
Rank-based variable selection with censored data

Jinfeng Xu,
Department of Statistics and Applied Probability, Risk Management Institute, National University
of Singapore, 117546 Singapore, Singapore

Chenlei Leng, and
Department of Statistics and Applied Probability, Risk Management Institute, National University
of Singapore, 117546 Singapore, Singapore

Zhiliang Ying
Department of Statistics, Columbia University, New York, NY 10027, USA
Jinfeng Xu: staxj@nus.edu.sg; Chenlei Leng: stalc@nus.edu.sg; Zhiliang Ying: zying@stat.columbia.edu

Abstract
A rank-based variable selection procedure is developed for the semiparametric accelerated failure
time model with censored observations where the penalized likelihood (partial likelihood) method
is not directly applicable.

The new method penalizes the rank-based Gehan-type loss function with the ℓ1 penalty. To
correctly choose the tuning parameters, a novel likelihood-based χ2-type criterion is proposed.
Desirable properties of the estimator such as the oracle properties are established through the local
quadratic expansion of the Gehan loss function.

In particular, our method can be easily implemented by the standard linear programming packages
and hence numerically convenient. Extensions to marginal models for multivariate failure time are
also considered. The performance of the new procedure is assessed through extensive simulation
studies and illustrated with two real examples.
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1 Introduction
As an attractive alternative to the proportional hazards model (Cox 1972), the accelerated
failure time model specifies directly a regression model of the log transformed survival time
on a set of covariates,

where Ti is the survival time, Xi is a p-dimensional covariate, β0 is a p-vector of unknown
regression parameters and εi (i = 1, …, n) are independent error terms with a common, but
completely unspecified, distribution. Because of this direct relationship between survival
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time and covariates, the accelerated failure time model is physically interpretable and in
many ways more appealing than the proportional hazards model (Kalbfleisch and Prentice
2002, Chap. 7).

A common phenomenon of survival analysis is that data are subject to right censoring. Due
to the censoring, the observed data are (T ̃i, Δi, Xi, i = 1, …, n), where Ci is the censoring
time, T̃i = Ti ∧ Ci is the observed time and Δi = 1{Ti≤Ci} is the censoring indicator. Define
ei(β) = log T̃i − βT Xi, Ni(β; t) = Δi 1{ei(β)≤t} and Yi(β; t) = 1{ei(β)≥t}. Note that Ni and Yi are
the counting processes and at-risk process on the time scale of the residual. Write

The weighted log-rank estimating function for β0 takes the form

where X̄ (β; t) = S(1) (β; t)/S(0) (β; t), and ϕ is a possibly data-dependent weight function, the
choice of ϕ = S(0) leads to the Gehan statistics. In this case, Uϕ can be written as

or

which is the gradient of the convex function

for |a|− = |a| 1a<0. Based on this fact, Jin et al. (2003) provided simple and reliable methods
to obtain the rank estimators. They showed that the rank estimator with the Gehantype
(1965) weight function can be readily obtained by minimizing a convex objective function
through a standard linear programming technique.

