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS)
MCR-ALS is a multivariate curve fitting technique that enables the analyst to
mathematically separate chemical components in a data set by least squares optimization
using data structure and the implementation of mathematical constraints that have a
chemical significance [29]. These constraints can include nonnegativity, unimodality and
multilinearity, among others. Equation 1 can be rearranged to solve for either the
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chromatographic matrix C (equation 6) or the spectral matrix S (equation 7) where the data
matrix X is known. Either a spectral matrix estimate is used to solve for the
chromatographic matrix or a chromatographic initial estimate is used to solve for the
spectral matrix. The MCR-ALS algorithm then iterates between equations 6 and 7 to
minimize the error matrix until one of the two input iteration criteria is met; i.e., until the fit
error reaches a minimal improvement criterion or until a given maximum number of
iterations has occurred [30].

(6)

(7)

Our implementation of the MCR-ALS algorithm allows for the flexible implementation of
chemically valid constraints for carrying out mathematical resolution of the data set
reducing ambiguity in the model. In the present work, we employ two types of constraints –
nonnegativity and selectivity, which are described in more detail in the section 3.2. It is
important to note that we do NOT use a multilinearity constraint in the present work (aside
from the inherent bilinearity implied by the model given in eqn. (1)). This is due to the fact
that we have found the degree of retention time shifting from sample to sample which occurs
in both the first and second dimension chromatograms is significant enough to prevent the
validity of either the trilinearity or quadrilinearity constraint. Because we do not employ this
constraint, there is little to no sensitivity to retention time shifting or, just as importantly, to
peak shape distortions due to phase shifting in the 1st dimension sampling. However, the
lack of multilinearity does mean that a unique, correct result will not necessarily be
obtained. The use of the spectral selectivity and nonnegativity constraints will aid in
ameliorating this limitation.

The implementation of the IKSFA-ALS-ssel for a subsection of raw data results in the
assignment of chromatographic peaks to their corresponding spectral components. An
idealized representation of this is shown in 2 for a four component model. The resolved S
matrix has the dimensions of the number of wavelengths collected by four components (L
×N), while the resolved C matrix has the unfolded dimensions of the 1st and 2nd

chromatographic dimensions and the number of samples by four components (IJK×N).
Samples 1 and 2 through K are shown, such that each spectral component of S corresponds
to its color coordinated resolved chromatographic peak of C. The resolved C matrix is
represented in two ways, first as a contour plot and then as the corresponding sequence of
2nd dimension chromatograms for each component. This illustration is idealized for
simplicity and clarity, in that background component(s) are not represented, and each
spectral component corresponds to a single, non-overlapped chromatographic peak. In the
realm of real data, things are frequently not so straightforward. This point is clearly
illustrated in section 4.2 by the results of the IKSFA-ALS-ssel analysis of a subsection of
urine control data.

2.3 Quantification algorithm development (relative concentration determination)
In LC×LC, a first dimension peak consists of several second dimension injections (slices
across a first dimension peak consisting of J data points). Each second dimension injection
(slice) will produce a second dimension chromatogram consisting of I data points. The
volume determination algorithm is based on the premise that the sum of these second
dimension peak areas is equivalent to the volume of that LC×LC peak [18,31]. Figure 3B
illustrates this premise, in which the same single compound is present in six replicate sample
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injections. It can be seen that sample injection 1 consists of four sequential second
dimension peaks. The areas under each of these four second dimension peaks are determined
and are summed in order to ascertain the LC×LC peak concentration [32]. This procedure is
followed for all six sample injections shown in Figure 3B and allows for the comparison of
the relative concentrations of the single compound present in all six sample injections. This
method will be referred to as the manual baseline method throughout this work and is
equivalent to the area summation method described by Thekkudan et. al. [18].

