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Abstract
The evolution of bio- and cheminformatics associated with the development of specialized
software and increasing computer power has produced a great interest in theoretical in silico
methods applied in drug rational design. These techniques apply the concept that “similar
molecules have similar biological properties” that has been exploited in Medicinal Chemistry for
years to design new molecules with desirable pharmacological profiles. Ligand-based methods are
not dependent on receptor structural data and take into account two and three-dimensional
molecular properties to assess similarity of new compounds in regards to the set of molecules with
the biological property under study. Depending on the complexity of the calculation, there are
different types of ligand-based methods, such as QSAR (Quantitative Structure-Activity
Relationship) with 2D and 3D descriptors, CoMFA (Comparative Molecular Field Analysis) or
pharmacophoric approaches. This work provides a description of a series of ligand-based models
applied in the prediction of the inhibitory activity of monoamine oxidase (MAO) enzymes. The
controlled regulation of the enzymes’ function through the use of MAO inhibitors is used as a
treatment in many psychiatric and neurological disorders, such as depression, anxiety,
Alzheimer’s and Parkinson’s disease. For this reason, multiple scaffolds, such as substituted
coumarins, indolylmethylamine or pyridazine derivatives were synthesized and assayed toward
MAO-A and MAO-B inhibition. Our intention is to focus on the description of ligand-based
models to provide new insights in the relationship between the MAO inhibitory activity and the
molecular structure of the different inhibitors, and further study enzyme selectivity and possible
mechanisms of action.
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INTRODUCTION
Monoamine oxidases (MAO) are a family of flavin adenine dinucleotide (FAD)-containing
enzymes located in the mitochondrial outer membrane [1–3]. MAO enzymes catalyze the

*Correspondence: Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de
Compostela 15782, Spain, Phone: +34-981-563100 ext 14938, Fax: +34-981-594912, Santiago Vilar: qosanti@yahoo.es,
santiago.vilar@usc.es.

NIH Public Access
Author Manuscript
Curr Top Med Chem. Author manuscript; available in PMC 2013 September 04.

Published in final edited form as:
Curr Top Med Chem. 2012 ; 12(20): 2258–2274.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



oxidative deamination of endogenous and exogenous monoamines to the corresponding
aldehyde, hydrogen peroxide and ammonia (from primary amines) or substituted amine (in
the case of secondary amines) [1–3]. The enzyme inhibition allows the monoamine
neurotransmitters to remain active in the brain for longer periods. For this reason, MAO
enzymes play a crucial role in the inactivation and regulation of intracellular levels of
monoamine neurotransmitters [1–3].

There have been identified two isoforms of MAO enzymes in humans: MAO-A and MAO-B
[4]. Both isoenzymes have 70% identity/similarity in their primary amino acid sequence and
they are coded by different genes with similar structure [5, 6]. They differ in cell and tissue
distribution, inhibitor sensitivity and specificity in regards to the neurotransmitter type.
Serotonin (5-HT), epinephrine and norepinephrine are mostly deaminated by MAO-A. Other
neurotransmitters, such as phenylethylamine (PEA) are more specific to MAO-B. However,
the tryptamine and dopamine enzymatic breakdown is carried out by both MAO [3, 7]. Due
to the diverse inhibitor sensitivity and substrate specificity, both isoenzymes are considered
pharmacological targets of different clinical disorders. In fact, MAO-A is of particular
importance in the treatment of psychiatric disorders, such as depression and anxiety [8–10],
whereas MAO-B is an important target in neurological disorders, such as Alzheimer’s and
Parkinson’s disease [11–13].

Since MAO enzymes are implicated in many biological processes of clinical relevance, they
are an attractive field in pharmaceutical research [14–20]. This potential clinical importance
have led to an intense research to discover new compounds with MAO inhibitory activity
without the adverse effects showed by the earliest irreversible inhibitors, such as
hepatotoxicity or the ‘cheese effect’ characterized by hypertensive crisis [21, 22]. The
disclosure of the crystal structure of the two MAO isoforms provided to the scientific
community of structural characterization to elucidate the molecular mechanisms implicated
in the ligand-protein interaction [23–26]. This information is very useful in the rational
design of new MAO inhibitors. However, ligand-based models are still very effective in the
design of new compounds with improved activity (lead discovery and lead optimization), the
establishment of structure-activity hypothesis that help to understand the interaction with
MAO enzymes, and the explanation of possible mechanisms of action. Ligand-based
approaches do not take into account protein structure information and are developed on the
concept of molecular similarity (structural similar molecules are likely to have similar
biological properties).

There are different types of ligand-based models, such as QSAR with 2D and 3D descriptors
(Quantitative Structure-Activity Relationship) [27–30], 3D-CoMFA (Comparative
Molecular Field Analysis) [31, 32], 3D-pharmacophores [33] or ligand-network models [34,
35]. QSAR studies have become one of the most popular ligand-based approaches in
modern chemistry [27, 36–40]. The main steps implicated in the development of a QSAR
model are (see Fig. 1):

1. Collection of a database (molecular structures and biological activity values). The
set of molecules used to develop the QSAR equation should be representative of
the problem under investigation.

2. Calculation of molecular descriptors. Depending on the nature of the molecular
descriptors it is possible to distinguish between 2D and 3D QSAR. Topological
[41] or physicochemical descriptors [42], in which the 2D structure of the
molecules is taken into account for their calculation, are used in the 2D QSAR.
However, the development of QSAR with 3D descriptors, such as topographic [43]
or quantum-chemical descriptors [44], implies the calculation of the most stable 3D
conformation for the molecules as a previous step.
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3. Data analysis to establish the model that relates the descriptors with the biological
activity. Some techniques, such as Multiple Linear Regression (MLR) [45], Linear
Discriminant Analysis (LDA) [46, 47] or Partial Least Squares (PLS) regression
[46] have been widely applied. However, when no linear patterns can be found, the
structure-activity relationship can be explained through non-linear methods, such as
Artificial Neural Networks (ANN) [48, 49] or Support Vector Machines (SVM)
[50].

4. Model validation. Cross-validation series (sub-sampling test), leave-one-out cross-
validation (jackknife test) or the evaluation of an independent external prediction
series are useful procedures to validate the final model [51].

Once the QSAR model has been developed, biological activity prediction of new molecules
and interpretation of the results focused on the molecular mechanism of action could be
carried out.