An important objective of survival analysis is to identify a subset of significant variables
from a large number of covariates which are often collected to reduce possible modeling
bias. Variable selection is fundamental to statistical modeling and recently, a number of
approaches based on the penalized partial likelihood have been applied to the Cox
proportional hazards model and gained increasing popularity. See, for example, Lasso
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(Tibshirani, 1996, 1997), Scad (Fan and Li, 2001, 2002), Alasso (Zou, 2006, 2008; Zhang
and Lu 2007; Lu and Zhang 2007; Wang et al. 2007b), and LSA (Wang and Leng 2007).
Wang et al. (2007a) discussed the penalized least absolute deviation estimation without
considering censoring. In the accelerated failure time model aforementioned, we are
particularly interested in estimating the unknown vector β0 and identifying any nonzero
components. Zhang and Lu (2007) proposed the penalized partial likelihood method for
variable selection in the Cox model. However, in the accelerated failure time model, partial
likelihood is not available and semiparametric estimation of the regression coefficient vector
relies on the rank-based methods. The estimates are usually obtained by minimizing a non-
smooth objective function or solving the estimating equations which are step functions with
potentially multiple roots (Jin et al. 2003). Johnson (2008) and Johnson et al. (2008)
proposed a general variable selection procedure by penalizing estimation equations with
broad and important applications especially including the censored accelerated failure time
model. For uncensored data, Johnson and Peng (2008) developed a rank-based variable
selection procedure in the linear model and the desirable properties such as the robustness
and the oracle properties are obtained. In this article, we propose the ℓ1 regularized Gehan
estimator for simultaneous estimation and variable selection which yields advantages in two
fronts. First, the shrinkage property of the ℓ1 penalty and proper choice of tuning parameters
build sparse models without sacrificing accuracy. Secondly, the single criterion function
with both components being of ℓ1-type reduces (numerically) the minimization to a strictly
linear programming problem, making any resulting methodology extremely easy to
implement.

The rest of the paper is organized as follows. Section 2 introduces the ℓ1 regularized Gehan
estimator and gives its asymptotic properties. A novel χ2 type criterion is proposed to
choose the tuning parameters in Sect. 3. Extensions to multivariate failure time data are
considered in Sect. 4. The proposed methodology is illustrated with the applications to two
datasets in Sect. 5. In Sect. 6, simulations are conducted to assess the finite-sample
performance of the proposed methods. Section 7 concludes with a general discussion. All
the proofs are relegated to the Appendix.

2 The ℓ1 regularized Gehan estimator
Define the ℓ1 regularized Gehan loss function as

(1)

where λnj, j = 1, …, p are tuning parameters and βj is the j th component of the vector β, j =
1, …, p. The regularized estimate of β0 is a minimizer of Lp(β) and denoted by β̂.

Let , where  is an s-vector and  is a (p − s)-vector. Without loss of

generality, assume  is the zero vector and  is the nonzero vector. Suppose further that
{λnj} satisfy the following conditions:
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This assumption states that the penalties applied on the zero entries in β dominate those on

the nonzero entries. Intuitively, the requirement that  for 1 ≤ j ≤ s enables the

resulting estimates of  to be -consistent; and the condition that  for s + 1 ≤ j

≤ p shrinks the estimates of  to zero. This observation is made rigorous by the following
theorem.

Theorem 1
(Oracle properties) Under the conditions 1–4 of Ying (1993) and (C), with probability
tending to one, the penalized estimator β̂ = {(β̂1)T, (β̂2)T}T has the following properties:

a. β̂2 = 0;

b. , where, , AG1 and BG1 are defined in the
Appendix.

Remark 1—Theorem 1 states that the proposed estimator estimates the coefficients of the
important variables as if the true were known in advance, which is referred to as the oracle
properties by Fan and Li (2001). However, as noted by an anonymous referee, the model
selection consistency of the adaptive Lasso is obtained through the large sample theory and
for finite sample size and small signal-to-noise ratio, it can perform rather poorly, sometimes
even worse than the ordinary Lasso. Furthermore, Leeb and Pötscher (2008) showed that the
maximal risk of any sparse estimator goes to infinity as the sample size increases. Hence the
minimax efficiency and the model selection consistency seem to be two irreconcilable
properties. In practice, we should always be cautious about using which to choose a good
estimator.

The limiting covariance matrix V involves the unknown hazard function, so that it is
difficult to estimate the covariance matrix analytically. Here we apply the random
perturbation method (Rao and Zhao 1992; Parzen et al. 1994; Jin et al. 2001) to approximate
the distribution of β̂. To be specific, define β̂* as a minimizer of the perturbed ℓ1 regularized
Gehan loss function

(2)

where the random variable Zi satisfied E(Zi) = 1 and V (Zi) = 1. In the data analysis and
simulation studies, the standard exponential distribution is used. The following theorem
justifies the use of random perturbation method to distributional approximation of the
estimator.

