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Abstract
The regulatory effects of the immune system on the skeleton during homeostasis and activation
have been appreciated for years. In the past decade it has become evident that bone tissue can also
regulate immune cell development. In the bone marrow, the differentiation of hematopoietic
progenitors requires specific microenvironments, called niches, provided by various subsets of
stromal cells, many of which are of mesenchymal origin. Among these stromal cell populations,
cells of the osteoblast lineage serve a supportive function in the maintenance of normal
hematopoiesis, and B lymphopoiesis in particular. Within the osteoblast lineage, distinct
differentiation stages exert differential regulatory effects on hematopoietic development. In this
review we will highlight the critical role of osteoblast progenitors in the perivascular B
lymphocyte niche.

B lymphocyte development is dependent upon growth factors and
cytokines provided by the stromal microenvironment

In mammals B lymphocyte development occurs in the fetal liver during embryonic
development, then migrates to the bone marrow in the perinatal period, where B
lymphocytes are continually generated throughout the entire lifespan [1]. The successful
development of lymphoid precursors into committed B cells expressing antigen-specific
receptors requires signals from the specialized microenvironment constituted by non-
lymphoid stromal cells that interact intimately with the developing lymphocytes, providing
paracrine support by producing humoral factors such as cytokines and growth factors, and
physical support by cell-surface molecular interactions. These stromal cell subsets
participate in the establishment of specific bone marrow microenvironments, also called
bone marrow niches, required for the generation and maintenance of B lymphopoiesis and
hematopoiesis in general.

Each step during B cell differentiation is regulated by growth factors and cytokines as well
as by cell-cell contact [2]. Within the bone marrow, B lymphocyte development begins with
the differentiation of hematopoietic stem cells (HSCs) into common lymphoid progenitors
(CLPs), which in turn give rise to the earliest identifiable B cell precursors, prepro-B cells.
Prepro-B cells progressively differentiate into intermediate pro-B and pre-B cell stages,
followed by immature/naïve IgM+ B cells and finally by terminally differentiated antibody-
secreting plasma cells [3–8].
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The progression of B lymphocyte development within the bone marrow is critically
dependent upon the actions of various cytokines, particularly chemokines and interleukins,
which act at specific steps of differentiation. Gene targeting studies have revealed that
among chemokines, CXCL12 and its receptor CXCR4 are essential for B cell development.
Experimental deficiency of CXCL12 or its receptor CXCR4 in the developing murine
embryo results in early lethality due to defective organ vascularization, cardiac and nervous
system malformations, as well as lack of BM seeding by immature hematopoietic progenitor
cells with resulting impaired B lymphopoiesis and bone marrow myelopoiesis [9–13].
Interleukin (IL)-7 has also been shown to be a critical cytokine for lymphoid development,
and in particular is essential for differentiation of pro-B cells. However, IL-7 is ineffective
as a regulator of the differentiation of B lineage cells beyond pre-B cell development since
more mature B lymphocytes lack the IL-7 receptor [14–16]. Both IL-7 and IL-7 receptor KO
mice exhibit an arrest in B cell development at the pro B cell stage in bone marrow [16, 17].

These supporting cytokines are supplied to hematopoietic progenitors by a network of non-
hematopoietic stromal cells, and distinct populations of stromal cells appear to play key
roles at unique stages of differentiation. Tokoyoda et al. localized prepro-B cells in close
contact to CXCL12-expressing stromal cells in vivo [2]. Stromal CXCL12-expressing cells
have been described as having a reticular morphology, and are dispersed throughout bone
marrow in particular surrounding sinusoidal endothelial cells [2, 18]. In contrast, mitotically
active pro-B cells are found near IL-7-expressing cells, which are distinct from both
CXCL12-expressing cells and bone-lining osteoblasts [2]. IL7-expressing cells are also
closely apposed to the vasculature [19]. As B cell precursors mature further into pre-B cells,
however, they are found at some distance from both CXCL12 and IL-7 expressing stromal
cells [2]. A specific niche constituted by galectin-1 expressing stromal cells, distinct from
IL-7 expressing cells, has been reported for pre-B cells [19–21]. Finally, naïve IgM+ B cells
enter the blood circulation and complete their differentiation in peripheral lymphoid organs.
Of note, terminally differentiated B lymphocytes, or antibody-producing plasma cells, return
to the bone marrow where they are found in contact with the cell bodies and processes of
CXCL12-expressing cells and perivascular dendritic cells [22]. These findings demonstrate
that B cell precursors migrate between specific niches during the course of differentiation,
and that these niches are comprised of distinct populations of stromal cells.