However, since the 3D structure is an important component for the molecular recognition of
a ligand by the biological receptors, there have been developed different methodologies to
compare the distribution of different molecular properties in the tridimensional space. In 3D
QSAR methods, like CoMFA or pharmacophore modeling, the calculation of 3D molecular
conformations are complemented by the alignment of the given structures to develop
electronic and steric fields (CoMFA) or pharmacophoric chemical features (pharmacophore
modeling) that can explain the biological/chemical complementarity with the receptor.
These type of models better explain how structurally different ligands can interact with a
common receptor. However, the final model construction could be challenging when large
structural differences exist in the compounds taken into account [31, 52]. The main steps
implicated in the development of CoMFA models are shown in Figure 2.

Other types of models that provide a pharmacological general strategy are based on network
analysis. Computational biology network modeling provides a useful tool to infer
relationships between ligands and pharmacological targets with application in drug design
[34, 35, 53]. As an example, Keiser et al. [35] developed a statistical model that relates
protein targets based on the chemical similarity of their ligands. The analysis of ligand-
protein networks can provide an understanding of the relevance of some biological targets to
improve the efficacy in the process of drug design and discovery.

In this work we reviewed a series of ligand-based models to provide more insights in the
relationship between MAO activity and different structural scaffolds. Our intention is to
unify different criteria to help in the development of potential agents with MAO activity
understanding the reasons of the selectivity of both isoforms. In the following sections we
will describe with more details the different types of ligand-based models applied to MAO
activity available in the chemical literature. However, it is worth noting that some results
should be carefully considered when small datasets were analyzed. It is also important to
highlight the differences between distinct chemical scaffolds that can show correlations
between different molecular descriptors or pharmacophoric features and the MAO inhibitory
activity. Even within the same scaffold, different models can be reported depending on the
level of the structural complexity of the compounds belonging to the same chemical group.

PREDICTION OF MAO ACTIVITY THROUGH 2D QSAR
Some studies showed that topological and physicochemical descriptors offer a good
potential in the prediction of the MAO inhibitory activity. Different statistical analyses have
been used in the development of the QSAR function that relates the molecular structure and
the biological activity.
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2D QSAR using Multiple Linear Regression (MLR)
Xanthone derivatives—Núñez et al. [54] studied a series of 42 xanthones (see Fig. 3,
structure 1) which had been previously reported to be potent MAO-A inhibitors [55]. MAO
activities spanning values from 0.04 to 65 μM are reported as the effective concentration of
the compound to achieve the 50% of enzyme inhibition (IC50). 36 descriptors were
calculated for the set of compounds and the best descriptors were selected according to their
predictive ability. The authors related the MAO-A inhibitory activity with 12 descriptors,
such as the E-state indices (Si), molecular connectivity (χ) and shape (k) index. The E-state
descriptors [56] were calculated for all the atoms in the molecules providing structural
information at atom level. The connectivity index (χ) is defined as the sum of weighted
edges in the molecular graph [57, 58]. The shape index is intended to capture aspects of the
molecular shape [58]. Multiple linear regression was developed using Statgraphics Plus
package [59] to establish the final model obtaining r2=0.847 (squared correlation
coefficient) and s=8.069 (standard deviation) taking into account a set of 34 compounds (8
compounds were considered outliers). Cross-validation was carried out using the method
LOO (leave-one-out). In the equation established for xanthone derivatives, the connectivity
index (χ5), the shape (k4) index and the E-states indices in C2, C3, C5, C9, and R1 (see Fig.
3, structure 1) presented negative coefficients whereas E-state in O10, C4, R4, R6 and R7
showed positive coefficients.

Pyrrole derivatives—Another example of 2D QSAR in the study of MAO-A activity
using topological descriptors is provided by Kumar and Bansal [60]. A database of 32
pyrrole derivatives and analogues was collected from Regina et al. [61] (see Fig. 3, structure
2) and a set of 28 topological descriptors were calculated. A model with a squared
correlation coefficient of 0.9 was found through multiple linear regression (MLR) using
SPSS software [62]. Seven topological descriptors were selected by stepwise regression to
be part of the final model: total structure connectivity index (Xt), mean square distance
index (MSD), all-path Wiener index (WAP), eccentric index (DECC), Kier flexibility index
(PHI), superpendentic index (SPI) and mean Wiener index (WA) [58, 63–69]. Cross-
validation was performed through leave-one out and leave-many out methods. The positive
coefficients of the indices DECC, MSD, PHI and SPI shows that an increase of their values
produces higher values for the inhibitory constant (Ki). On the other hand, an increase of
WA, WAP and Xt (negative coefficients) will decrease the Ki value.

MAO-B activity (Ki values) in a series of 1-methyl-3-phenylpyrroles was related by
Ogunrombi et al. [70] with Taft steric parameter (Es) and Swain-Lupton electronic constant
(F) [71] of the substituents at C4 and C3 of the phenyl ring. Enhancement in the inhibitory
potency was found with electron-withdrawing and bulky substituents. As an example, the
potency of the analogue with a trifluoromethyl group substitution at C4 is 90-fold compared
to the unsubstituted analogue. A possible explanation for the electron-withdrawing
substituents contribution could be related to the promotion of planarity between the phenyl
and pyrrolyl rings. Bibliography supports the idea that planar heterocyclic structures could
act as MAO-B inhibitors [72, 73].

Pyridazine and pyrimidine derivatives—Lipophilicity effects were investigated by
Altomare et al. [74] in a set of pyridazine and pyrimidine derivatives by measuring partition
coefficients, thermodynamic and physicochemical parameters of RP-HPLC retention. The
best equation extracted through MLR for a set of 14 pyridazine derivatives (see Fig3,
structure 3) yielded an r2=0.821 and q2=0.704 (cross-validation) showing the importance of
lipophilic, electronic and steric properties in the explanation of MAO-B inhibition. The
results reported that lipophilicity can modulate MAO-B inhibition but it has no effect in the
A isoenzyme. The selective influence of lipophilicity to increase MAO-B activity was
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reported previously [75]. In previous modeling studies using 2D and 3D QSAR, Kneubuhler
et al. [76] also related MAO-B inhibitory activity with pyridazines through lipophilic,
electronic and steric properties. On the other hand, it has been previously shown that
electrostatic interactions and charge-transfer bonding are important parameters in the
interaction between inhibitors and the FAD cofactor of the MAO-A [77, 78]. The results
described by Altomare et al. [74] revealed that the majority of the condensed pyridazines
were selective towards MAO-B whereas the condensed pyrimidines were more active
against MAO-A enzyme.