For simplicity, Figure 3B represents an ideal case in which the peak has been well resolved
from the background components using the developed chemometric method and only one
compound is present in the section of the data analyzed, as opposed to Figure 3A, which
shows a plot of the corresponding raw data. Unfortunately, the ideal case is not frequently
observed and it is extremely likely that other components of the sample may have the same
first dimension retention time but an earlier or later second dimension retention time. In such
an instance, additional second dimension peaks will elute in the individual second dimension
chromatograms either before or after the peak of interest. Any second dimension peaks not
associated with the peak of interest are simply left unintegrated and thus do not contribute to
the relative concentration calculation. For very simple mixtures, it is straightforward to
determine which second dimension peaks comprise a given LC×LC peak, but for more
complex mixtures, that are of interest in the present work, this can be challenging at best.
The IKSFA/MCR-ALS curve resolution procedure is used in the present work to resolve all
spectrally distinct components into individual LC×LC chromatograms, which are much
simpler, and can therefore be more easily and precisely integrated using the above
procedure. Often the method resolves weakly absorbing peaks that were not visually
observable in the raw data and may not be spectrally distinct. The advantage of the manual
baseline method is that spectral uniqueness is not necessary as long as the peaks in question
are chromatographically resolved and a manual baseline can be drawn for integration.

3. Materials and Methods
3.1 Samples, instrumentation and software

Six injections of a standards mixture (Figure 4A) and fourteen injections of urine control
sample (Figure 4B) were interspersed over the course of a 64 injection LC×LC run requiring
over thirty hours of total run time. The standards mixture consists of nitrate, tryptophan,
hydroxytryptophan, indole-3-acetic acid, indole-3-propionic acid, indole-3-acetonitrile and
tyrosine. The data analyzed in this study were collected using a comprehensive LC×LC
system developed by Stoll and Carr at the University of Minnesota [21,32]. The system
employs the use of a dual gradient and employs the use of high temperature (110 °C) in the
second dimension. This was accomplished through the use of an eluent preheater and a
heating jacket placed around the second dimension reversed-phased carbon-clad zirconia
column. The sample to be injected onto the first dimension system is preheated to 40 °C
before passing through the first column, effluent from the first column is collected in 21-
second fractions and then each fraction is injected onto the second column. Diode array
detection (DAD) from 200 nm to 700 nm was employed after the second column. The
acquired data consist of absorbance values in mAU units as the dependent variable, and the
independent variables being retention on the first dimension column, retention on the second
dimension column, UV-visible wavelength, and sample injection number. Thus for the
standards mixture data the size of the array is 840 × 84 × 6 ×126 (2nd chromatographic
dimension, 1st chromatographic dimension, number of sample injections, wavelength from
200 nm to 700 nm at 4 nm intervals) and the size of the array for the analyzed section for
urine control data is 161 × 26 ×14× 126. The data were imported into the MATLAB
environment using ACDLABS ChromProcessor 9.0 (Advanced Chemistry Development,
Inc. Toronto, Canada). The data were analyzed using MATLAB software R2007a
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(Mathworks, Inc. Natick, MA) and a HP Pavilion dv9500 with 4GB RAM, an Intel® Core™

2 Duo CPU T7500 @ 2.20GHz processor operating with the Windows Vista Home
Premium operating system. The MCR-ALS algorithm used for this analysis has been
described previously by this group [30]. LCImage software (GC Image, LLC Lincoln, NE)
was provided by S. Reichenbach [21].

3.2 Data analysis scheme
The data analysis procedure followed for the analysis of both the standards mixture data and
the urine control data is outlined in Figure 5. Subsections were initially determined by
creating contour plots to determine the 1st and 2nd dimension data point boundaries around a
visually observable peak. Once a subsection was created, chemometric data analysis began
with SVD and IKSFA of the data matrix X (dimensions IJK×L). The initial input parameter
for IKSFA, the number of components (N), was to some extent subjectively determined
using a combination of two visualization methods, a scree plot and a contour plot of the
subsection to be analyzed. The initial N spectral components obtained from the IKSFA
analysis are then used as an initial estimate for the initialization of the in-house MCR-ALS
algorithm [30] which employs the non-negativity constraint in the chromatographic
dimension. These two steps are repeated for several different possible numbers of
components to ensure that as many possible components are found without over-fitting the
data. (see section 4.4 for a more detailed description)

After the optimization of the number of components, a final MCR-ALS analysis step,
referred to from here on as IKSFA-ALS-ssel, where ssel denotes the use of the spectral
selectivity constraint, is performed in which three constraints are applied to the analysis: (1)
chromatographic non-negativity, applied as in the previous analysis steps. (2) spectral
selectivity, and (3) spectral non-negativity. Our implementation of spectral selectivity,
constrains only the non-background components so that the last 51 spectral data points
(corresponding to wavelengths 440 nm to 700 nm) were set to zero. The spectral non-
negativity constraint was selectively applied to correspond to the parameters of the spectral
selectivity constraint so that the background components are allowed to be negative but the
compound spectra are constrained to be greater than or equal to zero. Which components
require the application of constraints (2) and (3) were identified in the first MCR step.