Theorem 2
(Asymptotic variance) Under (C) and conditions 1–4 of Ying (1993, p. 80), with probability

tending to one, conditional on the data (T̂i, Δi, Xi) (i = 1, …, n),  has the

following properties: (a) ; (b) .

In practice, we fix the tuning parameters which satisfy condition (C) in implementing the
perturbation method.
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3 Computation and tuning parameter selection
As pointed out in Jin et al. (2003), the minimization of LP(β) can be carried out by linear
programming and is equivalent to the minimization of

where M is a large constant. An implementation of the algorithm is discussed by Koenker
and D’Orey (1987), with the code available in S-Plus and R and other softwares. The

minimization of  can be implemented similarly. Condition (C) suggests pre-selection of
{λnj}’s based on a preliminary estimate of β, and in this work we take

(3)

for τ > 0, as {β̃j} are -consistent. This choice is discussed by Zou (2006), Zhang and Lu
(2007) and Wang et al. (2007b). For such λnj s, we have an = max{λnj, j = 1,…, s} = λOp
(1) and bn = min{λnj, j = s + 1, …, p} = λOp(nτ/2)→ ∞. It is then easy to see that once λ
satisfies

Theorems 1 and 2 hold. This simplification is attractive from a computational viewpoint,
since we only need to choose one tuning parameter λ instead of p tuning parameters λnj, j =
1, …, p. For later exposition, we shall fix {λnj} according to (3) with τ = 1.

In order to study the dependence of the selected model on the tuning parameter λ, we denote
the model corresponding to β̂λ as Sλ = {j : β̂λ, j ≠ 0}. Write the derivative of Gehan loss
function as

Then  is asymptotically normal with mean zero and variance

Consider the following χ2 type statistics:

and by applying arguments similar to those in Wei et al. (1990), when Sλ ⊇ {1, …, s} i.e. a
correct model is identified (not necessarily the true model), Tλ follows the χ2 distribution
with degrees of freedom q which equals to the number of zero components in β̂λ. Tλ is
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scale-invariant and has a likelihood interpretation and hence can be used for tuning
parameter selection. An attractive property of Tλ is that BGn does not require density
estimation and thus can be easily computed. Based on Tλ, we propose the Bayesian
information criterion (BIC)

where dfλ is the number of nonzero components in β̂λ. Similarly, the Akaike information
criterion (AIC) can be defined as

Replacing the ℓ2 loss function in the generalized cross validation (GCV) with the Gehan loss
function, GCV can be defined as

We define R0 = {λ ≥ 0 : Sλ = {1, …, s}} as the set of λ’s such that the true model is
identified. In addition, we define a reference tuning parameter sequence

. By Theorem 1, it follows that with probability one, Sλn = {1, …, s}.
We have the following consistency theorem for the BIC method.

Theorem 3
Under the assumptions in Theorem 1, P(infλ∉R0 BICλ > BICλn) → 1.

This theorem states that for any λ which can not choose the true model, its associated BIC is
larger than the one identified by the reference sequence. Therefore, the optimal λ which
minimizes BIC must correspond to the true model. The proof of this theorem is similar to
that of Theorem 4 in Wang and Leng (2007) and is therefore omitted. Note that neither AIC
nor GCV yields consistent model selection results if a true sparse model exists (Wang et al.
2007c).

4 Extensions to multivariate failure time data
Following Jin et al. (2006), in this section, we consider the extension of ℓ1 regularized
method to multivariate failure time data. The oracle properties for the estimators defined in
this section, similar to those in Theorems 1–3, can be shown by using the similar techniques
and are therefore omitted. Additionally, computing the estimates relies on the linear
programming technique, thus can be easily implemented.