Caffeine analogues—Seven 8-benzyloxycaffeine analogues showed human MAO-A and
MAO-B inhibitory activity with enzyme-inhibitor dissociation constant (Ki) values from
0.14 to 1.30 μM and from 0.023 to 0.59 μM respectively [79]. A QSAR model was
developed to indicate that the MAO-B activity for this type of compounds could be
dependent on the Hansch lipophilicity (π) and Hammet electronic (σ) constants [71] of the
substituents at C3 of the benzyloxy ring. The potency of these analogues is increased with
electron-withdrawing substitutions with high degree of lipophilicity. Molecular docking
calculations were performed to obtain more insights about the binding modes of the
analogues. A similar set of styrylcaffeine analogues was studied by Vlok et al. [80] that
established through different QSAR equations that MAO-B activity was dependent on van
der Waals (VW), lipophilicity (π)and the Hammett constant (σm) of the substituents at C3
and C4 of the phenyl ring of the styryl moiety. An analysis of larger databases could help to
confirm these results in this type of analogues.

2D QSAR using Linear Discriminant Analysis (LDA)
Heterogeneous data—A Markov model was used by Santana et al. [81] to calculate a set
of topological descriptors to describe a heterogeneous database made up of 1,406 active/
non-active compounds. 674 compounds belonging to different representative scaffolds with
MAO-A inhibitory activity defined with IC50 values ≤25 μM (some cases were considered
showing an inhibition percentage of ≥50% at inhibitor concentrations ≤25 μM) were
collected. The non-active compounds included cases belonging to the above mentioned
families but with IC50 >25 μM and other scaffolds with different structural patterns.
Forward stepwise linear discriminant analysis (LDA) was carried out to derive from the
STATISTICA package [82] the predictive equation. The statistical parameters that defined
the quality of the developed model were Wilk’s lambda (λ=0.36), the Fisher ratio
(F=273.93) and the significance level (p-level<0.01). Nine descriptors providing information
about molecular electron delocalization, polarizability, refractivity and n-octanol/water
partition coefficients, were found important to describe the MAO-A activity with an overall
correct classification of 92.8%. Model validation took into account a resubstitution approach
along with the evaluation of a prediction series of 15 novel MAO-A inhibitors (9
compounds with IC50 ≤25 μM and 6 compounds with IC50 >25 μM).

2D QSAR using Partial Least Squares (PLS) regression
Phenyl alkylamines—Norinder et al. [83] analyzed the structural properties for a series
of 29 phenyl alkylamines responsible for MAO in vitro and in vivo inhibition (see Fig. 3,
structure 4). A set of 56 physicochemical descriptors, such as Hammett constant [84],
Swain-Lupton descriptors [85], Hansch aromatic fragment constant [84], molecular
refractivity [84] and Verloop Sterimol parameters [86], were reduced to 3–5 significant
components to generate different PLS models with squared correlation coefficients (r2)
greater than 0.85. The structure-activity relationship examined by the authors concluded
that: (S)-stereochemistry and no substitution on the aliphatic chain is important for high in
vitro and in vivo activities; electronic descriptors are the most important variables in the
developed QSAR; small, electron-withdrawing and hydrophilic substituents in ortho and
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meta positions increase in vivo activities whereas symmetrical, electron-withdrawing and
lipophilic substituents in ortho position favor in vitro activity. In vivo and in vitro potency of
the compounds decreases in para positions following the order
NHMe>NMe2>NH2≫CHMe2.

A similar set of phenyl alkylamines was studied by Hasegawa et al. [87]. The authors
developed different models through nonlinear partial least squares where the in vitro and in
vivo MAO inhibitory activities were analyzed. A detailed description of the method has
been published previously [88]. The structural descriptors codifying the chemical entities are
similar to the descriptors mentioned in a previous study [83]. Structural requirements for
MAO activity were estimated according to the PLS loadings that show the contribution of
the descriptors to the components of the model. Structural descriptors at ortho positions of
the phenyl ring are important for the in vitro activity that is favored by large, electron-
withdrawing and hydrophobic substituents. Descriptors in meta positions are no significant
whereas electron-donating substitutions favor the activity at para positions. S-
stereochemistry in α position is also an important requirement for the in vitro activity. In
vivo activity is favored by electron-withdrawing substituents at ortho and electron-donating
and large substituents at para positions.

2D binary QSAR
Heterogeneous data—binary QSAR correlates structural descriptors with a binary
biological activity measurement (active and inactive) [89]. Gao et al. [90] applied a genetic
algorithm method to select the most important molecular descriptors to explain the MAO
activity in a heterogeneous series using binary QSAR analysis. The predictive accuracy
obtained in this study was 85% and 84% for the training and test set respectively.

PREDICTION OF MAO ACTIVITY THROUGH 3D LIGAND-BASED MODELS
3D ligand-based methods are useful tools to further study structure-activity relationships that
imply the use of the 3D conformation for the molecules under study. Different types of
studies will be described in the next sections, such as the development of QSAR models
with 3D descriptors, 3D QSAR CoMFA (Comparative Molecular Field Analysis) models
and 3D pharmacophores. Although CoMFA and pharmacophoric approaches can propose
some leads about the nature and shape of the protein binding site, some results should be
taken with care since the chemical features that make up the final model are highly
dependent on the chemical structure of the studied inhibitors.

QSAR with 3D descriptors
Xanthone derivatives—Deeb et al. [91] included information about nodal orientation to
improve the xanthones MAO-A QSAR (see Fig 3, structure 1) previously published by
Núñez et al. [54]. They exploited the idea that orientations of the nodes in π-like orbitals of
aromatic molecules are crucial in their activity [92, 93]. A set of 10 descriptors involving
information about the energy of different π orbitals and nodal angles were introduced in a
final model obtained by MLR analysis. The quality model parameters for the set of 42
xanthones were r2=0.825 (squared correlation coefficient), S=0.393 (standard error of
estimate) and q2=0.632 (squared correlation coefficient based on the leave-one-out
residuals).

The same dataset reported by Nuñez et al. [54] and Deeb et al. [91] including diverse
xanthone derivatives was studied by Masand et al. [94]. The structures of the compounds
were optimized geometrically as a previous descriptors calculation step. Dragon software
[58, 95] was used to calculate all the available 3D descriptors (MoRSE, RDF, WHIM,
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GATEAWAY, etc). Different 3D QSAR models were developed through stepwise MLR
analysis. Ten 3D descriptors were included in the best model with an r2=0.92 and q2(leave-
one-out)=0.85.

