
Protein Charge and Mass Contribute to the Spatio-temporal
Dynamics of Protein-Protein Interactions in a Minimal Proteome

Yu Xu1, Hong Wang1, Ruth Nussinov2,3, and Buyong Ma2

Yu Xu: yuxuchina@yahoo.com; Ruth Nussinov: ruthnu@helix.nih.gov; Buyong Ma: mabuyong@mail.nih.gov
1Institute of Chinese Minority Traditional Medicine, Minzu University of China, Beijing 100081,
People’s Republic of China
2Basic Science Program, SAIC - Frederick, Inc. Center for Cancer Research Nanobiology
Program, Frederick National Laboratory, NCI, Frederick, MD 21702, Tel: 301-846-6540, Fax:
301-846-5598
3Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine,
Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel, Tel: 301-846-5579, Fax:
301-846-5598

Abstract
We constructed and simulated a ‘minimal proteome’ model using Langevin dynamics. It contains
206 essential protein types which were compiled from the literature. For comparison, we
generated six proteomes with randomized concentrations. We found that the net charges and
molecular weights of the proteins in the minimal genome are not random. The net charge of a
protein decreases linearly with molecular weight, with small proteins being mostly positively
charged and large proteins negatively charged. The protein copy numbers in the minimal genome
have the tendency to maximize the number of protein-protein interactions in the network.
Negatively charged proteins which tend to have larger sizes can provide large collision cross-
section allowing them to interact with other proteins; on the other hand, the smaller positively
charged proteins could have higher diffusion speed and are more likely to collide with other
proteins. Proteomes with random charge/mass populations form less stable clusters than those with
experimental protein copy numbers. Our study suggests that ‘proper’ populations of negatively
and positively charged proteins are important for maintaining a protein-protein interaction network
in a proteome. It is interesting to note that the minimal genome model based on the charge and
mass of E. Coli may have a larger protein-protein interaction network than that based on the lower
organism M. pneumoniae.
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Introduction
The cell is a collection of well-organized protein machines [1], with the biological processes
working together to maintain life. Charge is necessary for protein solubility, ligand
interaction, and essentially all protein functions [2]. Many cellular functions rely on the
electrochemical structure in the crowded cytoplasm, and the distributions of charged
macromolecules (proteins and RNAs) define the electrochemical macro-environment.
Consequently, cellular metabolite concentrations are proportional to the magnitude of the
charged surface areas and hydrophobicity [3]. Proteins have no net charge at their Isoelectric
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points (pI). Most of the proteins’ pI values are not near physiological pH (around 7). The
distributions of the proteins’ pI values in proteomes are bimodal: one set for acidic proteins
and another for basic proteins. The bimodal pI distribution in the proteome is universal for
all organisms, probably due to either amino acid pKa values [4, 5] or to the organism
function [6-8]. The relative abundances of acidic and basic proteins differ among species. It
is interesting to note that for small proteomes, there is a negative correlation between the
proteome size and the average pI of the proteins; i.e., small proteomes tend to have more
basic proteins [6, 8].

Protein networks are spatially organized to save diffusion-collision times in the large cell.
Proteins often cluster together to perform certain functions, for example, by forming
transcriptional factories [9]. Signal transduction occurs in an organized microenvironment,
where elements of a signaling pathway are connected functionally and spatially [10, 11].
Consequently, the organization of proteins with different charges and sizes can be important
to allow fast cellular response in fluctuating environments. It is however still unclear how
nature accomplishes the arrangement. At one end of the spectrum is gene fusion which links
covalently two (or more) proteins; at the other are compartmentalization and protein-protein
interactions. Here we focus on a possible role of charge distributions and how these can
affect the spatio-temporal dynamics of proteins and the protein-protein interaction (PPI)
network. The PPI network coordinates cellular functions. Signals travel through the
membrane to the cell interior, and are typically relayed through interaction partners [12];
thus, the spatio-temporal dynamics of proteins in a proteome underlies signaling pathways
and plays a key role in functional control [13]. Experimental investigation of the spatio-
temporal dynamics of proteins progresses rapidly: the global expression of proteins in yeast
has been largely characterized, including the concentrations of most proteins [14]. Cryo-
electron tomography has reached a visual resolution of 4-5 nm, helping in the localization of
macromolecules in the cell [15]. Nanoscopic features of cellular structures at 20-50 nm
resolution can be probed by stochastic optical reconstruction microscopy [16]. The PPI
network of conserved and essential proteins in E. coli has been characterized [17], along
with quantitative data on the proteome abundance and noise at the single-cell level [18].
These help in understanding the spatio-temporal dynamics of proteins and their networks.