The implementation of the IKSFA-ALS-ssel approach described above for a subsection of
raw data results in the assignment of chromatographic peaks to their corresponding spectral
components. The spectral component that contains the peak of interest is further analyzed to
determine the relative concentrations of the resolved peak for each sample injection, and the
% RSD was then calculated. This is accomplished by plotting the resolved chromatographic
results for only the component of interest and for a given sample injection as a sequence of
second dimension chromatograms. This allows for good baseline visualization of the
component of interest in a given injection for implementation of the manual baseline method
as was previously described. After the manual baseline method has been utilized to
determine the relative concentrations of the component of interest, the % RSD for that peak
was determined by dividing the standard deviation of the replicate sample injections by the
average determined relative concentrations for all replicate sample injections and
multiplying by 100. Due to the data structure (replicate injections without calibration
injections) it was not possible to calculate the accuracy of the method, only the precision of
the method can be discussed.

The above described procedure was followed for the eighteen data subsections that were
created for the eighteen visually observable peaks. The analysis of these eighteen
subsections revealed additional peaks not previously observed in the raw data contour plot
of the entire section. New subsections were created for the analysis of the previously
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unobserved peaks as these peaks were detected, so that both observed and initially
undetected peaks in the data were appropriately analyzed. A full discussion of the choices
and reasoning behind why the authors followed the above steps is undertaken in section 4.4.

4. Results and Discussion
4.1 Standards mixture analysis (effects of subsection size and number of components)

The six replicate standard mixture injections (Figure 4A) were interspersed throughout a 64
injection run and contained six known compounds that were intended to be well resolved.
However, multiple contaminants were found in close proximity to Peak 6 for all of the
replicate sample injections. Therefore, this peak was not included in the following analyses,
because the goal of this portion of the work was to limit possible interfering variables, such
as chromatographic and spectral rank deficiencies, to obtain a better understanding of how
the algorithm functions. The % RSD values for the concentrations of Peaks 1–5 for the raw
data using the manual baseline method and the chemometrically resolved data using both the
manual baseline method and LCImage software volume determination are shown in Table 1.
Peaks 3 and 4 (indole-3-acetic acid and tryptophan as shown in Figure 4A) give the highest
% RSD values for both data types and quantification methods. Peak 3 is a very weakly
absorbing compound making it difficult to accurately determine the peak baseline from the
high background in the raw data. The reason for the high % RSD for Peak 4 is that there is
an overlapping contaminant found to be present only in injection 2. The IKSFA-ALS-ssel
resolved data yields better results as compared with the raw, unresolved data, except for
Peak 2. Overall, there is an average three-fold improvement in precision over integration of
the raw data.

The analysis of Peaks 1–5 using IKSFA-ALS-ssel for different subsection sizes was done to
determine whether the size of the subsection chosen to encompass the peak of interest would
have an effect on quantification. Due to large retention time shifting in the first retention
time dimension, it is important that the subsection include all data points which reflect the
presence of the compound of interest; however, after this criteria is met, is it in the best
interest of the analysis for the subsection size to be small (just encompassing the peak of
interest), as large as possible (allowing for additional data points that might allow for more
accurate determination of the background component) or does subsection size have any
effect on the % RSD values at all? Table 2 gives the % RSD values as determined after
IKSFA-ALS-ssel analysis using the manual baseline method for five different subsection
sizes for each of the Peaks 1–5. The first and second dimension coordinates for the maxima
of the Peaks 1–5 were visually determined, and the peak was centered within each
subsection so that the first dimension for all subsection sizes contained ten data points. This
range of points in the first dimension ensured that the peaks are not cut off in the first
retention time dimension. The number of data points in the second dimension for the five
different subsection sizes were 200, 250, 300, 350 and 400 data points respectively. From
Table 2 it is clear that as the subsection size increases, the % RSD decreases until a critical
limit is reached, at which point the % RSD increases with increasing subsection size. This
trend is directly related to the signal to noise ratio of the given subsection size for a specific
component. We conclude that for smaller subsections, there are two contributing issues that
lead to the higher % RSD values. For one, if the peak is large relative to the background
component (such that the peak “overwhelms” the size of the subsection) the analysis method
will have difficulty in accurately estimating the background contribution. Second, upon
integration, the lack of data points on either side of the peak in the resolved sequenced
chromatogram makes a consistent baseline determination more difficult. For the larger
subsections, the issue is the opposite, particularly for weaker peaks; i.e., the method has
difficulty in accurately estimating the peak contribution. In other words, the peak gets lost in
the background. This is especially evident in Peak 3 for subsection sizes 4 and 5 in which
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the background was so large in comparison to the weak peak that the algorithm was unable
to yield a resolution of the peak that was quantifiable. Therefore, the most appropriate
subsection size is dependent on the relative intensity of the target compound within the
subsection.