Phenylisopropylamines—Charge-transfer interactions implicated in the inhibition of
MAO-A were analyzed from the point of view of QSAR methodology for a set of 33
phenylisopropylamines (see Fig. 3, structure 4) [96]. All molecules were optimized
geometrically and HOMO energies and charges on the aromatic carbons were calculated
using AM1 method [97]. Since the initial database can be divided in two different sets with
opposite trends, different QSAR models relating pIC50 values [83, 98] with the molecular
descriptors were obtained through MLR. For a set of molecules, a QSAR equation was
found where EHOMO coefficient was positive and the charge-descriptors coefficients were
negative. The model pointed out an enhancement of the activity for electron-rich phenyl
rings in agreement with the fact that electron donation favors charge transfers to the flaving
ring. The second QSAR in the other set of molecules showed opposite results and predicted
a decrease of the potency with increased electron donation to the phenyl ring. Two different
equations were extracted:

(1)

(2)

The main difference in both sets was the presence or absence of an amino group at para
position of the phenyl ring. It was hypothesized that the amino substituent could be
protonated by hydrogen bond donor interactions with the enzyme that could change the
HOMO levels and charges on the ring. The final conclusion suggests that electron-rich rings
systems and higher HOMO levels increased the potency of these derivatives against MAO-
A enzyme. The results are in agreement with some studies suggesting the existence of
charge-transfer interactions between inhibitors and the FAD cofactor of MAO enzymes [77,
99, 100]. A previous study carried out in phenylalkylamines also revealed that electronic
descriptors had an important contribution in the development of the QSAR model [83].
Deeb et al. [101] further studied a set of phenylisopropylamines through semiempirical
(AM1) and density functional theory (DFT) calculations [102]. They showed that the
orientation of nodes and the energies of the occupied π orbitals have a powerful explanatory
contribution to the variance in the MAO-A activity. MAO polar nucleophilic mechanisms
were also studied by Erdem et al. [103] using quantum chemical calculations.

Hydrazides—QSAR models in a set of aryloxyacetohydrazides were developed by Hall et
al. [104]. Comparison of the models developed with molecular orbital parameters computed
through the AM1 Hamiltonian and with electrotopological state (E-state) indexes was
carried out. The model with 2D descriptors (E-state) showed in this case a better
performance (r2=0.90; s(standard deviation)=0.19) than the model with 3D descriptors
(r2=0.80; s(standard deviation)=0.27), supporting the idea that topological descriptors are
also suitable representations.

Heterogeneous data—1,650 MAO inhibitors following different mechanisms of action
were analyzed using 3D descriptors and Recursive Partitioning (RP) techniques [105] by
Chen et al. [106]. Single low energy conformation and multiple conformation databases
were generated with the help of CONCORD [107] and SYBYL software [108]. 3D atom
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pair descriptors were calculated containing information about atom types or the center of
some chemical feature and the Euclidean distance between them. 17 atom types were
defined, such as the explicit atoms carbon, nitrogen, oxygen, etc., or pharmacophoric
chemical features, such as positive and negative charge center, aromatic ring center,
hydrogen-bond acceptor and donor, etc. The descriptors were incorporated to a binary file
that contained a bit string indicating the presence (value 1) or absence (value 0) of the 3D
atom pair descriptors in any of the conformations generated for the compounds. The MAO
activity was codified where 0 indicates no activity and 1, 2, and 3 values indicate increasing
MAO activities. All the RP analyses were carried out with the help of SCAM software
[109]. SAR trees derived from the single conformation and multiple conformation databases
were developed sequentially splitting the data into two subsets according to whether the
atom pair type is in the compound or not. This approach provides a strategy to generate 3D
pharmacophoric models in heterogeneous and large datasets by grouping the active
compounds with similar key structural features. Similar approaches were carried out using
different types of 2D molecular descriptors [110–112].

3D QSAR CoMFA models
Xanthone derivatives—Gnerre et al. [55] studied a set of 59 natural and synthetic
xanthones as MAO inhibitors using 3D-QSAR (see Fig. 3, structure 1). The compounds
showed selectivity towards MAO-A, the most active inhibitor having a potency of IC50=40
nM. Although the molecular mechanism by which these molecules present MAO-A activity
is not completely understood, a possible hypothesis takes into account charge-transfer
interactions with the FAD cofactor [77]. The initial SAR pointed out the importance of -OH
substituent at position 1 or 5 rather than -OMe. However, the opposite effect is shown in
position 3, where -OMe substituents yield more active MAO-A compounds. The authors
further studied the structure-activity relationship through a combination of techniques,
involving CoMFA studies and ALMOND procedure [113].

In order to develop the CoMFA model, a training set was selected. The training set was
made up of 34 xanthones with three types of substituents (-H, -OH, -OMe) in some of the 8
positions available in the scaffold (Fig. 3, structure 1). The superposition of the molecules
was made taking into account the xanthone ring system. The calculated molecular fields in
CoMFA were exported to GOLPE [114]. A principal component analysis (PCA) [115] was
applied to reduce the number of components. The final PLS model yielded an r2 of 0.87
(squared correlation coefficient) and q2 of 0.74 (cross-validated squared correlation
coefficient). The best model was obtained with steric and electrostatic parameters.
Lipophilicity was not an important variable in the activity explanation. Electrostatic analyses
showed two important zones: a favorable influence of high electron density between
positions 4 and 5, and a negative influence of high electron density at position 7, such as -
OMe and -OH substituent groups. CoMFA graphics also revealed a favorable steric area
near the position 3 and unfavorable steric areas in position 5 and 7 (see Fig. 3, structure 1).
As an example, -OMe substituent is positive at C3 but its contribution is unfavorable for
MAO-A activity at C5 and C7.

Since the alignment is a critical step that can condition the CoMFA results, ALMOND
procedure [113] was carried out to complete the evaluation. Molecular Interaction Fields
(MIF) generated with GRID program [116] were transformed into the alignment
independent GRid INdependent Descriptors (GRIND) and analyzed by means of ALMOND
software. Three probes, such as methyl, carbonyl and amide, were used to extract H-bond
acceptor/donor and steric interaction regions that define the virtual receptor site. The final
model was constructed with four latent variables and yielded an r2=0.86 and q2=0.66. This
study showed that NN interaction energies have a positive effect in the MAO-A activity in
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short distances (9 Å) and negative effect at longer distances (14.5 Å). A similar effect was
found for CN and ON interaction energies. However, CC interaction energies at short
distances resulted unfavorable for the molecular activity.