The importance of bone to hematopoiesis and B lymphopoiesis
Beyond B lymphocytes, specific niches have been identified in the bone marrow for
hematopoietic stem cells (HSCs) (reviewed elsewhere in this issue by Calvi and Link) as
well as maturing lineage committed precursors, including those that will give rise to
neutrophils and platelets [23, 24]. The cellular identity of the stromal cells supporting these
various stages of hematopoiesis is of significant interest. In the bone marrow, the stroma is
composed of a heterogeneous group of cells; many are of mesenchymal origin, including
fibroblasts, osteoblasts, adipocytes, reticular cells, endothelial cells and perivascular cells,
but sympathetic neurons, glial cells and macrophages have also been shown to be part of the
supportive microenvironment [25–34]. In this review we will highlight the role of cells of
the osteoblast lineage, increasingly recognized as essential for supporting B lymphopoiesis
at various stages in the bone marrow [35, 36].

Hematopoietic bone marrow is contained in bones, and therefore osteoblastogenesis is
necessary for bone formation and subsequent bone marrow development. In mice lacking
either Runx2 or Osterix, transcription factors required for osteoblast development, the
absence of bone tissue and resulting failure of bone marrow formation results in the
outsourcing of hematopoiesis to extramedullary organs [37–41]. With respect to B
lymphocyte differentiation, a crucial role for the osteoblast lineage was revealed by ablation
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of osteoblasts in vivo. In transgenic mice with thymidine kinase targeted to maturing
osteoblasts by the 2.3 kb type I collagen promoter, ablation of osteoblasts by administration
of gancyclovir resulted in decreased bone marrow cellularity with an acute loss of B
lymphocytes followed by progressive loss of hematopoietic stem cell (HSC) subsets [42].
Zhu et al. further demonstrated that calvarial osteoblasts in culture could support the full
differentiation program of hematopoietic stem/progenitor cells into the B lymphocyte
lineage, confirming a direct interaction between osteoblastic cells and B cell precursors [43].

Cells of the osteoblast lineage at differing stages of differentiation serve
distinct functions in the bone marrow hematopoietic niche

The osteoblast lineage itself is quite heterogeneous, representing a spectrum of
differentiation stages from newly committed osteoblast progenitors (hereafter referred to as
osteoprogenitors) to terminally differentiated osteoblasts. Commitment to the osteoblast
lineage from mesenchymal stem cells begins with the expression of Runx2, a transcription
factor required for osteoblastogenesis [37, 38, 44]. Downstream of Runx2, osteoblast
commitment is reinforced by expression of Osterix (Osx), which is expressed in proliferative
osteoprogenitors [39]. Differentiation of the osteoblast lineage is marked by the progressive
expression of markers of osteoblast maturation, alkaline phosphatase, type I collagen, bone
sialoprotein, osteopontin and osteocalcin [45].

With such a diversity of populations within the osteoblast lineage, it is likely that cells at
various stages of differentiation will serve unique functions in the hematopoietic niche.
Indeed, increasing evidence suggests that earlier stages of the osteoblast lineage are
especially crucial to hematopoietic support. Mice lacking either Runx2 or Osx fail to
develop a mineralized skeleton and die soon after birth with a complete absence of bone
marrow inside long bones [37, 38, 40]. In contrast, mice deficient in osteocalcin, a marker of
terminally differentiated osteoblasts, are phenotypically normal with stronger bones and
greater mineral density than their control littermates and no hematopoietic alterations were
reported [46].

In vitro studies have also shown that maturational status of osteoblasts influences their
hematopoietic supporting ability. In co-cultures with hematopoietic stem/progenitor cells,
freshly isolated calvarial osteoblasts, which expressed higher levels of immature osteoblast
markers, were better able to support hematopoietic expansion than calvarial osteoblasts that
had been previously cultured and expressed markers of mature osteoblasts [47]. In follow-up
studies this group demonstrated that expression of CD166 on cultured osteoblasts correlated
with high levels of Runx2 expression, low levels of osteocalcin expression, and high
hematopoiesis enhancing activity. Furthermore, loss of CD166 expression with osteoblast
differentiation and maturation was associated with loss of support for hematopoietic
function [48]. Consistent with the idea that earlier stages of the osteoblast lineage are more
relevant to the hematopoietic niche, the CD105+Thy1− fraction of fetal mesenchymal
progenitors can direct formation of a hematopoiesis-supporting microenvironment when
transplanted under the renal capsule. In contrast, the CD105+Thy1+ fraction, enriched in
more committed osteoblast lineage cells, can form only ectopic bone lacking a
hematopoietic marrow [49].