4.1 Multiple events data
Multiple events data arise when a subject can potentially experience several types of event
or failure. For k = 1, …, K and i = 1, …, n, let Tki be the time to the kth failure of the ith
subject, let Cki be the censoring time on Tki, and let Xki be the corresponding pk-vector of
covariates. We assume that (T1i, …, TKi) is independent of (C1i, …, CKi) conditional on
(X1i, …, XKi). The marginal accelerated failure time models take the form
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where βk is a pk-vector of unknown regression parameters, and (ε1i, …, εKi), i = 1, …, n are
independent random vectors from an unspecified joint distribution with marginal
distribution functions F1, …, FK. The data consists of (T̃ki, δki, Xki), k = 1, … K; i = 1, …, n,
where T ̃ki = min(Tki, Cki) and δki = I{Tki≤Cki}.

Let eki(β) = log T̃ki − βT Xki and the Gehan-type loss function for βk is then

For each k = 1, …, K, correspondingly, the ℓ1 regularized loss function is

Similarly, the minimization problem can be reduced to K standard linear programming
problems and the distribution of the estimator can be approximated by the perturbation
method.

4.2 Clustered failure time data
The clustered data arise when we have a random sample of n clusters and there are Ki
members in the ith cluster. Let Tik and Cik be the failure time and censoring time for the kth
member of the ith cluster, and let Xik be the corresponding p × 1 vector of covariates. We
assume that (Ti1, …, Ti Ki) and (Ci1, …, Ci Ki) are independent conditional on (Xi1, …,
Xi Ki). The data consist of (T̃ik, δik, Xik), k = 1, …, Ki; i = 1, …, n, where T̃ik = min(Tik, Cik)
and Δik = I{Tik≤Cik}.

Suppose that the marginal distribution of the Tik satisfy the accelerated failure time model

where β0 is a p-vector and (εi1, …, εi Ki), i = 1, …, n are independent random vectors.

Define, , the Gehan type loss function for β is

The ℓ1 regularized loss function is
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4.3 Recurrent events data
With a random sample of n subjects, let Tki be the time to the kth recurrent event on the ith
subject; let Ci and Xi be the censoring time and the p × 1 vector of covariates for the ith
subject. Assume that Ci is independent of Tki (k = 1, …) conditional on Xi. Let

We specify the following accelerated time model for the mean frequency function:

where β0 is a p × 1 vector and μ0(·) is an unspecified baseline mean function. The Gehan
type loss function for β is

The ℓ1 regularized Gehan loss function is

5 Two real examples
In this section, we apply our method to analyze two well known datasets.

5.1 Primary biliary cirrhosis data
The primary biliary cirrhosis (PBC) data, provided in Therneau and Grambsch (2001), came
from the Mayo Clinic trial in primary biliary cirrhosis of the liver conducted between 1974
and 1984. The data contain information about the survival time and 17 prognostic variables
for 424 PBC patients who met eligibility criteria for the randomized placebo-controlled trial
of the drug D-penicillamine. We considered the 276 patients with the complete information
of all 17 variables and used the accelerated failure time model to study the relationship of
the survival time and the prognostic variables. In our analysis, the 17 variables are drug, age,
sex, ascites, hepatomegaly, spiders, edema, bilirubin, cholesterol, albumin, urine copper,
alkaline phosphotase, SGOT, triglycerides, platelets, prothrombin time and histologic stage
of disease. Albumin, alkaline phosphatase, bilirubin and prothrombin time have all been
transformed on the natural logarithmic scale. The variables were also standardized to have
mean zero and unit variance. The R package quantreg was used in both data analysis and
simulation studies. Table 1 summarizes the estimated coefficients of the Gehan estimate, the
Lasso estimate and the adaptive Lasso estimate. The AIC, BIC or GCV criteria were used to
choose the tuning parameters respectively. For this data set, GCV and AIC yield the same
estimates for the same penalty function (Lasso or adaptive Lasso) and thus only the
estimated coefficients via AIC were reported. The standard errors were computed via 1000
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random perturbations for the standard exponential distribution. However, we only recorded
the standard errors of those which were identified as nonzero coefficients. To appreciate the
relationship between various estimates and the tuning parameters, for a shrinkage estimator,
we calculated the shrinkage parameter as

where β̂G is the unpenalized Gehan estimator, β̂ is either the Lasso (β̂L) or the adaptive
Lasso (β̂A) estimator.