Indole and isatin analogues—A series of indole and isatin analogues has been studied
by Medvedev et al. [117] as MAO-A and MAO-B inhibitors (see Fig. 4, structure 5). This
study pointed out that selective MAO-A or B inhibitors presented different molecular size
[117, 118]. It also described that MAO-A inhibition required presence of hydroxy
substituent at C5 of the isatin and coplanar structure of the substitutions at C2 and C3 in the
indole. Moreover, MAO-B inhibition is related to the electron density distribution. In a
posterior article, Medvedev et al. have further studied the quantitative structure-activity
relationship in the set of indole and isatin analogues (Fig. 4, structure 5) through
Comparative Molecular Field Analysis (CoMFA) [119]. CoMFA analysis was developed
using SYBYL 6.1 software [108]. Conformations with the lowest energy were calculated as
a previous step of the molecular alignment. Both steric and electrostatic fields were taken
into account in the CoMFA analysis. Optimal number of components was determined
though PLS. Cross-validation r2 values were 0.743 for MAO-A and 0.603 for MAO-B. The
pharmacophore model included four features: two hydrophobic (aromatic rings), one donor
atom (nitrogen in the pyrrole) and one acceptor atom (substituent in the nitrogen of the
pyrrole). This data is consistent with previous publications where aromatic rings were
important elements in the MAO inhibitors structure [120, 121]. According to the QSAR
model for MAO-A inhibitors, steric fields near the aromatic substituents in C2 of the indole
could increase the activity (Fig. 4, structure 5). Six unfavorable regions are close to C5, C6
and surrounding the favorable region. Negative charges areas that could increase the activity
are located in the aromatic substituents. There are also some positive charges areas
surrounding the molecules. In the case of MAO-B inhibitors, there are four favorable steric
regions near C5 in the indole and surrounding substituents at C2. Negative charges favorable
areas are near C4-C7 of the indole and close to the aromatic substituents at C2. Positive
charges that would increase the MAO-B activity are located close to the indole nitrogen and
at para phenyl substituents at C2. Although the comparison between steric and electrostatic
areas in both MAO-A and MAO-B inhibitors showed some common regions, the analysis
also revealed different patterns in the favorable and unfavorable steric and electrostatic
regions. These differences could explain the different behavior of both enzymes in inhibitor
selectivity.

Pirlindole analogues—Inhibitory activity (IC50) for pirlindole analogues with different
substituents at C8 was studied by Medvedev et al. [122] through CoMFA analysis (see Fig.
4, structure 6). The molecules that formed part of the study were optimized geometrically
and aligned by fitting the indole heterocyclic ring atom by atom. Steric and electrostatic
fields were generated using a sp3 carbon probe and a +1 charge. The optimal number of
components were calculated in the PLS analysis to develop the final model. The models
yielded an r2

cv (squared of the correlation coefficient with cross-validation) of 0.444 and
0.525 for MAO-A and MAO-B respectively. However, the combination in the case of
MAO-B with logP yielded a model with r2

cv=0.625. The fact that the model with MAO-B
took into consideration hidrophobicity is in accordance with previous publications where
MAO-B inhibitors were considered more hydrophobic [123, 124]. Analysis of the molecular
size showed that the rigid pirlindole analogues and with certain size limits (X, Y, Z;
13.0×7.0×4.4 Å) were more potent against MAO-A. However, the flexible analogues with
independence of the size showed good potency in both MAO. The comparison of the
location of favorable/unfavorable steric and electrostatic regions using diverse substituents
at C8 showed a different profile between MAO-A and MAO-B providing new evidences of
the diversity of the active sites of both enzymes. A steric obstacle at C8 of the inhibitors in
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MAO-B explains the inactivity of long rigid pirlindole analogues. The location of favorable
areas of positive charges in MAO-B is coincident with the placement of favorable negative
charges in MAO-A.

Indolylmethylamine derivatives—A set of indolylmethylamine derivatives were
studied by Morón et al. [125] (see Fig. 4, structure 7). Ki values spanned a range from 0.8 to
>106 nM in the case of MAO-A and a range from 0.75 to 476,000 nM in MAO-B. Full
geometry optimization was carried out for the compounds using AM1 method [126].
Molecular alignment was made by superimposing the heavy atoms of the indole ring.
CoMFA was developed using default parameters of the SYBYL software [108]. Cross-
validated squared correlation coefficients (q2) were 0.895 and 0.859 for MAO-A and MAO-
B respectively. Contributions of steric, electrostatic and solvation terms are similar in both
enzyme models. Electrostatic maps in the side chain moiety are very similar in both systems.
However, at C5 position of the indole, high electron density substituents could increase the
binding affinity in MAO-A, while it could decrease the activity in MAO-B. Electrostatic
map in MAO-B also showed a high electron density area that extends throughout the indole
ring and explains the MAO-B selectivity for some compounds. Analysis of the steric fields
showed that bulky substituents at N1 position are not tolerated in either isoforms. Favorable
steric regions are present near the unsaturated moiety in both MAO, although is more
extensive in MAO-A. This area is surrounded in both maps by unfavorable steric areas.
Nevertheless, the bigger difference in the steric maps is located in the substituents at C5 of
the indole ring. Bulky substituents at this position are beneficial in the interaction with the
MAO-B receptor. MAO-A steric maps do not present favorable areas at this position.
CoMFA analysis showed that differences in steric and electrostatic fields at the 5 position of
the indole ring could be crucial for enzyme recognition. Mutagenesis studies identified some
enzyme residues responsible for MAO selectivity. More specifically, Phe-208 is important
in MAO-A and the corresponding Ile-199 is a key amino acid in MAO-B substrate
selectivity [127]. Computational simulations were carried out in the same study to further
investigate the possible aromatic interactions between substituents at C5 and Phe-208 of
MAO-A and possible hydrophobic van der Waals interactions between inhibitors and MAO-
B (Ile-199) [127].

