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Abstract
Objective—Striatum-based circuits have been implicated in both major depressive disorder
(MDD) and anhedonia, a symptom that reflects deficits of reward processing. Yet adolescents with
MDD often exhibit a wide range of anhedonia severity. Addressing this clinical phenomenon, we
aimed to use intrinsic functional connectivity (iFC) to study striatum-based circuitry in relation to
categorical diagnosis of MDD and anhedonia severity.

Method—A total of 21 psychotropic medication–free adolescents with MDD and 21 healthy
controls (HC), group-matched for age and sex, underwent resting-state functional magnetic
resonance imagining (fMRI) scans. Voxelwise maps indicating correlation strengths of
spontaneous blood-oxygenation-level–dependent (BOLD) signals among 6 bilateral striatal seeds
(dorsal caudate, ventral caudate, nucleus accumbens, dorsal-rostral putamen, dorsal-caudal
putamen, ventral-rostral putamen) and the remaining brain regions were compared between
groups. Relationships between striatal iFC and severity of MDD and anhedonia were examined in
the MDD group. Analyses were corrected for multiple comparisons.

Results—Adolescents with MDD manifested increased iFC between all striatal regions
bilaterally and the dorsomedial prefrontal cortex (dmPFC), as well as between the right ventral
caudate and the anterior cingulate cortex (ACC). MDD severity was associated with iFC between
the striatum and midline structures including the precuneus, posterior cingulate cortex, and
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dmPFC. However, distinct striatal iFC patterns involving the pregenual ACC, subgenual ACC,
supplementary motor area, and supramarginal gyrus were associated with anhedonia severity.

Conclusions—Although MDD diagnosis and severity were related to striatal networks
involving midline cortical structures, distinct circuits within the reward system were associated
with anhedonia.

Keywords
depression; functional connectivity; functional magnetic resonance imagining (fMRI); intrinsic
functional connectivity (iFC)

Adolescent major depressive disorder (MDD) is a profoundly disabling illness, yet its
pathophysiology and underlying neural circuitry remain poorly defined. It has become
evident that the inherent heterogeneity of psychiatric disorders has been a major impediment
to the development of reliable biomarkers. Therefore, the field has emphasized the
importance of investigating specific symptoms along the continuum of severity. Anhedonia,
a core symptom of MDD that reflect deficits in reward processing, has been the target of
such investigations.1-3 Although anhedonia is highly prevalent among depressed
adolescents,4 its extent is quite variable which results in contrasting MDD phenotypes.5,6

Notably, converging evidence, including recent data from the Treatment of Resistant
Depression in Adolescents (TORDIA) multisite trial, indicates that anhedonia may represent
a negative prognostic predictor for suicide and treatment response.7-9 In our previous work,
we identified specific neurobiological correlates of anhedonia involving the immune
system2 and the major inhibitory neurotransmitter γ-aminobutyric acid (GABA).3 The
current study extends this line of work by investigating striatal circuitry in adolescents with
MDD as it relates to anhedonia severity.

Converging evidence suggests that anhedonia reflects disturbances in reward circuitry tied to
the mesolimbic striatum–based system underlying reward processing.10,11 Because
anhedonia is a core symptom of MDD, functional magnetic resonance imagining (fMRI)
studies have used pleasant stimuli (images) or reward-related tasks to study MDD. Broadly,
the most consistent findings have been hypoactivation of the ventral and dorsal striatum
along with altered activation (both hyper- and hypoactivation) in the medial prefrontal
cortex (PFC), specifically the dorsomedial PFC (dmPFC) and the perigenual (pg) and
subgeneual (sg) anterior cingulate cortex (ACC).12-18 However, most of these studies did
not account for interindividual differences in anhedonia severity among the examined
population. Here, we used a seed-based approach to investigate resting-state functional
connectivity (RSFC) and to illuminate striatum-based circuitry related to adolescent MDD
and anhedonia. RSFC identifies functional networks based on patterns of correlation in low-
frequency fluctuations of blood-oxygenation-level–dependent (BOLD) signals during rest,
referred to as intrinsic functional connectivity (iFC).19-22 The absence of a task minimizes
potential floor, ceiling, and practice effects and allows recruitment of subjects who would
not otherwise be able to perform a cognitive task satisfactorily (e.g., younger or more
severely ill subjects). There have been multiple RSFC investigations in adult MDD and a
few in pediatric MDD populations. These studies confirm task-based fMRI findings of
alterations in fronto-striatal-limbic circuits along with medial wall abnormalities in both
adults23-27 and adolescents with MDD.28-30 However, findings have been conflicting as to
whether MDD is associated with increased31-34 or decreased17,24,29,35 iFC along these
circuits. This inconsistency may be related to the techniques used, as these studies have not
directly examined striatal circuitry. Indeed, a recent study of striatal circuitry in adults with
MDD reported decreased iFC between the ventral striatum and the sgACC but increased iFC
between the dorsal caudate and dorsolateral PFC.36
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Building upon these observations, our aims were to study striatum-based iFC in adolescents
with MDD and its relationships to severity of illness and anhedonia. We used a previously
validated set of 6 bilateral striatal seeds consisting of the dorsal and ventral caudate, the
nucleus accumbens (NAc), and the dorsal (caudal and rostral) and ventral putamen.37-40