Computational studies have also provided insight into the spatio-temporal dynamics of
proteins and the PPI network. Particles at various resolutions were employed to simulate
cell-like environments, with or without physics-based interactions [19]. Cytoplasmic
proteins have been grouped into beads with different masses in Ellison’s coarse-grained
model [20] and in the work of Bicout and Field [21]. Ando and Skolnick studied a
cytoplasm model comprised of 15 different macromolecules, using beads to represent
proteins and nucleic acids [22]. McGuffee and Elcock [23] developed an atomistically
detailed Brownian dynamics (BD) simulations for the bacterial cytoplasm, comprising of 50
different types of the most redundant macromolecules. Other atomistically detailed BD
simulations have also been reported [18, 23, 24]. Similarly, Wade et al. reported a novel
atomic-detailed methodology to simulate protein solutions [25].

In this work, we investigated the charge distribution in a minimal proteome and its effects
on the spatio-temporal dynamics of proteins and their interaction network. Several small
cells have been well characterized experimentally. Mycoplasma genitalium was the species
with the smallest number of genes known, with 470 proteins [26, 27]. M. pneumoniae is also
among the smallest known self-replicating bacteria [28]. M. pneumoniae has only 690
ORFs. The copy numbers of 413 proteins (59.9% of the total predicted proteome) have been
quantified recently [29]. The growth rates of these smallest cellular systems were very slow.
With a slightly larger genome, 1.08-mega-base pair Mycoplasma mycoides were
successfully designed, synthesized, and assembled into new cells which are capable of
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continuous self-replication [30]. The above cellular systems can be excellent references to
compare with the potential minimal proteome. In selecting the minimal proteome, we did
not intend to reproduce specific prokaryotic or eukaryotic organisms. Instead, we focus on
the characteristics of a polydisperse collection of a possible minimal proteome in a cellular
environment. Ideally, the selected minimal proteome can capture the common features of
different organisms. The smallest set of the proteome of a minimal genome can be compiled
from the literature [31], which is comprised of 206 kinds of essential proteins. We map the
protein concentrations from experimentally measured results in a complete yeast proteome
[14] as well as in the E. coli proteome [18, 22]. Then, we develop a coarse-grained model to
describe protein molecules using spherical nanoparticles with electronic and van der Waals
interactions. By simulating the minimal proteome with Langevin dynamics, we are able to
reveal that ‘proper’ distributions of negatively and positively charged proteins are important
for the spatio-temporal dynamics of the protein-protein interaction network.

Methods
A: The virtual cytoplasm with minimum genome

206 proteins were selected following Gil et al. as a minimum set of proteins which can
maintain bacterial cellular life [33]. In our model of a virtual cytoplasm, the number of
copies of those 206 protein types were based on the global analysis of protein expression in
yeast by Ghaemmaghami et al. [14]. Thus, our model is a theoretical construction of a
possible minimal cell, without direct linkage to known species. The number of proteins used
in this study is much larger than the 50 most abundant proteins [23] or the 15 selected
macromolecules [22] in earlier studies.

Each protein is modeled as a rigid sphere particle. Protein molecular weight and volume
(converted by average protein density 0.83 Dalton/Å3) are based on the protein sequences
from UniProt and calculated by Peptide Property Calculator. The isoelectric point and net
charge (pH=7.0) of the proteins are estimated using the Henderson-Hasselbach equation,
also based on protein sequence. The total net charge for a protein is:

(1)

Where the pKn is the acid dissociation constant of negatively charged amino acid, and the
pKp is the acid dissociation constant of positively charged amino acid. pKa values are
critical to determine the isoelectric point and net charge at pH 7. There are several different
criteria for amino acid pKa values. We chose EMBOSS.