Mesenchymal progenitors are perivascular and support B lymphopoiesis
Mature osteoblasts are easily identified in situ on bone surfaces by their cuboidal
morphology. Upon terminal differentiation osteoblasts may remain on the bone surface as
flattened, quiescent lining cells, be incorporated into mineralized matrix as osteocytes, or die
by apoptosis [50]. In contrast to mature osteoblasts and osteocytes, however, earlier
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mesenchymal progenitors and osteoblast precursors have been more difficult to identify
within the non-hematopoietic stroma in vivo. The absence of specific surface antigen
markers capable of unequivocally distinguishing the different stromal subpopulations and
their stages of maturation has been a challenge in the field. In bone marrow and other
tissues, mesenchymal stem cells share features with perivascular cells termed pericytes [51,
52]. Recently, perivascular cells variously described as expressing PDGFRα and Sca-1,
Nestin, the leptin receptor, or Prx1 and exhibiting multipotent mesenchymal capacity have
been identified as crucial components of the HSC niche [28, 53–56].

While the perivascular niche does not contain mature osteoblasts, growing evidence
suggests that osteoprogenitors are also perivascular. During embryonic development Osx-
expressing osteoprogenitors, but not type I collagen-expressing osteoblasts, are found in
close proximity to invading blood vessels [57]. In humans and rodents, expression of CD146
marks a population of reticular cells lining the sinusoids of the bone marrow
microvasculature that express alkaline phosphatase and can be induced to differentiate into
osteoblasts. Upon transplantation in vivo, CD146+ positive cells generate bone (CD146-
negative osteoblasts) and self-renew into CD146+ reticular cells lining on the sinusoids,
demonstrating that they are functional osteoprogenitors [58]. Since CXCL12- and IL7-
producing stromal cells and osteoprogenitors have all been localized near the vasculature,
and cells of the osteoblast lineage can support B lymphopoiesis, these studies suggest that
osteoprogenitors may be an important source of CXCL12 and/or IL-7 in vivo. Indeed, both
CXCL12 and IL-7 can be produced by cells of the osteoblast lineage [43, 59, 60].

CXCL12+ abundant reticular cells (CAR cells) are located close to bone marrow sinusoids,
express osteogenic genes and have the potential to differentiate into osteoblasts in culture;
they also appear to have the capacity to differentiate into the adipocyte lineage [18, 26].
Furthermore, short-term ablation of CAR cells in vivo impairs both osteogenic and
adipogenic differentiation potential of bone marrow cells [26]. Interestingly, Osx-expressing
osteoprogenitors have recently been demonstrated to have adipogenic potential as well [61].
Taken together, perivascular mesenchymal progenitors with at least osteogenic and
adipogenic potential play an important role in supporting B lymphocyte differentiation. Two
recent studies have confirmed the importance of CXCL12 production by mesenchymal and
osteoprogenitors but not mature osteoblasts in supporting bone marrow B lymphoid
development [55, 56]. Deletion of CXCL12 in Prx1-expressing mesenchymal progenitors or
in Osx- or Col2.3-expressing osteoprogenitors but not in osteocalcin-expressing mature
osteoblasts leads to depletion of early lymphoid progenitors with a particular reduction in
committed B-lineage progenitors [55, 56]. CD146+ reticular cells produce large amounts of
CXCL12 in humans and rodents, can establish a hematopoietic niche upon transplantation,
and have been shown to sustain primitive hematopoietic stem and progenitor cells (HSPCs)
in vitro through cell-to-cell contact [62]. Taken together, these results demonstrate that
perivascular mesenchymal progenitors with osteogenic (and possibly adipogenic) potential
are an important source of CXCL12 in the hematopoietic, and specifically B lymphocyte,
bone marrow niche.