Based on prior resting-state and task-based fMRI findings in pediatric and adult MDD, 12-21

we hypothesized the following: that, compared to healthy controls (HC), psychotropic-
medication-free adolescents with MDD would exhibit altered iFC along frontostriatal
circuits involving both the dmPFC and ACC (specifically decreased iFC with ventral
striatum seeds and increased iFC with dorsal caudate seeds, per prior seed-based striatal
findings in adult MDD36); and that, in the MDD group, anhedonia severity would be
associated with strength of striatal iFC with brain regions identified in the group
comparison, particularly the dmPFC and ACC. Furthermore, in light of substantial data
linking the sgACC and pgACC with reward circuitry, we expected that these regions would
be separately identified in relation to anhedonia severity. Analyses were repeated using a set
of 3 bilateral striatal seeds corresponding to the entire caudate, putamen, and NAc, with
results provided in Supplement 1, available online.

Method
Study Participants

We enrolled 21 adolescents with MDD (aged 12–19 years, mean 17.1 ± 2.5, 12 female and 9
male) and 21 HC (aged 13–19, mean 16.3 ± 1.4, 12 female and 9 male), group-matched for
age, sex, and handedness. Fourteen subjects in each group were also enrolled in a prior
proton MR spectroscopy study of GABA in adolescents with MDD and anhedonia.3

Subjects with MDD were recruited from the New York University (NYU) Child Study
Center, from the Bellevue Hospital Center Department of Psychiatry, and through local
advertisements in the New York (NY) metropolitan area. Healthy control (HC) subjects
were recruited from the greater NY metropolitan area through local advertisements and from
the families of NYU staff. This study was approved by the NYU School of Medicine
Institutional Review Board and the NYU University Committee on Activities Involving
Human Subjects. Before baseline clinical evaluations, study procedures were explained to
subjects and parents. Participants aged 18 years and older provided informed consent; those
less than 18 years provided assent and a parent-provided informed consent.

Inclusion and Exclusion Criteria—Exclusion criteria for all subjects consisted of the
presence of any significant medical or neurological disorder, IQ < 80, claustrophobia, or any
MRI contraindication as assessed by a standard safety screening form, a positive urine
toxicology test, or a positive urine pregnancy test in females.

All adolescents with MDD met the DSM-IV-TR diagnosis of MDD with current episode ≥ 8
weeks duration, raw severity score ≥ 40 (T score ≥ 63) on the Children's Depression Rating
Scale–Revised (CDRS-R), and psychotropic-medication–free status ≥ 3 months.

Exclusionary diagnoses included a lifetime history of bipolar disorder, schizophrenia,
pervasive developmental disorder, panic disorder, obsessive-compulsive disorder, conduct
disorder, or Tourette's disorder; or a substance-related disorder in the past 12 months. A
current diagnosis of posttraumatic stress disorder or an eating disorder was also
exclusionary.

HC subjects did not meet criteria for any current or past DSM-IV-TR diagnoses and had
never received psychotropic medication.
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Clinical Assessments—Subjects and parents were interviewed by a board-certified child
and adolescent psychiatrist (V.G., C.A.) at the NYU Child Study Center. Diagnoses were
established using the Schedule for Affective Disorders and Schizophrenia for School-Aged
Children, Present and Lifetime Version (K-SADS-PL),41 a semistructured interview
completed with subjects and parents. Additional assessments included the CDRS-R and the
Beck Depression Inventory, 2nd edition (BDI-II).42 IQ was estimated with the Kaufman
Brief Intelligence Test43 or the Wechsler Abbreviated Scale of Intelligence.44 Urine
toxicology and pregnancy tests were administered on the day of the scan.