Phenethylamine derivatives—CoMFA analysis was developed to study the MAO
inhibitory activity (IC50) in a series of 38 phenethylamine derivatives (see Fig. 4, structure
8) [128]. This scaffold is present in many catecholamine neurotransmitters and small
variations in the structure can yield different biogenic amine target inhibitors [98, 129–131].
The best CoMFA model was obtained with four components and yielded an r2=0.92 and
q2=0.72. The analysis showed that in this type of inhibitors the steric properties of the
substituents play a more important role than electrostatic properties.

The inhibitory potency was dependent on the length of the chain attached to the sulfur at
position 4 of the phenyl ring [98]. Long chain or branched substituents could decrease the
activity. The compounds with substitutions at 2,4,5-positions of the phenyl ring had
generally lower potencies [98, 132]. Electronegative groups at position 6 of the phenyl
inhance the inhibitory activity [133]. The authors discussed with more details the structural
insights that differentiate the interaction between this type of inhibitors and different
biogenic amine target proteins. The possible interactions with the active site enzyme were
also analyzed through molecular modeling of the crystal structure of the inhibitor clorgyline
bound to MAO-A (1O5W) [133].

Coumarin derivatives—A series of 3-, 4-, 7-polysubstituted coumarins and their MAO
inhibitory potency determined on rat brain mitochondria have been studied by Catto et al.
(see Fig. 4, structure 9) [134]. 3D-QSAR CoMFA-GOLPE studies revealed the key
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physicochemical nature responsible for the interactions with both isoenzymes. Molecular
alignment was carried out following the same criteria than a previous publication relating
coumarins activity with CoMFA [73]. Different interaction fields were calculated with
SYBYL [108] and CLIP software [75], including steric, electrostatic and lipophilic fields.
The PLS analysis were carried out in GOLPE [114]. The results of the different CoMFA
analysis for both MAO are shown in Table 1. According to CoMFA, both MAO activities
are modulated by steric, electrostatic and lipophilic fields. In a previous analysis, only
electrostatic and lipophilic interactions were determined important to model the MAO
activity [73]. However, the new CoMFA models provide complementary information since
the different results can be due to a diverse coumarin structures set used to develop the
analysis.

Halogen atoms at meta position of the 7-benzyloxy group favor the MAO activity. In fact,
there are favorable regions at this position in steric, electrostatic and lipophilic maps.
Sulfonate groups in R7 (see Fig. 4, structure 9) have negative effects in MAO-B activity.
This fact was also pointed out by the three isocontour maps. Increased MAO-B activity in
derivatives with monomethyl and dimethyl substitutions at positions 3 and 4 was
corroborated by favor areas in the steric contour. Sterically unfavored areas are located close
to phenyl rings in R7 of some long inhibitors with low MAO-A affinity. A more detailed
description of the CoMFA contour maps is given by the authors [134].

Besides classical CoMFA for MAO-A and B, an additional 3D-QSAR taking into account
the difference between pIC50 in MAO-B and MAO-A was developed to study the
isoenzyme selectivity. Electrostatic fields played an important role in the enzyme selectivity
whereas lipophilic and steric fields were not so important to explain the selectivity in this
kind of inhibitors (see Table 1). The different electron density localized on the α and β
positions of the bridge that links the coumarin core with a phenyl ring was found important
for MAO selectivity. Molecular docking experiments were carried out by the authors to
further study the interactions between coumarin derivatives and MAO enzymes.

Hydrazothiazoles—A training set of 36 hydrazothiazoles along with MAO activity data
(IC50) was used for CoMFA model generation (see Fig. 5, structure 10) [135]. After the
calculation of the 3D conformation of the molecules, a structure alignment was carried out
and steric and electrostatic fields were computed. PLS was derived using cross-validation
leave-one-out (LOO) method. Different CoMFA models were presented using diverse
alignment approaches (substructure, pharmacophore and docking receptor-based alignment).
However, the best results are obtained when the compounds are aligned through molecular
docking (see Table 2). The predictive capability of the generated models was assessed with
good results in a test set.

The contour maps for MAO-B suggested that an increase in steric bulk around the alicyclic
portion and ortho positions of the phenyl ring enhanced the activity. However, there is also a
steric unfavorable area surrounding the phenyl ring. As an example, substitution of fluorine
in the phenyl ring by bulkier methoxy groups resulted in a decrease of the activity.
Electrostatic fields showed an area of desirable negative electrostatic interactions around the
phenyl ring para position. A similar region is placed in correspondence of the hydrazo
group, while a desirable positive electrostatic interactions area is surrounding the NH-
position of this moiety. Possible hydrogen-bond interactions could be established between
the protein and the inhibitors in this region. The contour maps for MAO-A revealed the
importance of the hydrazo group for MAO recognition. Unlike MAO-B, substitution with
steric bulky groups around the alicyclic portion could decrease the MAO-A activity.
Appropiate modifications of the scaffold in this area could lead towards selective MAO
inhibitors.
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Pyrazole derivatives—A series of 72 pyrazole derivatives [136–138], were studied
according to 3D CoMFA models (see Fig. 5, structure 11) [139]. Molecular alignment was
carried out through docking calculations against the crystallographic structures of hMAO-A
(2BXR) and hMAO-B (1GOS) [23, 24, 26]. PLS analysis of the steric and electrostatic
fields identified the best configuration alignment selecting the best enantiomer for each
compound. Different CoMFA results were extracted for MAO-A (r2 = 0.978; q2= 0.671;
PLS components=10) and MAO-B (r2 = 0.912; q2= 0.555; PLS components=8). The contour
maps for MAO-A were analyzed using a compound with different substituents as an
example (R=COCH3, R′=2-OH, R″=4-Cl-C6H5). The detected pharmacophoric regions are:
a hydrogen-bond acceptor region close to the diazo moiety (N2 and the oxygen of the acetyl
group in N1, see structure 11) showing a possible interaction with Tyr444 and Ser209; a
hydrophobic region near the aromatic ring R″ (possible π-π stacking interaction with
aromatic residues such as Tyr407 and Tyr444); an electrostatic region close the 2-OH of the
3-phenyl ring (possible Tyr69 hydroxyl group interaction). Another compound was used to
show graphically the MAO-B contour maps (R=COCH3, R′=2-OH, R″=3-CH3-C6H5). The
main pharmacophoric areas for MAO-B are: two hydrogen-bond acceptors located close to
the –OH in the 3-phenyl ring and near N2 and the oxygen of the acetyl group attached to N1
(possible hydrogen bond interactions with Cys172, Tyr435 and Gln206); a hydrophobic
region near the 3-methyl group in R″ (possible interaction with aromatic residues Tyr60,
Phe343 and Tyr398). The results were consistent with molecular docking experiments
carried out by the authors [139, 140].