4.2 Urine control sample analysis (curve resolution and quantification)
Over fifty peaks were found within the section of the urine control chromatogram that was
analyzed in this work. Of these, thirty-four were resolved well enough for the determination
of their relative concentrations. Figure 6 shows the location of the 34 resolved components,
where the numbers 1–18 refer to the peaks initially detected upon visual inspection of the
data, and number N1–N16 refer to the newly detected peaks.

The indicated subsection of the chromatogram shown in Figure 6 was used to quantify peak
N16. The spectral and chromatographic profiles obtained after implementation of IKSFA-
ALS-ssel are shown in Figure 7. As can be seen in this figure, the IKSFA-ALS-ssel analysis
revealed the presence of eight components in this subsection. Two of these components
were identified as background components. It should be noted that the analysis of additional
overlapping subsections in this region of the chromatogram permitted peaks 10 and N8, and
peaks 9 and N15 to be resolved from one another, as well as resolving peaks N10, N11 and
N12 from the background for a total of ten quantified peaks. While the above-mentioned
peaks have the same first dimension retention times and very similar second dimension
retention times, chemometric resolution was possible due to the unique spectra of the
corresponding peaks. The ability of the algorithm to resolve chromatographically overlapped
peaks having different spectral profiles was demonstrated in several areas of the data in
which two or more peaks were found to be present, but only one peak was visually apparent.
Evidence of several additional very weak peaks was also found in this subsection, but these
peaks could not be reliably quantified.

The bar graph in Figure 6 provides the % RSD values determined for the chemometrically
resolved peaks. The % RSD values for the initially observed peaks ranged from 1.04 % for
peak 11to 15.9 % for peak 8 with an average % RSD of 3.73 %. Peak 8 appeared to be a
chemically unstable compound (its intensity consistently decreased over the course of the
analysis) leading to the poor quantitative precision for that compound. The % RSD values
for the sixteen additionally found peaks ranged from 0.90 % for peak N10 to 11.1 % for
peak N7 with an average % RSD value of 3.56 % for this group of resolved peaks. This
section for all fourteen replicate injections was also evaluated by LCImage software[21]
using their blob detection tool (i.e. peak picking). The blob detection found on average 22
peaks using the default settings and 24 peaks after modification of the detection setting in
the section of data analyzed in this work. The detected peaks for the fourteen replicate
injections ranged from 20 to 28 depending on the injection and the setting used for
detection. Of the 24 peaks found by the LCImage software for sample injection 7, three were
also found by the IKSFA-ALS-ssel method but are cut off by the section parameters and
therefore not included in the 34 quantified peaks. Also, two of the LCImage detected peaks
for injection 7 are not detected in all fourteen injections.

The relative signal was evaluated and compared to the corresponding % RSD values for
each quantitatively resolved peak to determine if a low signal response was correlated to a
decrease in the precision of quantification as seen by an increase in % RSD values. The
relative signal response was determined by multiplying the chromatographic maximum
value of the 7th sample injection by the spectral maximum value for each peak. This
assumption can be made due to a relatively constant background response of the section of
the data analyzed. We found that in the majority of cases where the % RSD of a given peak
is above 4, a low signal response was not responsible for the observed poor precision, but
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rather other chromatographic phenomena such as spectral or chromatographic rank
deficiencies (overlapped peaks) and unsatisfactory resolution of the peaks from the
background. These issues will be discussed in more detail in a future publication. Peaks with
% RSD values of less than 2 % were not affected by these issues.