Severity of MDD Episode—The severity of MDD episodes was determined from CDRS-
R scores.

Anhedonia—The anhedonia score (range 1–13) for each subject was computed, as in our
previous work,3 by summing the responses associated with anhedonia on a self-rated
questionnaire and a clinician-rated scale: the self-rated BDI-II (0–3 points for item 4: “loss
of pleasure” and 0-3 points for item 12: “loss of interest”); and the clinician-rated CDRS-R
(1–7 points for item 2: “difficulty having fun”). Thus, clinician- and self-rated assessments
each contributed equally to the computed anhedonia score (0–6 points from the BDI-II and
1–7 points from the CDRS-R). Such an approach has been previously used to assess
anhedonia severity in others' and our laboratories.1,3,7,45,46

Data Acquisition
Imaging data were acquired on a Siemens Allegra 3.0T scanner at the NYU Center for Brain
Imaging. For each participant, a high-resolution T1-weighted anatomical image
(magnetization prepared rapid acquisition gradient-echo [MPRAGE]; repetition time [TR] =
2,500 ms; echo time [TE] = 3.93 ms; inversion time [TI] = 600 ms; flip angle = 8°; 176
slices; field of view [FOV] = 256 × 256 mm2; voxel size = 1×1×1 mm3) was acquired.
Resting-state fMRI data were acquired using an echo planar imaging (EPI) sequence (197
whole-brain volumes; TR = 2,000 ms; effective TE = 25 ms; flip angle = 90°; 39 contiguous
3-mm oblique axial slices parallel to the AC-PC; matrix = 64×64; FOV = 192×192 mm2;
voxel size = 3×3×3 mm3). Participants were asked to relax with their eyes open while the
word “Relax” was displayed.

Data Analysis
Image Preprocessing—Consistent with prior work, we used a combination of AFNI
(http://afni.nimh.nih.gov/afni) and the FMRIB software library tool (FSL,
www.fmrib.ox.ac.uk).47-49 Resting-state data preprocessing comprised slice time correction
for interleaved slice acquisition, 3D motion correction, despiking, spatial smoothing (using a
3D spatial filter implemented in FSL with full width at half maximum (FWHM) = 6 mm),
mean-based intensity normalization of all volumes by the same factor, temporal bandpass
filtering (0.009–0.1 Hz) and linear and quadratic detrending. Linear registration of high-
resolution structural images to the Montreal Neurological Institute MNI152 template with
2×2×2 mm3 resolution was carried out using the FSL tool FLIRT, and was then refined
using FNIRT nonlinear registration.50 Linear registration of each participant's functional
data to his or her high-resolution structural image was also carried out using FLIRT.

Nuisance Signal Regression—As described elsewhere,39 to control for motion,
physiological nuisance signals (e.g., cardiac and respiratory fluctuations), and the large-scale
global neural signal(s) present in all voxels throughout the cortex,51 we regressed the pre-
processed data on the following 9 nuisance covariates: white matter, cerebrospinal fluid, 6
motion parameters, and the global signal. The resultant 4-dimensional residual time-series
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were transformed into MNI152 2-mm standard space and used for subsequent participant-
level correlation analyses.

As there remains controversy regarding whether to correct for the global signal,21,51-53 and
how to do so without introducing artifactual findings,54 we repeated analyses without global
signal correction. These results, which are consistent with our primary findings, are
presented in Supplement 1 and Table S2, available online.