Heterogeneous data—A database of 130 reversible MAO-B inhibitors, (see Fig. 5,
structure 12) including tetrazole, oxadiazolone, oxadiazinone derivatives and N-
acylhydrazones (all of them contained the diazo N-N moiety), were studied by Carrieri et al.
[141] using CoMFA and GOLPE procedures. The results after calculating steric,
electrostatic and lipophilic fields are provided in Table 3. The steric and lipophilic
interactions are more important than electrostatic in the explanation of the potency for the
set of compounds taken into account. The analysis of the contour maps showed that
hydrophobic interactions of the benzyloxy moiety could increase the activity. On the other
hand, unfavorable hydrophobic interactions are close to the diazoheterocyclic moiety. The
length of the lateral chain in the diazo N-N moiety is also important for the activity pointed
out by unfavorable steric areas. Molecular docking calculations carried out by the authors
agreed with the 3D-QSAR results. CoMFA also provided support to the SAR published by
Wouters et al. [142]. The influence of lipophilicity to model the MAO-B activity was also
reported in previous studies [73, 76].

3D Pharmacophoric models
Thiazole and thiosemicarbazide derivatives—A pharmacophore generation approach
was developed by Gritsch [143] using the Catalyst 4.5 software package [144] to study the
MAO-B inhibitory activity (IC50) in a set of 100 thiazole and thiosemicarbazide derivatives,
both having in common a diazo N-N pharmacophoric substructure (see Fig. 6, structures 13
and 14). Once the structures of the different compounds were built, a minimum energy
conformational model was calculated for the molecules using the default parameters.
Pharmacophore selection was made analyzing different features: H-bond acceptor, H-bond
donor, hydrophobic substructures, positive ionizable (atoms that can be protonated), and
ring aromatic. Different pharmacophoric models were developed looking for common
features for thiazole derivatives, common features for thiosemicarbazides, and features
existing for both scaffolds together. The comparison of the generated pharmacophores
showed that four features model with two or three H-bond acceptors and one hydrophobic
and/or aromatic ring could be representative to explain the interaction for both
thiosemicarbazide and thiazole scaffolds. The above mentioned models were used to search
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for molecules in a 3D database (Dement World Drug index database) that fit all the features
of the query established in the developed pharmacophores. These findings are useful in the
design of new MAO-B inhibitors.

Coumarin analogues—A Hypogen three-dimensional pharmacophore for a set of 64
coumarin analogues (see Fig. 6, structure 15) using CATALYST software [144] was
described by Sairam et al. [145]. The compounds showed MAO-A inhibitory activity with
IC50 values from 2.0×10−8 to 1.0×10−4 M. The HypoGen algorithm allows the
establishment of hypothesis using structure and activity data to generate chemical features
(hydrophobic, hydrogen-bond donor, hydrogen-bond acceptor, positive and negative
ionizable sites) that are present in the active molecules and not present in the inactive ones.
The best obtained model consisted of five features: two hydrogen-bond acceptors and three
hydrophobic groups. The correlation coefficient between the experimental and predicted
activity was 0.95.

Tricyclic derivatives—In order to establish the structural requirements of a series of
tricyclic derivatives as MAO-A inhibitors (see Fig. 7, structure 16), Suryawanshi et al. [146]
developed ligan-based pharmacophores with four chemical features consisted of three
hydrogen-bond acceptors and one aromatic ring (see Fig. 8). The dataset of 65 compounds
previously published [121, 147, 148] was divided in training set (52 compounds were used
to generate the pharmacophoric model) and test set (13 compounds). Pharmacophore
modeling was developed with the help of Maestro software [149] through Phase module
[150] that combines conformational sampling with different scoring methods to identify
pharmacophoric hypothesis. Atom-based 3D QSAR models were constructed for all
pharmacophoric hypothesis generated previously. Van der Waals models of the aligned
molecules were placed in a grid that lead to binary-valued occupation variables used in the
QSAR models. The best model yielded a good predictability (r2=0.9595; q2=0.6229).

The study highlighted some binding features of tricyclic derivatives with MAO-A receptor,
which can be useful in the guidance of rational design of new inhibitors. Substitutions with
aliphatic chains at C7 aromatic (see Fig. 7, structure 16B) are favorable for the activity. The
presence of N-methyl amide group at C3 aromatic is crucial for the activity (structure 16B).
The presence of polar substituents at C6 in the structure 16A can decrease the activity.
Anilides at C3 favors the activity whereas substitutions at C2 decrease the binding with the
receptor (structure 16A).

Indole and pyrrole derivatives—A similar approach was described by Shelke et al.
[151] that combined ligand-based pharmacophore models with atom-based 3D QSAR
analysis to study a series of 82 indole and pyrrole derivatives as MAO-A inhibitors (see Fig.
7, structure 17). A database was collected from previous publications along with pKi values
[61, 152–154] and divided in raining (67 molecules) and test set (15 compounds). The
necessary steps to develop the pharmacophore models, including the conformation analysis,
alignment and pharmacophoric hypothesis generation, were carried out with the help of
Phase module [150]. The best pharmacophore was developed with four chemical features: a
hydrogen-bond donor, two hydrophobic groups and an aromatic ring. The different features
along with the distances are represented in Fig. 9. Information about the interaction with the
MAO-A receptor is analyzed though molecular docking (see Fig. 9). The top ranking
pharmacophores were subjected to atom-based 3D QSAR analysis. The best statistically
significant model yielded good predictability (r2=0.979; q2=0.699). The obtained
pharmacophoric-QSAR models were used to explore potential novel scaffolds in the ZINC
database [155, 156].
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PREDICTION OF MAO ACTIVITY THROUGH MULTI-QSAR AND NETWORK
MODELS