4.3 Comparison to previous Rutan group work
Previously, Porter et al. analyzed four-way data arising from a comprehensive LC×LC
analysis of maize seedlings[3]. The data was assumed to be approximately quadrilinear, as
the total run time of all samples was only three hours. This assumption allowed Porter et al.
to employ the PARAFAC model such that the results from PARAFAC were used to initiate
the in-house ALS algorithm so that constraints could be applied selectively. The samples
used for method comparison in this work consisted of two extracts of mutant orange
pericarp maize seedlings and two extracts of wild-type maize seedlings.

For method comparison purposes a small section of the previously analyzed data set, shown
in Figure 8, was analyzed using the current IKSFA-ALS method with the exception that the
spectral selectivity constraint was not employed due to insufficient wavelength collection
during the LC×LC run of the maize data. Peaks labeled 1, 2, and 3 were chosen for % RSD
comparison of the determined relative concentrations. These peaks were selected because
they were present in both the mutant and wild type samples and were resolved using the
PARAFAC-ALS method. The results in Table 3 show that for four out of the five
comparisons made, IKSFA-ALS yields considerably lower % RSD values for these peaks
than PARAFAC-ALS. It is of particular interest, that the IKSFA-ALS method
chemometrically resolved an additional six peaks that were not detected by Porter et al. and
was able to resolve several peaks that the PARAFAC-ALS method did not resolve due to the
lack of multilinearity in the first retention time dimension. We also conclude from these
results that, even for the relatively short three hour run, there were sufficient retention time
shifts to decrease the precision of the PARAFAC- ALS analysis, relative to the IKSFA-ALS
method.

4.4 Data analysis considerations
Due to the size of the urine control data set and to the large number of factors involved in
the analysis of an entire chromatogram, it was first necessary to divide the data into sections.
This enabled us to work with a more manageably sized section shown in Figure 4B from
3.85 to 12.6 minutes and 6.6 to 10.6 seconds; this section was chosen for further
investigation since it is free of signals where the detector was saturated. The nature of the
data (complex and lacking multilinear behavior because of the retention time shifts) limits
the chemometric methods available, requiring that either prealignment data processing
occurs before chemometric implementation of methods that require multilinearity can be
employed, such as PARAFAC, or restriction of the data analysis to methods that are not
affected by retention time shifting such as MCR-ALS. We chose the second option,
employing an approach involving IKSFA and MCR-ALS, neither of which requires
multilinearity. The authors recognize that the described method requires user intervention.
While the number of components, N, determination step and the spectral selectivity
constraints implementation require the user to make decisions based on visual inspection of
the results before proceeding to the next step, these decisions are fairly straightforward and
are not time consuming. In other words, this method can be easily taught and learned such
that a great deal of expertise is not required to achieve good results. In addition, the method
is shown in section 4.3 to be applicable to other data sets arising from LC×LC-DAD
analysis and to be an improvement over a previously published method.
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While the number of components (N) is somewhat subjectively determined, it is easily and
quickly accomplished. Contour subplots of the subsection to be analyzed at different
wavelengths allows for an approximate number of peak components to be determined by
simply counting the peaks that are visually apparent. Due in large part to the large dynamic
range of this data, chromatographic peaks are not always observable even when plotted at
multiple key wavelengths. Hence, the comparison of the number of visually counted peaks
to the number of principal components ascertained from the scree plot leads to a reasonable
initial estimate of N that can be attained in less than a minute. It is important to keep in mind
that there are also background components to be considered to obtain the final estimate for
the number of spectrally distinct components, N. The determination of an appropriate final
N parameter included the consideration of several factors: there should be no more than 3
background components following curve resolution, the value of the determinant for the
final key set should be less than 0.1 and greater 0, and the fit error for the MCR-ALS step
should be less than 5%. Addition of more components to reduce the fit error further usually
resulted in overfitting, as evidenced by the appearance of the component profiles that did not
make sense chromatographically or spectrally. A cross validation of the subsection used for
the analysis of peak N16 in which a leave-seven-out approach was taken for component
models of N= to 7, 8, and 9, confirmed that for this subsection the eight component model
chosen using the above described method resulted in the best fitting model.