Selection of Regions of Interest—We used 6 bilateral striatal seeds as described by Di
Martino et al. (2008).37 Each seed region of interest (ROI) was approximately spherical
(volume = 257×1 mm3 voxels, radius = ∼4 mm). These were located (in MNI152 space) in
the following: nucleus accumbens (NAc; ±9, 9, −8); ventral caudate (VC; ±10, 15, 0); dorsal
caudate (DC; ±13, 15, 9), dorsal caudal putamen (DCP; ±28, 1, 3); dorsal rostral putamen
(DRP; ±25, 8, 6), and ventral rostral putamen (VRP; ±20, 12, −3). These seed ROI were
defined based on anatomical and functional subdivisions of the striatum,55,56 and their iFC
patterns have been replicated independently.38-40,57 Secondary analyses, focusing on
broader striatal divisions, used a set of 3 anatomically defined ROI consisting of the right
and left caudate, putamen, and NAc as defined by the Harvard-Oxford Structural Atlas;58

the results of these analyses were largely confirmatory and are available in Supplement 1,
Table S1, and Figures S1–S3, available online.

Subject-Level iFC Analysis—For each participant, we first resampled the 4-dimensional
EPI residuals to 1×1×1 mm3 and applied seed masks to the resampled data to obtain
representative time series from the seed ROI. Each extracted seed ROI time series was then
used to calculate the correlation between it and that of every other voxel in the EPI residuals
data in native (i.e., acquisition) space to derive iFC maps. The resultant participant-level
correlation maps were Fisher z transformed to Z-value maps and transformed into MNI152 2
mm3 standard space for group-level analyses.

Group-Level iFC Analysis and Brain–Behavior Associations—Analyses of group-
level iFC for adolescents with MDD versus HC were carried out using a random-effects
least-squares model implemented in FSL (nuisance covariates: age, sex, full-scale IQ). This
group-level analysis produced thresholded Z-score maps of positive and negative iFC for
each striatal ROI and for each condition. Direct voxelwise condition comparisons of the 2
groups (HC, MDD) produced thresholded Z-score maps of those voxels that showed
significant iFC differences between the groups for each ROI.

To assess dimensional relationships between striatal iFC and anhedonia, voxel-wise
regression analyses were carried out in the MDD group, with anhedonia scores as the
covariate of interest. Since severity of MDD episode and anhedonia scores were
significantly correlated, all analyses controlled for CDRS-R scores with the anhedonia
question omitted to account for the nonspecific influences of depressive episode severity.
Resulting relationships between iFC and our clinical variables are thus partial correlations.
The HC group was excluded from this analysis because of the limited range of anhedonia
scores.

For all analyses, cluster-level corrections for multiple comparisons were performed using
Gaussian random field theory (Z > 2.3; cluster significance: p < .008 corrected; p < .008 was
selected to take into account the number of independent seed regions used (0.008 = 0.05/6).
Six, as opposed to 12, seed ROIs were considered, given the high degree of correlated
activity between homotopic seed regions59,60). Scatterplots found in Figures 2 and 3, and in
S4, available online, demonstrating the iFC relationships for all significant clusters, are for
illustrative purposes only and were not used for calculating r values.
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Results
Participants

Demographic and clinical characteristics are summarized in Table 1. One subject with MDD
had been treated with escitalopram for 6 months but was medication-free for 9 months
before scanning. All other subjects were psychotropic-medication-naive. Nineteen subjects
with MDD (90%) had experienced only 1 episode of depression, with length of episode
ranging from 4 to 30 months, and 2 patients reported having 2 distinct episodes.

Anhedonia scores were positively correlated with MDD severity scores, as indexed by
CDRS-R scores (r = 0.68, p < .001). Because our anhedonia scale included the anhedonia-
related item from the CDRS-R, we retested the correlation between anhedonia scores and
the CDRS-R computed without the anhedonia item. The correlation remained significant (r
= 0.56, p = .008).

Movement
Head movement during resting-state scans was approximated using 5 estimators: mean head
displacement, maximum head displacement, number of micromovements (> 0.1 mm), head
rotation,61 and mean framewise displacement (FD).62 These estimators were calculated from
the 6 translation and rotation parameters of 3-dimensional motion correction during data
preprocessing. Independent-samples t tests were conducted to compare these estimators
between MDD and HC groups, and no significant differences were found for any of the
movement measures (all p > 0.5; Table 2). Although motion was relatively low in the
sample used for the present work and was unrelated to diagnostic status or our covariates of
interest (i.e., MDD severity and anhedonia), we repeated our analyses with mean FD62 as a
nuisance covariate at the group level to rule out any motion sensitivities for our findings
(Table S3 and Figures S5–S7, available online). Nearly all findings remained unchanged; a
notable exception was the relationship between anhedonia and NAc/sgACC iFC, which fell
below threshold. Reassuring overall, we recommend some caution regarding the sgACC
finding until replicated in future work. Given the relatively low occurrence of motion in the
present sample, we avoided use of higher-order regression models for motion correction at
the individual subject level.63