In Figs. 1 and 2, both the coefficients and the criterion function (AIC/BIC/GCV) are plotted
against the shrinkage parameter for Lasso and adaptive Lasso estimates respectively.

A few observations can be made from Table 1. First, GCV and AIC perform similarly for
Lasso and adaptive Lasso penalties. Secondly, BIC yields smaller models than AIC and
GCV. The combination of adaptive Lasso and BIC gives the model with the most zero
coefficients. From Figs. 1 and 2, we see that BIC tends to shrink more than AIC and GCV
and hence gives sparser models.

As noted by an anonymous referee, BIC usually has less favorable out-of-sample prediction
performance than the cross-validation method. Here we use a tenfold crossvalidation scheme
to compare the out-of-sample performance of AIC, BIC, GCV and cross-validation. To be
specific, we left out one tenth of the data and use the remaining data to obtain the Lasso and
adaptive Lasso estimates while choosing the tuning parameters via AIC, BIC, GCV or a
tenfold cross-validation. Then we estimate the prediction error by evaluating the Gehan loss
function on the one-tenth leftout sample. Table 2 shows the results for the PBC data. It
indicates BIC performs a bit worse than the other criteria but the sacrificed prediction
accuracy is not much.

5.2 Framingham heart data
The Framingham Heart Study (Dawber 1980) was initiated in 1948, with 2336 men and
2873 women aged between 30 and 62 years at their baseline examination. Individuals were
examined every 2 years after participating in the 30-year follow-up study. Multiple events,
e.g., times to coronary heart disease (CHD), denoted by T1; and cerebrovascular accident
(CVA), T2, were observed from the same individual. Data used here included the
participants in the study who had an examination at age 44 or 45 and were disease-free at
that examination in the sense that there existed no history of hyper-tension or glucose
intolerance and no previous experiences of a CHD or CVA. The original dataset contains a
total of 1571 disease-free individuals. The risk factors of interest were age, x1; body mass
index, x2; cholesterol level, x3; systolic blood pressure, x4; cigarette smoking, x5; and
gender, x6. Since modeling biases can possibly be reduced by introducing interactions, we
consider the marginal bivariate accelerated failure time model using both the main effects
and first-order interactions. The variables were standardized to have zero mean and unit
variance. Table 3 summarizes the estimated coefficients of the Gehan estimate, the Lasso
estimate and the adaptive Lasso estimate for both CHD and CVA. The BIC criterion was
used to choose the tuning parameters. It shows that there are many interactions among the
risk factors on both CHD and CVA and as expected, adaptive Lasso yields sparser models
than Lasso.

Xu et al. Page 9

Stat Comput. Author manuscript; available in PMC 2013 September 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



6 Simulations
We conducted extensive simulation study for univariate and multivariate failure time data in
this session. All the simulations were conducted using R package quantreg.

6.1 Univariate failure time data
We simulated datasets consisting of 100 observations from the accelerated failure time
model

where β = (3, 1.5, 0, 0, 2, 0, 0, 0)T, the xi s were marginally standard normal and the
correlation between xi and xj was ρ|i−j| with ρ = 0.5. The censoring times were generated
from U n(0, τ) distribution, where τ was chosen to be 142 or 50 yielding the censoring level
30% or 50% respectively. The distribution of ε was set to be N (0, 1), t3 and 0.5 N (0, 1) +
0.5 N (0, 9) respectively to assess the robustness of our proposed method. For the estimator
β̂, its performance is gauged by the model error which is defined as

The ideal oracle estimator which knows the true nonzero co-efficients but not their exact
values will apply the rank-based estimation procedure by considering only covariates x1, x2
and x5. The Lasso and adaptive Lasso were used to penalize the Gehan-loss function and the
tuning parameters were chosen by AIC, BIC or GCV as defined in Sect. 3. For each method,
its relative model error compared to that of the oracle estimator was computed.