The second manual step that we employ is the implementation of the constraints. One of the
advantages of the in-house MCR-ALS algorithm [30] is that each of the constraints can be
selectively applied to individual components. An example of this is the selective application
of the spectral selectivity constraint to only the non-background components such that the
wavelengths from 440 nm to 700 nm were set to zero. This wavelength range was chosen
due to the complete lack of corresponding spectral information above 440 nm to any
components other than the background. This helps the algorithm resolve the background
from actual components because the background spectra have a consistent increasing
absorbance above 440 nm. Also, the manner in which the spectral selectivity constraint was
employed, allowed for the selective application of the non-negativity constraint to the
spectral dimension of all components except the background components. The
implementation of the two spectral constraints aids in the spectral resolution of the
background spectral components from non-background spectral components, as illustrated
in Figure 9. Chemometric resolution of the background components provides substantial
improvements in quantification using the manual baseline method for relative concentration
determination Figure 2.

The unimodality constraint was not employed in this work for several reasons. Unimodality,
as is currently employed in many MCR algorithms, sets a vertical at the valley of the non-
unimodal peak and sets all of the data points of the peak with the smaller maximum to zero
[29,30,33]. This, in essence, eliminates a possible smaller peak from the analysis results that
the manual baseline method may be capable of integrating. Alternatively, dynamic unimodal
regression may be used; however, in practice the smaller peak is still lost. It is important to
remember that an incompletely resolved component may be non-unimodal in either the first
dimension retention time, the second dimension retention time or it may exhibit non-
unimodal behavior in both retention time dimensions. What would ultimately be required is
the capability to employ the unimodality constraint for four-way data to selective
components in a manner that adds an additional component to the result and assigns the
smaller of the non-unimodal peaks to the “new” component so that no information is lost in
the resulting answer. To the authors’ knowledge, this approach has currently not been
investigated in the literature.
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5. Conclusions
Most of the published peak detection methods for LC×LC data analysis [19–22] have been
for chromatographically well-resolved peaks. Curve resolution procedures that have been
useful for the analysis GC×GC data [1,34] for the most part have not been successfully
applied to LC×LC, probably because of the same retention time reproducibility issues that
we encountered in this work. Also, the modification of successful algorithms used for the
analysis of 1D techniques to 2D chromatography is complicated due to the undersampling
effect of the first dimension and the necessity of combining several second dimension peaks
to represent the total LC × LC peak [19,35]. We have shown that the IKSFA-ALS-ssel
method successfully resolves complex LC×LC-DAD data without requiring prealignment of
the data to achieve multilinearity. Due to lack of retention time alignment, the previously
developed PARAFC-ALS method showed higher % RSD values, assigned the same peak to
different components and did not resolve peaks that were found to be present when
compared to the IKSFA-ALS method. The current drawback to the IKSFA-ALS-ssel
method is the lack of automation. However, the intervention that is required is
straightforward and relatively simple, if somewhat tedious. For the standards mixture data,
there is a 2.5 fold improvement in the % RSD values of the IKSFA-ALS-ssel analyzed data
as compared to the raw data. The chemometric analysis of the urine control data revealed
over fifty compounds, thirty-four of which were resolved sufficiently for quantitative
analysis. The average % RSD of the quantified peaks of 3.5 %, while rather high for
accepted 1D-LC analysis, is quite good for such a complex sample such as human urine but
leaves room for improvements in quantification of LC×LC data.

Several issues associated with the quantification of this data arose during curve resolution,
including phase shifting caused by retention time shifts in the first dimension, rank
deficiency, large dynamic range issues and unsatisfactory curve resolution of the peaks from
the background. These are several of the obstacles associated with achieving more precise
quantification and will be addressed by the authors in future publications.
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Figure 1.
Several different types of plots for the 2nd sample of the standards mixture raw data. (A)
Plot of the two-way raw data as collected by the instrument, such that all 2nd dimension
injections of a corresponding sample injection are sequenced end-to-end. The insert shows
an enlarged section of the sequenced data that was determined to encompass the
corresponding peak illustrated in the contour plot at 216 nm of (B). Using the determined
section dimensions, the same peak is shown as a contour plot at 216 nm in the box (C) along
with its corresponding sequenced 2nd dimension chromatograms.
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Figure 2.
Schematic illustration of the resolution results from the IKSFA-ALS-ssel analysis in which
both the data structure and corresponding graphical representations of the resolved spectra
and chromatograms are shown. The data structure as shown consists of J = 7 2nd dimension
slices and K samples (1st dimension injections). Panel 1 illustrates the resolved spectral
matrix. The dimensions of the resolved ST data matrix in this example are four spectral
components by the total number of wavelengths collected (L). The corresponding spectra for
each of the four components are plotted such that the y-axis is relative intensity versus
wavelength. Panel 2 illustrates the resolved chromatographic matrix. Recall that each 1st