Primary Hypothesis Testing: Striatal iFC Group Comparisons
MDD Group versus HC—Consistent with our hypothesis, group analyses revealed that
adolescents with MDD manifested increased iFC between striatal seeds and the dmPFC,
regardless of the hemisphere in which the seed was located. Decreased iFC in the MDD
group was identified between striatal seeds and mainly the occipital cortex. Additional
findings are detailed below, based on seed locations, as well as in Table 2 and Figure 1.
Similar findings from our secondary analysis are presented in Table S1 and Figure S1,
available online. Baseline connectivity maps for each seed region (based on the HC group)
and overlays of findings for each seed are available in Figure S8, available online.

Caudate—Adolescents with MDD compared to HC exhibited increased iFC between the
right ventral caudate and the ACC, including both the pregenual (pgACC) and subgenual
(sgACC) regions of the ACC. Adolescents with MDD exhibited decreased iFC between the
left dorsal caudate and the superior temporal lobe, as well as between the left ventral caudate
and the postcentral gyrus.

Putamen—Within the putamen, adolescents with MDD also manifested increased iFC
between the right ventral rostral putamen and the paracingulate gyrus, and between the right
dorsal rostral putamen and the inferior frontal gyrus.
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Nucleus Accumbens—Relative to HC, adolescents with MDD exhibited decreased iFC
between the right NAc and the middle temporal gyrus.

Associations of Striatal iFC With Clinical Variables in the MDD Group
MDD Severity—As indexed by CDRS-R scores, MDD severity was positively correlated
with iFC strength between the right ventral rostral putamen seed and the precuneus/posterior
cingulate cortex (PCC). Interestingly, negative correlations with MDD severity were
observed for iFC strength between the bilateral dorsal caudate and the precuneus/PCC.
Negative correlations between MDD severity and iFC were also observed between the right
NAc seed and the dmPFC. Findings are detailed in Table 2 and presented in Figure 2.
Severity findings from our secondary analysis were largely consistent and are presented in
Table S1 and Figure S2, available online.

Anhedonia Severity—As noted, because anhedonia scores were positively correlated
with the severity of current depressive episode, we carried out analyses adjusted at the
cluster level for CDRS-R scores with the anhedonia question omitted. The majority of
anhedonia-related findings were in the caudate. Specifically, anhedonia scores were
positively correlated with iFC strength of the ventral and dorsal caudate seeds with the
supplementary motor area (SMA), middle frontal gyrus, supramarginal gyrus, precuneus,
and pgACC, as well as between the right dorsal rostral putamen and the supramarginal
gyrus. Negative correlations were found between the left NAc and both the sgACC and the
left caudate, and between the right NAc and the occipital fusiform cortex. Anhedonia
correlations are detailed in Table 2 and presented in Figure 3, with additional correlation
plots provided in Figure S4, available online. Our secondary analysis yielded similar results
(Table S1 and Figure S3, available online).

Discussion
Our hypotheses that adolescents with MDD would manifest altered iFC along frontstriatal
circuits were confirmed; however, we detected only increased iFC compared to HC.
Similarly, we were able to detect distinct patterns of striatum-based circuitry that were
related to illness and anhedonia severity beyond our specific hypotheses. These findings are
discussed below.

Striatal Circuitry Based on a Categorical Diagnostic Approach
In group comparisons, adolescents with MDD manifested increased iFC between striatal
seeds and the dmPFC bilaterally, and between the right ventral caudate seed and the ACC.
Unexpectedly, we also found that adolescents with MDD manifested decreased iFC in
circuits connecting the striatum with the occipital cortex.