In Table 4, the median relative model errors (MRME) based on 1000 simulated datasets as
well the average number of correctly selected (C) and incorrectly selected (IC) variables are
summarized for the three error distributions. It shows that adaptive Lasso with BIC yields
estimates with smaller models and more accurate estimates. Furthermore, the adaptive Lasso
outperforms the Lasso in terms of variable selection and mean squares errors and the
proposed estimator is very robust to the heavy tailed distribution t3 and contamination
normal distribution 0.5 N (0, 1) + 0.5 N (0, 9).

To investigate the performance of the adaptive Lasso and the Lasso when the signal-to-noise
ratio is small, following Leeb and Pötscher (2008), we multiply the regression coefficient
vector by . With sample size 100 and censoring 30%, the results are summarized in
Table 5. It can be seen that the adaptive Lasso performs very poorly and even a bit worse
than the Lasso.

6.2 Multivariate failure time data
For multiple events and clustered data, two failure times T1 and T2 were generated from
Gumbel (1960) bivariate distribution:

where −1 ≤ θ ≤ 1. The correlation between T1 and T2 is θ/4. The two marginal distributions

Fk(tk), k = 1, 2, were generated from the exponential distribution with hazard rate .
We simulated 100 datasets consisting of 100 observations from the model where Xk = (x1k,
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…, xpk), p = 8, the xik s were marginally standard normal and the correlation between xik
and xjk was ρ|i−j| with ρ = 0.5. The censoring times were generated from U n(0, τ)
distribution, where τ was chosen to be 1.5 yielding the censoring level 50%. For multiple
events, we set β10 = (3, 1.5, 0, 0, 2, 0, 0, 0)T, β20 = (0, 0, 2, 0, 0, 1.5, 3, 0)T and Xk = X. For
clustered data, X1 and X2 were generated inependently and βk0 = β0 = (3, 1.5, 0, 0, 2, 0, 0,
0)T. For recurrent events, we set β0 = (3, 1.5, 0, 0, 2, 0, 0, 0)T and the covariates were
generated in the same manner as in the case of multiple events. The gap times between
successive events were generated from the aforementioned Gumbel’s bivariate exponential
distribution. The resultant recurrent event process is Poisson under θ = 0 and non-Poisson
under θ ≠ 0. The follow-up time was an independent U n(0, 2.5) random variable, which on
average yielded approximately 2.60 and 2.86 events per subject for the Poisson and non-
Poisson cases respectively.

For multiple events, the performance of the estimator is gauged by the model error which is
defined as

The ideal oracle estimator which knows the true nonzero coefficients but not their exact
values will apply the rank-based estimation procedure by considering only covariates x1, x2
and x5 for T1 and x3, x6 and x7. For clustered data, the performance of the estimator is
gauged by the model error

For recurrent events, the performance of the estimator is gauged by the model error

For clustered data and recurrent events, the ideal oracle estimator just considers variables x1,
x2 and x5.

The Lasso and adaptive Lasso were used to penalize the Gehan-loss function and the tuning
parameters were chosen by AIC, BIC or GCV as defined in Sect. 4. For each method, its
relative model error compared to that of the oracle estimator was computed.

In Table 6, the median relative model errors (MRME) based on 100 simulated datasets as
well the average number of correctly selected (C) and incorrectly selected (IC) variables are
summarized for multiple events, clustered and recurrent data respectively. We can see again
that adaptive Lasso with BIC performs the best.