IL-7-expressing stromal cells, while distinct from CXCL12+ cells, have also been localized
to the perivascular space [2, 19]. While IL-7 has not been specifically deleted from
osteoblast lineage cells, the targeted overexpression of human IL-7 to maturing osteoblasts
can rescue the osteopenia and B cell development of IL-7 KO mice, without interfering with
T lymphopoiesis [63].
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Gsα signaling in osteoblast progenitors is required for production of IL-7
and support of B lymphopoiesis

Signaling mediated by the parathyroid hormone (PTH)/PTH-related peptide receptor (PPR)
in osteoblasts is an important regulator of the hematopoietic stem cell niche [59]. Expression
of both CXCL12 and IL-7 is increased in response to parathyroid hormone (PTH)
stimulation by its actions on the PTH receptor PPR [43, 59, 60]. When stimulated with PTH
in vitro, calvarial osteoblasts showed marked increases in CXCL12 and IL-7 levels and are
able to support B lymphoid commitment and sustain B cell differentiation from the earliest
B cell progenitors to the generation of mature IgM+ B cells. Of note, this inductive effect is
not shared by adipocytes or endothelial cells [43].

The PPR is a G protein-coupled receptor, and the Gsα subunit of the heterotrimeric Gs
protein is a major downstream mediator of PPR signaling [64]. We have demonstrated that
the ablation of Gsα early in the osteoblast lineage, in osterix-expressing osteoprogenitors
(GsαOsxKO mice), leads to severe osteoporosis with a dramatic reduction in trabecular bone
[65, 66]. Notably, GsαOsxKO mice exhibit impaired B lymphopoieis with a dramatic
reduction in B cell precursors. There is a specific block in the transition from pro-B to pre-B
cells, whereas prepro-B cells are unaffected. This transition to pre-B cells is dependent upon
IL-7, and IL-7 mRNA levels were significantly reduced in osteoprogenitors from GsαOsxKO

mice. In contrast, and consistent with the unchanged frequency of prepro-B cells, CXCL12
mRNA levels were not altered. Moreover, the stage-specific differentiation block could be
rescued in GsαOsxKO mice with exogenous treatment of IL-7, and transplantation of KO
bone marrow cells into a wild-type host restored the hematopoietic phenotype, confirming
the microenvironmental defect in GsαOsxKO mice [65].

While ablation of Gsα in osteoprogenitors leads to impaired B cell development, deletion of
Gsα in terminally differentiated osteocytes does not affect B lymphopoiesis despite an
osteopenic phenotype with reduced osteoblast numbers [65, 67]. Instead there is a dramatic
increase in myeloid cells, mediated by production of granulocyte colony stimulating factor
(GCSF) by osteocytes [67]. These results again highlight the importance osteoprogenitors
specifically in regulating bone marrow B lymphopoiesis.

Stromal cells with osteogenic capacity and perivascular location expressing CXCL12, IL-7,
CD146, osterix and galectin-1 have therefore all been implicated in regulating various stages
of B cell precursor differentiation within the bone marrow. How these cellular subsets
overlap and differ remains to be determined by careful studies comparing these populations
(Figure 1). For example, CXCL12+ cells, IL-7+ cells and osteoblasts have all been described
to be VCAM1+, CD54+, PDGFRα+, CD45−, and CD31− [2, 54, 68, 69]. In contrast, the
majority of Gal-1 expressing cells are VCAM1−, PDGFRα− and CD31+, indicating that
these cells constitute a different stromal cell subset [19]. Of note, VCAM-1, together with its
ligand VLA-4, has been described to be involved in the maintenance of HSCs in their
quiescent state inside their niche. Tokoyoda et al. found that CXCL12 induces a significant
increase in adhesion of prepro-B cells but not pro-B or pre-B to VCAM-1 [2]. This suggests
that CXCL12 acts selectively on prepro-B cells to increase adhesiveness of VLA-4 ligand
through the control of the integrin α4, which has been shown to be essential for early B
lymphopoiesis in bone marrow [70].

Additional animal models of impaired osteoblastic regulation of B
lymphopoieis

Recently additional studies have noted impaired B lymphopoiesis in the setting of an
abnormal bone microenvironment, confirming the crucial role of the osteoblast lineage in
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the B lymphocyte niche. For example, an impaired B lymphocyte niche can result from
altering the balance between bone formation and bone resorption. Defective B lymphocyte
differentiation has been identified in various mouse models of impaired osteoclastic
resorption, or osteopetrosis [71–75]. Osteopetrotic oc/oc mice exhibit a block at the pro-B to
pre-B cell transition associated with reduced levels of IL-7; this phenotype can be partly
reversed by exogenous IL-7 or restoration of osteoclast function [76, 77]. Treatment with
zoledronic acid (ZA), a potent bisphosphonate, to inhibit osteoclast activity also results in an
osteopetrotic phenotype with increased bone mass. In response to ZA treatment, the number
of B cells is decreased by 50% in the bone marrow. The reduction in B lymphocytes affected
all B cell subsets from the prepro-B stage but was restricted to bone marrow, and was not
due to a direct effect of ZA on B lymphocytes or osteoblast/stromal cells [78]. Osteoclastic
resorption plays an important role in recruitment of mesenchymal and osteoblast progenitors
[79], and indeed in the absence of functioning osteoclasts there is a significant reduction in
osteoprogenitors as determined by the colony forming-unit-alkaline phosphatase (CFU-
ALP) assay. In keeping with osteoprogenitors as a major source of CXCL12 and IL-7 in the
hematopoietic niche, the mRNA levels of CXCL12 and IL-7 were dramatically reduced in
BM of ZA treated mice [78].