Our finding of increased connectivity between the striatum and dmPFC/ACC implies a
higher degree of coordination between these regions in adolescents with MDD. As noted,
there have been reports of both increased31-34 and decreased17,24,29,35 striatum-PFC iFC in
MDD patients compared to HC. However, most relevant to the current study is a recent
striatal-seed iFC investigation in adult MDD reporting increased striatum-PFC iFC for
dorsal striatum seeds versus decreased striatum-PFC iFC for ventral striatum seeds.36 In
contradiction to this study in adult MDD, we found only increased striatal-PFC iFC, and our
hypothesis that patients would exhibit decreased iFC between ventral striatum seeds and the
PFC was not supported. Interestingly, we did find a negative correlation between MDD
severity and iFC strength of the ventral-striatal NAc seed within the same network,
suggesting that the lower the coordination between the ventral striatum and the dmPFC, the
greater the illness severity. Our finding of increased increased iFC within the fronto-striatal
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circuits observed in adolescents with MDD compared to HC may reflect an earlier
manifestation or compensatory process of the disease. As such, this finding may be used in
the future to assess early stages of the disorder or at-risk individuals.

The coordinates of peak cluster activity also differ substantially between the NAc group
comparison and MDD severity correlation findings, with the left dmPFC involved in group
differences and the right dmPFC associated with MDD severity (Table 2). Past research has
indicated that the dmPFC responds to self-referential words with both positive and negative
valence bilaterally, but the right dmPFC is more involved in positive self-referential
processing.64 These opposing findings may therefore be driven by functional differences in
the distinct dmPFC regions detected.

Our finding of increased iFC between the striatum and both the dmPFC and the ACC in
adolescents with MDD is consistent with mounting evidence implicating these specific
circuits in MDD across the lifespan,10,12,13,65-67 using a widerange of imaging
techniques. 3,10,39,68-71 fMRI studies further support such findings through a wide range of
task paradigms 72-74 as well as diverse iFC approaches in adolescent,12,13,29,30,67

adult,27,74-76 geriatric,31,77 and postpartum patients.72 Histopathological reports have
confirmed findings in the medial PFC and ACC, documenting reduction in neuron size and/
or loss of glia in these regions in MDD.78-80 A possible explanation for the consistent
involvement of striatum-dmPFC/ACC circuits in MDD is their critical role in the cognitive
control of reward, reappraisal, mood, and reasoning: processes that contribute to key
symptoms of MDD.81-83 A germane meta-analysis supports the view that these cortical
midline structures, along with their striatal connections, mediate self-referential processes
and constitute the core of both our sense and our feeling of self.84 Findings from a recent
iFC study in adults with MDD provide additional support for this notion by identifying a
“dorsal nexus” region centered around the dmPFC that exhibits increased iFC with 3 distinct
networks involved in cognitive control, affect, and the default mode.27 Recent work has
further identified the dmPFC as a distinct subsystem within the default mode network that is
activated in spontaneous cognition involving self-referential thoughts about one's mental
state and affective information, as well as those that involve spontaneous social cognition—
processes that are disturbed in MDD.85-88

We also found decreased iFC between striatal seeds and the occipital cortex in adolescents
with MDD compared to HC. Albeit unexpected, a large body of evidence has pointed to the
possible role of the occipital lobe in MDD. Findings include changes in metabolism,89,90

white matter alterations,91,92 and increased BOLD signal in response to neutral faces93 and
during a working memory task.94 Adding to this literature is a recent iFC study that
examined the topological properties of brain networks in adults with MDD and documented
reduced nodal centrality in the occipital lobe among other relevant visual regions in MDD.95

These findings are most likely related to the critical role of the occipital cortex in processing
emotionally relevant visual stimuli.96,97 It is important to note that although occipital
findings in resting-state fMRI can be affected by whether eyes are open or closed during
scans,98,99 there is not a 1:1 relationship that would provide a direct explanation. Previous
studies, including a key meta-analysis of emotional task-based fMRI paradigms,100 noted
the presence of an occipital network linked to the PCC. In addition, a growing body of
literature suggests the presence of a functional hub based in cuneus, once again arguing
against a simple explanation based on eyes-open status.101

Neural Circuitry Related to Illness and Anhedonia Severity
MDD Severity—In our dimensional analysis, MDD severity was associated with iFC
strength between striatal seeds and both the precuneus/PCC and the dmPFC.
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Both the precuneus and PCC are considered a major connectivity hub along with the
dmPFC; together, they form the midline core of the default-mode network that is involved in
spontaneous cognition, self-referential processing, and affective decision-making.88,101

Multiple investigations have repeatedly implicated these circuits in MDD.16,25-27,31,32