7 Discussion
We propose in this paper an ℓ1 regularized procedure for variable selection in the accelerated
failure time model. The resulting estimates possess the oracle properties if the adaptive
Lasso penalty is used for penalization and BIC is used for tuning parameter selection.
Additionally, we extend the ℓ1 regularized procedure to multivariate failure time models,
including multiple events data, clustered survival data and recurrent events data. Extensive
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simulation study and a real data analysis of primary biliary cirrhosis data illustrate the
usefulness of our approach in terms of both variable selection and coefficient estimation.
Although we only considered the Gehan statistics based loss function, it is rather
straightforward to extend our approach to other weighting schemes discussed in Jin et al.
(2003). Our current implementation via quantreg uses a grid of tuning parameter values and
alternatively, we could implement the path following algorithm as detailed in Li and Zhu
(2008), which, as noted by an anonymous referee, has been recently investigated in Cai et al.
(2009). We modeled multivariate survival data via the marginal approach. It would be
interesting to investigate how to conduct variable selection while accounting for correlations
among multiple failure times.
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Appendix

Proofs of Theorems 1 and 2
Proof of Theorem 1 proceeds by first establishing the local quadratic property (Proposition
1) of the Gehan loss function and an inequality (Proposition 2) which relates the minimizer
of the penalized loss function to the minimizer of a penalized quadratic function. Then the

 consistency of the penalized estimator and the oracle properties follow by applying the
arguments similar to those of Fan and Li (2001).

Define

Proposition 1
Under conditions 1–4 of Ying (1993, p. 80), for every sequence dn > 0 with dn → 0 a.s., we
have

(4)

holds uniformly in ∥β − β0 ∥ ≤ dn.

Proof—It follows from Theorem 2 of Ying (1993) that almost surely, uniformly in ∥β − β0∥
≤ dn, we have
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(5)

and denote UG = (UG1, …, UGp)T, AG = (aij), 1 ≤ i, j ≤ p, β = (β1, …, βp)T, β0 = (β01, …,
β0p)T, and βj = (β1, …, βp−j, β0(p−j+1), …, β0p)T, 1 ≤ j ≤ p, β0 = β, noticing that βp = β0, we
have

By (5),

then

Hence

This completes the proof.

Consider the object function:
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where u ∈ Rp, D is a positive definite matrix, λ1, …, λs are constants, λs+1,…, λp are
nonnegative constants, and suppose that û is a minimizer of c(u), we have the following
proposition.

Proposition 2
For any u, we have C(u) − C(û) ≥ (u − û)T D(u − û)/2.

Suppose that ûn is a minimizer of the objective function

(6)

By Propositions 1 and 2, it can be shown that  and ûn have the same asymptotic
distribution. Then it is straightforward to obtain the  consistency of the penalized
estimator and the oracle properties by following the same arguments in Fan and Li (2001).

Proof of Theorem 2 can be established similarly by looking at the perturbed penalized loss
function and applying the conditional arguments as in Jin et al. (2003) and is thus omitted.
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Fig. 1.
The left panel displays the Lasso estimates as a function of s. The right panel shows the
AIC, BIC and GCV curves plotted against s
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Fig. 2.
The left panel displays the adaptive Lasso estimates as a function of s. The right panel shows
the AIC, BIC and GCV curves plotted against s
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Table 2

AIC, BIC, GCV and cross validation’s predictive performance

Prediction error Lasso Adaptive Lasso

AIC 30.50 31.64

BIC 30.60 31.69

GCV 30.31 31.47

Cross-validation 30.28 31.42
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Table 5

Simulation results when the signal-to-noise is small

Method MRME C IC

Lasso(AIC) 1.92(3.71) 2.26(0.76) 1.79(1.41)

Lasso(BIC) 2.43(4.15) 1.44(0.94) 0.58(0.98)

Lasso(GCV) 2.03(3.58) 1.82(0.87) 0.82(1.03)

ALasso(AIC) 2.27(3.30) 2.01(0.69) 1.32(1.18)

ALasso(BIC) 2.44(3.78) 1.46(0.77) 0.52(0.80)

ALasso(GCV) 2.28(3.50) 1.71(0.73) 0.66(0.84)
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