chromatographic data point is equal to a 2nd dimension slice and that a 2nd dimension slice
consists of I data points. The dimensions of the resolved C data matrix is unfolded to
combine the 1st chromatographic dimension (J), the 2nd chromatographic dimension (I) and
the number of samples (K) by the four spectral components. The four spectral components
are color coordinated to correspond to their chromatographic counterpart. Each resolved
chromatographic peak is graphically represented in two ways (1) by a contour plot of the 1st

chromatographic dimension by the 2nd chromatographic dimension plotted for a given
wavelength and a given sample and (2) a sequence of 2nd dimension chromatograms. Panel
3 shows the corresponding sequence of 2nd dimension chromatograms of component 1 for
all samples (1-K).
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Figure 3.
Comparison of the subsection for the standards mixture peak 1 showing the sequence of
resolved 2nd dimension chromatograms and the raw data for the injection of six replicate
samples onto the 1st dimension column. (A) A plot of the sequenced second dimension
chromatograms of the raw data. Each 1st dimension sample injection gives rise to seven 2nd

dimension injections with four of those injections containing the peak of interest and three
injections consisting only of the background in this example. (B) The above data after the
application of the devoloped chemometric method. The red line drawn under each 2nd

dimension peak shows the manually determined baseline, and the areas for each of the
second dimension peaks (shown at the top of the peaks) are totaled (shown at the bottom of
each peak grouping), giving the relative concentrations of peak 1 for each of the six sample
injections and the % RSD showing the precision of the quantification.
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Figure 4.
Contour plots at 216 nm of two different sample types within the 64 injection LC×LC-DAD
run. (A). Contour plot of the third replicate injection of the standards mixture where peak 1
is indole-3-acetonitrile, peak 2 is indole-3-propionic acid, peak 3 is indole-3-acetic acid,
peak 4 is tryptophan peak 5 is hydroxytryptophan and peak 6 is tyrosine. (B). Contour plot
of the seventh replicate injection of the urine control standard. Inset shows the section of
data selected for chemometric analysis.

Bailey and Rutan Page 18

Chemometr Intell Lab Syst. Author manuscript; available in PMC 2013 September 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Chemometric data analysis scheme used in the resolution and quantification of LC×LC data.
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Figure 6.
Contour plot of the urine control at 216 nm showing 34 resolved peaks. The N preceding 16
of the 34 resolved and quantified peaks signifies that those peaks were found and resolved
only after application of the developed chemometric method (newly found) while the other
18 peaks were visually observable prior to chemometric analysis. The two bar graphs show
% RSD values calculated for the corresponding peaks. The star on the visually observed
peaks graph indicates that Peak 8 is considered to be a chemically unstable compound.
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Figure 7.
(A) Contour plot of a subsection of urine control data at 216 nm in which resolution and
quantification of Peak N16 is the goal for the chemometric analysis. (B) The
chromatographic and corresponding spectral results for each component of the 8 component
IKSFA-ALS-ssel analysisl for the above subsection of raw data.
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Figure 8.
Overlaid contour plot of maize data analyzed by Porter et al. [3] The blue contour plot is the
first injection of the mutant sample, the green contour plot is the indole standard mixture and
the red contour plot in the second injection of the wild type sample. Adapted from ref. [3].
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Figure 9.
Component spectra (blue) and background spectra (red) before (A) and after (B)
implementation of the spectral selectivity and spectral non-negativity constraints. By zeroing
the chemical component spectra after 440 nm, the algorithm is better able to resolve the
background spectra from the compound spectra.
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Table 1

% RSD results for the precision of peak quantification of both raw and IKSFA-ALS-ssel-resolved data of the
standards mixture injections for peak 1 through peak 5.

Standards Mixture Data
Manual Baseline LC Image software

Raw Data IKSFA-ALS-ssel IKSFA-ALS-ssel

Peak 1 3.31 1.60 9.07

Peak 2 1.75 2.16 10.5

Peak 3 12.6 4.71 34.5

Peak 4 13.1 3.47 19.4

Peak 5 5.21 1.40 1.30

Ave % RSD 6.53 2.61 15.0
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