In our study, we documented both positive and negative relationships between MDD
severity and iFC strength in circuits linking the striatum and the precuneus/PCC, depending
on the seed: positive correlations were identified with the right ventral putamen seed, and
negative correlations with the dorsal caudate seeds. These opposite directions with different
seeds suggest that the function of the ventral-putamen– based circuit differs from the
caudate/NAc-based circuit. Indeed, in our prior investigation of the striatum, we concluded
that a ventral-putamen– based network is involved with executive functioning, whereas the
caudate is involved with cognition and reward.37

Anhedonia—When we related striatum-based iFC to anhedonia severity, distinct circuits
within the neural reward system were identified. Specifically, positive associations with
anhedonia were found for circuits connecting the striatum and the pgACC, SMA, and
supramarginal gyrus. In addition, anhedonia was negatively associated with circuits
connecting the NAc with the sgACC and caudate. Intriguingly, these circuits and regions
have been previously linked to anhedonia as well as to reward processes across several
neuropsychiatric disorders, indicating that the circuitry underlying anhedonia is independent
of the specific MDD diagnosis.11,102-106

Furthermore, in our current investigation, we also documented 2 opposing striatum-ACC
circuits that related to anhedonia severity: a positive association with ventral-caudate-
pgACC iFC, and a negative association with NAc-sgACC iFC. We hypothesize that these
contrasting associations represent independent circuits that participate in distinct reward
processes. Supporting this notion are recent fMRI findings documenting pgACC activation
during decisions that entail large versus small rewards, as opposed to sgACC activation
during decisions with positive versus negative outcomes.107 Similarly, our finding of a
positive association of striatum-SMA iFC with anhedonia severity fits with current literature
identifying the SMA as a key region in reward processing. The SMA has often been
activated along with the pgACC in reward task-based fMRI studies, particularly during the
anticipation/decision phase of reward.108-110 We also found positive correlations between
striatum-supramarginal-gyrus iFC and anhedonia severity; these findings are akin to a
previously reported correlation between activation of this region in response to sad stimuli
and anhedonia severity in adults with MDD.15 Interestingly, the supramarginal gyrus has
also been implicated in adult obesity, where alterations within the reward circuitry are
hypothesized to play a key role.105

Although our sample size is comparable to those of other studies of clinical populations in
the functional neuroimaging literature, definitive interpretation must be deferred until
findings are replicated independently. A possible limitation of the current study is the use of
an anhedonia scale that was based on questions from the BDI (self-rated) and the CDRS-R
(clinicianrated). However, this approach has been used in many other investigations in both
adults and adolescents, including in the multisite Treatment of Resistant Depression in
Adolescents (TORDIA) trial, and seems to adequately assess anhedonia severity in MDD
populations.3,7,46 Importantly, Leventhal et al. (2006) demonstrated that a similar scoring
approach based on self-administered questionnaires correlated with other several anhedonia
measures (e.g., the Snaith-Hamilton Pleasure Scale).111 Furthermore, in our study we were
able to capture a wide range of anhedonia severity (1–10) in a moderately to severely
depressed population. Future studies should use measures that are more sensitive and
applicable to both patients and controls, to fully explore the nature of anhedonia
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neurobiology quantitatively. Similarly, the present work relied on task-independent
approaches. Although this is an attractive option because of the relative ease of data
collection and the benefits detailed above, future work should include task-activation probes
with demonstrated utility in the examination of reward circuitry during distinct phases of a
pleasurable activity (i.e., anticipatory versus attainment phases). Simultaneous assessment of
neurotransmitters such as GABA and glutamate would also have enhanced our
understanding of the involved circuits, particularly in light of our recent finding of a
negative relationship between ACC GABA concentrations and anhedonia severity.3

Although the present work focused on striatal connectivity because of the sizeable literature
implicating striatal dysfunction in MDD and anhedonia, it is not our intention to dissuade
others from examining alternative circuits. In fact, our findings suggest the need to expand
neural models of MDD, as our analyses revealed alterations in regions such as the occipital
cortex and precuneus/PCC—prominent functional hubs in the brain.101