In a different model of high bone mass, sclerostin (SOST) KO mice exhibit a marked
reduction of B lymphocytes [80]. Sclerostin is a secreted inhibitor of canonical Wnt
signaling primarily expressed by mature osteocytes and acts on osteoblasts as a negative
regulator of bone growth [81, 82]. Mice with deletion of the SOST coding region display
highly mineralized bone due to increased osteoblast activity without altered osteoclast
activity [83]. Despite the high bone mass and increased activation of osteoblasts, SOST KO
mice display a specific reduction in all B cell stages but not in HSCs or other hematopoietic
progenitor populations in the BM. In this case the significant decline of all committed B cell
developmental stages was associated with increased apoptosis at the precursor, immature
and recirculating B cell stages, rather than with impaired differentiation [80]. Whether
osteoprogenitors are specifically implicated has not been investigated. The effects of
sclerostin ablation on osteoprogenitors remain to be characterized. Perhaps in the presence
of a hypermineralized bone mainly mature osteoblasts are expanded while early
mesenchymal stromal cells or osteoprogenitor populations might be deficient. The reduction
in CXCL12 mRNA levels in stromal cells of SOST KO mice gives support to this idea.
Alternatively, Wnt signaling restrains CXCL12 expression in bone marrow stromal cells in
vitro, so perhaps overactive Wnt signaling in stromal cells in the absence of SOST results in
a reduction of CXCL12 to levels that are not conducive for B cell survival [84].

A role for macrophages in the osteoblastic B lymphocyte niche
In addition to direct interactions between B lymphocyte precursors and osteoblast lineage
cells, several recent studies have highlighted a role for macrophages in regulating the
hematopoietic niche via osteoblasts. Tissue-resident macrophages, termed osteomacs, can be
identified in close association with areas of bone remodeling and are required for optimal
bone forming activity in vitro and in vivo [85]. Mobilization of hematopoietic stem/
progenitor cells by G-CSF is associated with suppression of endosteal bone formation and
decreased expression of CXCL12 [29, 33]. However, osteoblast lineage cells do not express
G-CSF receptors; instead the actions of G-CSF on HSPCs and osteoblasts are mediated by
macrophages. Several in vivo studies have demonstrated that loss of macrophages
negatively affected the growth and/or survival of osteoblasts and allowed egress of HSPCs
to the blood stream [32–34]. In addition, mobilizing doses of G-CSF also impaired
medullary B lymphopoiesis with reduction of all B cell precursors, immature and mature B
lymphocytes and increased levels of apoptotic B cells in BM [86]. Since B lymphocytes and
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their precursors do not express the G-CSF receptor, this phenomenon may also reflect a role
for macrophages in the regulation of B lymphopoiesis by cells of the osteoblast lineage.

Conclusions
In summary, the complexity of the crosstalk between cells involved in bone homeostasis and
hematopoiesis has become increasingly apparent, especially in the regulation of bone
marrow B lymphocyte development. Further studies are needed to characterize different
stromal populations involved in order to better understand their contribution to the
generation of unique bone marrow niches, their roles in the crosstalk with hematopoietic
cells and the temporal and spatial mechanisms by which they can regulate the cell cycle and
differentiation program of hematopoietic cells. In particular, a clearer understanding of the
interactions between hematopoietic and mesenchymal cell populations at specific stages of
differentiation is needed.
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Figure 1.
A variety of stromal cell populations expressing CXCL12, IL-7 and galectin-1 have been
identified as integral components of the bone marrow B lymphocyte niches. CXCL12+ and
IL-7+ stromal cells are perivascular and support B cell precursor prepro-B and pro-B cell
populations, respectively. Osterix+ osteoprogenitors can produce both CXCL12 and IL-7;
how these subsets differ or overlap and whether they give rise to mature osteoblasts lining
the bone surface remains to be determined.
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