Santana et al. [53] combined complex network approaches with multi-QSAR methods in a
unified model to predict MAO activity on a heterogeneous and large database that includes
propargyl derivatives, benzamides, indoles, coumarins, and thioxanthenes among others.
The analyzed dataset included in vitro and ex vivo pharmacological activity measured in
cellular lines from different organisms. Molecular descriptors were calculated using the
MARCH-INSIDE approach [157]. Activity assay conditions were also taken into account
through dummy variables assigning two values (1 and 0) to define the presence or absence
of a certain condition. Each case in the study is defined by 159 variables (150 descriptors
and 9 assay conditions). Reduction of the dimensionality to 10 factors was performed by
principal component analysis (PCA). Stepwise linear discriminant analysis (LDA) led the
establishment of an equation to explain MAO-A and MAO-B activity with three variables
(factors) with Rc=0.79 (canonical regression coefficient), λ=0.38 (Wilk’s lambda) and p-
level<0.001 (significance level). The model also classified correctly 94.5% of the
compounds in the database (3,222 out of 3,408 compounds were correctly classified). PCA
scores for each case weighted with the QSAR coefficients were used to generate a matrix
containing similarity/dissimilarity information between the different compounds in different
pharmacological assays. A Boolean matrix with 0 and 1 values was calculated establishing a
threshold. This matrix was represented through CentiBiN [158] in a complex network. The
MAO inhibitors network topology is compared to the free scale network topology. On the
basis of the developed model, different coumarins have been synthesized and evaluated
against MAO-A and B with excellent results.

Multiple drug-protein interactions were investigated through multi-target QSAR models in a
recent publication [159]. 2D molecular descriptors in DRAGON software [58, 95] and 3D
structural parameters in MARCH-INSIDE [157] were calculated and introduced as an input
of different Artificial Neural Networks (ANN) [48]. The best non-linear multi QSAR model
was generated through Multi-Layer Perceptron (MLP) obtaining a sensitivity of 89% and
specificity of 94%. The model led to the reconstruction of a large drug-target complex
network. Different numerical parameters quantify the relevance of the nodes (drugs or
proteins) in the graph and detect drugs that bind different proteins along with the most
important therapeutic targets. The prediction and the experimental MAO-A and MAO-B
inhibitory activity was reported for a series of 10 oxoisoaporphines.

Multi-target QSAR methods were also used by Molina et al. [19] to predict MAO-A
inhibitory activity. A database of 2,246 heterogeneous compounds (1,725 in the training set
and 521 in the cross-validation set) were studied in different species (Bos taurus, Mus
musculus, Rattus norvegicus and Homo sapiens). Descriptors from spectral moments of the
bond adjacency matrix [160] and atom-centered fragment and functional group count
descriptors were calculated [58, 95]. Forward stepwise linear discriminant analysis (LDA)
was performed to derive the multi-species MAO-A QSAR model. The final model was used
to study the MAO-A activity of new oxoisoaporphine derivatives. Multi-QSAR techniques
could be useful in the prediction of molecular activities with great application to study
possible mechanisms of action.

CONCLUSION
Different types of ligand-based models, with diverse levels of complexity and taking into
account a high variability in the structural scaffold, were applied in the literature to study the
relationship between MAO activity and molecular structure. Ligand-based approaches
provided significant structure-activity relationship (SAR) information useful in the rational
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design of new MAO inhibitors. Ligand selectivity showed by both isoenzymes could also be
explained through this type of models. Ligand-based methods can be combined with protein-
structure models to further study the interactions between ligands and MAO enzymes in a
more realistic way.
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Figure 1.
Flowchart showing the Main Steps involved in the Development of a QSAR Model.
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Figure 2.
Main Steps implicated in the Construction of CoMFA Models.
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Figure 3.
Structure of Some Compounds studied with Ligand-Based Methods.
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Figure 4.
Structure of Some Compounds studied with CoMFA Analysis.
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Figure 5.
Some Scaffolds studied with CoMFA.
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Figure 6.
Compounds used in the Development of Pharmacophoric Models.
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Figure 7.
Structure of Some Compounds studied with Pharmacophoric Models.
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Figure 8.
Pharmacophore Model developed by Suryawanshi et al. [146] for Tricyclic Derivatives and
Distance (Å) between the Chemical Features (3 Hydrogen-Bond Acceptors and 1 Aromatic
Ring).
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Figure 9.
Pharmacophore Model generated by Shelke et al. [151] for Pyrrole Derivatives: a Hydrogen-
Bond Donor, two Hydrophobic Groups and an Aromatic Ring. Interactions between
Pharmacophoric Features and the Active Site of MAO-A are represented.
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Table 1

CoMFA-GOLPE Statistical Parameters for 38 Coumarin Derivatives studied by Catto et al. [134].

Fields Squared correlation coefficient (r2) Leave-one-out squared cross-validated correlation coefficient (q2)

MAO-A

Ste 0.819 0.727

Ele 0.811 0.673

Lipo 0.802 0.708

Ele+Ste 0.859 0.751

Lipo+Ste 0.823 0.738

Ele+Lipo 0.819 0.659

Ste+Ele+Lipo 0.881 0.789

MAO-B

Ste 0.821 0.692

Ele 0.885 0.805

Lipo 0.785 0.674

Ele+Ste 0.899 0.830

Lipo+Ste 0.787 0.677

Ele+Lipo 0.895 0.834

Ste+Ele+Lipo 0.906 0.837

MAO-B/MAO-A selectivity

Ste 0.867 0.751

Ele 0.941 0.897

Lipo 0.881 0.829

Ele+Ste 0.932 0.883

Lipo+Ste 0.834 0.832

Ele+Lipo 0.944 0.908

Ste+Ele+Lipo 0.926 0.889
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Table 2

Comparative CoMFA Results for Hydrazothiazoles studied by Chimenti et al. [135] using Different Molecular
Alignment Approaches (r2 is the Squared Correlation Coefficient and q2 is the Leave-One-Out Squared Cross-
Validated Correlation Coefficient).

Model (different alignment) r2 q2 Number of components

MAO-A

Substructure-based alignment 0.752 0.449 5

Pharmacophore-based alignment 0.768 0.352 4

Receptor-based alignment (docking) 0.961 0.811 4

MAO-B

Substructure-based alignment 0.678 0.356 4

Pharmacophore-based alignment 0.790 0.444 4

Receptor-based alignment (docking) 0.948 0.831 4
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Table 3

CoMFA-GOLPE Statistical Parameters for 130 MAO-B Inhibitors studied by Carrieri et al. [141].

Fields Squared correlation coefficient (r2) Leave-one-out squared cross-validated correlation coefficient (q2)

MAO-B

Ste 0.79 0.72

Ele 0.39 0.30

Lipo 0.74 0.67

Ele+Ste 0.79 0.72

Lipo+Ste 0.79 0.73

Ele+Lipo 0.74 0.68

Ste+Ele+Lipo 0.80 0.73
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