Our investigation of striatal iFC in medication-free adolescents with MDD revealed a
consistent pattern of altered iFC between striatal seeds and the dmPFC/ACC, as well as the
visual cortex, in adolescents with MDD. However, when we examined striatal circuits as
they related to severity of depressive episode and anhedonia, we were able to distinguish
specific connections. Although the precuneus along with the midline core of the default
mode network (i.e., the PCC and dmPFC) was related to MDD severity, striatal circuits
connecting to the SMA, pgACC, and sgACC were instead related to anhedonia severity.
Importantly, our findings suggest that several previously established striatal networks,
including cortical associations, motor, and limbic, are involved in the phenomenology of
adolescent MDD (comprehensively reviewed by Choi et al.).112 Our findings suggest that
distinct circuits may contribute to different aspects of MDD. Consistent with prior work,3,20

this study further emphasizes that assessing symptoms as dimensions in addition to binary
categories can enrich our understanding of the underlying neurobiology of psychiatric
disorders.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Intrinsic functional connectivity (iFC) group comparison between adolescents with major
depressive disorder (MDD) and healthy controls. Note: Maps showing regions with (left)
increased iFC in MDD versus controls, and (right) increased iFC in controls versus MDD.
Significant iFC with each seed is color coded, with regions functionally connected with
more than 1 seed indicated in yellow. Display threshold: Z > 2.3.
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Figure 2.
Intrinsic functional connectivity (iFC) correlations with major depressive disorder (MDD)
severity and associated plots. Note: Maps showing regions with iFC (left) positively
correlated with MDD severity and (right) negatively correlated with MDD severity. Plots a–
d below demonstrate these relationships. Display threshold: Z > 2.3. DC = dorsal caudate;
dmPFC = dorsomedial prefrontal cortex; NAc = nucleus accumbens; PCC = posterior
cingulate cortex; VRP = ventral rostral putamen.
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Figure 3.
Intrinsic functional connectivity (iFC) correlations with anhedonia scores and representative
plots. Note: Maps showing regions with iFC (left) positively correlated with anhedonia
severity and (right) negatively correlated with anhedonia severity. Plots a–d below
demonstrate several of these relationships. Additional plots are available in Figure S4,
available online. Display threshold: Z > 2.3. ACC = anterior cingulate cortex; DC = dorsal
caudate; NAc = nucleus accumben; SMA = supplementary motor area; VC = ventral
caudate.
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Table 1
Demographic and Clinical Characteristics of Adolescents With Major Depressive
Disorder (MDD) and Healthy Controls

Characteristic MDD Subjects n = 21 Healthy Controls n = 21

Age, y (Range) 17.1 ± 2.5 (12–19) 16.3 ± 1.4 (13–19)

Gender (female/male), n (%) 12/9 (57/43) 12/9 (57/43)

Ethnicity (white/African American/Hispanic/Asian/other), n (%) 10/3/6/0/2 (48/14/29/0/10)a 10/5/1/2/3 (48/24/5/10/14)a

Illness history

 Current episode duration, mo (Range) 13.6 ± 7.9 (4–30) 0

 No. of MDD episodes (n) 1 (n = 19), 2 (n = 2) 0 (n = 21)

 History of suicide attempts (Range) 0.2 ± 0.5 (0–2) 0

 Medication-naive/medication-free, n (%) 20/1 (95/5) 21/0 (100/0)

 CDRS-R (Range) 48.9 ± 6.8 (39–64) 19.1 ± 2.2 (17–27)

 BDI-II (Range) 25.3 ± 12.5 (11 –51) 1.9 ± 2.4 (0–9)

 BSSI (Range) 5.6 ± 9.7 (0–37) 0.1 ± 0.2 (0–1)

 MASC (Range) 50.0 19.5 (11–85) 31.2 13.1 (6–52)

 Anhedonia scores (Range) 6.3 ± 2.7 (1–10) 1.3 ± 0.6 (1 –3)

Current comorbidity

 ADHD, n (%) 3 (14) 0

 Any anxiety disorder, n (%) 10 (48) 0

 GAD, n (%) 8 (38) 0

Note: ADHD = attention-deficit/hyperactivity disorder; BDI-II = Beck Depression Inventory, 2nd ed.; BSSI = Beck Scale for Suicidal Ideation;
CDRS-R = Children's Depression Rating Scale–Revised; GAD = generalized anxiety disorder; MASC = Multidimensional Anxiety Scale for
Children.

a
Respective percentages (may not add up to 100% because of rounding).
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