The 70S ribosome is represented by two spherical particles, 50S and 30S, which are
connected with a rigid bond. The mass of the 50S and 30S parts were taken from Table S2
of McGuffee and Elcock. The 5S RNA and 23S RNA parts of the 50S are the same mass as
theirs, as well as the 16S RNA in the 30S; and the masses of the 29 L proteins in the 50S
and the 20 proteins in the 30S are estimated based on their sequences. Due to the uncertainty
related to the experimental ribosome effective charge, the net charges of the 50S and 30S are
separately scaled by the average charge of the 206 proteins over their weights to be -50 and
-25, because they were very low compared to their size.

B: Protein copy numbers in minimal proteome sets
We examine how many copies each protein should have in the minimal proteome. Protein
copy number varies from cell to cell in an isogenic bacterial population, and the copy
number for the low-abundance proteins fluctuates widely [18]. In addition, the 206 proteins
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in the theoretical minimal genome do not necessarily come from one kind of bacteria. Even
for the E. coli, different experimental approaches provided totally different protein copy
numbers. Ishihama and coworkers identified 1103 proteins from the cytosolic fraction of the
E. coli strain MC4100, using a combination of LC-MS/MS approaches with protein and
peptide fractionation steps [32]. Among the MC4100 proteins with known concentration,
164 are among the 206 proteins in the minimal proteome. Taniguchi at al., used a single
molecule method and obtained the protein copy number for 1018 proteins in a single cell of
E. coli strain DY330 [18], with only 92 of these matching the 206 minimal proteome set. In
order to have a complete set of protein concentrations, we also searched the larger organism
of yeast, for which the experimentally determined protein abundances for 6235 proteins is
known [14]. Using the two E. coli sets and the single yeast set, we were able to match the
206 proteins in the minimal genome with proteins with similar functions.

Three sets of protein copy numbers for the minimal proteome were then constructed (Sup-
Table 1). In the first yeast set, we assigned abundances to those 206 proteins by following
the same ratios as in the experimentally observed yeast proteome [14]. For proteins without
counterparts with similar biochemical functions in eukaryotes, we estimate the concentration
based on the ratio from the McGuffee and Elcock work [23], or assign minimal
concentration. Since we can not simulate the protein system with the actual observed copy
numbers due to its large size, we scaled the copy number of the protein in the yeast by
1/2000 to simulate a proteome set of the 206 proteins. We maintain at least one copy for
those proteins whose concentration is less than 2000 copies in yeast. In this way we created
a ‘minimum proteome model yeast set’, totaling 4161 protein particles. Protein copy
numbers in sets two and three are based on the E. coli MC4100 and E. coli DY330
experimental results [18, 32], respectively. The two experiments represent two extreme
cases of ribosomal protein concentrations. The MC4100 protein concentration was
dominated by 49 ribosome proteins. In the DY330 set, only ribosome protein S5 was found,
probably due to the fact that protein production has to be minimized to carry the single
molecule experimental characterization. In order to get balanced representations of all other
proteins, we then scaled the concentration of the ribosomal proteins in the MC4100 by 1000,
and the proteins in the MC4100 set with unknown copy number, were mapped from the
DY330 set. The total protein particle number is also kept at 4161, with the protein
concentration ratios maintained as in the MC4100 cell. Thus the MC4100 minimal proteome
set was constructed. A similar procedure was followed to construct the minimal proteome
set based on the DY330 cell, by mapping missing proteins from the complementary
MC4100 cell. Again, the total protein particles were maintained at 4161. In the MC 4100 set
and DY 330 set, if we were not able to obtain the concentration of a protein from both the
MC4100 and DY300 experiments, the protein copy number was assigned to be a minimal
value of one.

C: Simulations and Analysis
The interaction energies between two macromolecules are described by the Lennard-Jones
potential and electrostatic interactions:

(2)

where ε is the well-depth of Lennard-Jones potential, which is set to be 0.285 kcal/mol. The
van der Waals radius Ri for each protein by is scaled by a factor of 1.25 of its rigid sphere
radius to avoid steric overlaps between proteins. The dielectric constants D which have been
tested range from 40 to 240, and the final value of 80 was used for most calculations. Due to
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the large size of the 70S ribosome, the non-bonding cutoff has been set to 355 Å, which is
almost 3 times the radius of the 70S ribosome.

The particle movement is simulated with the Langevin dynamics:

(3)

where U(X) is the interaction energy in equation 2, γ is the damping constant, and η(t) is the
random force term. We used γ = 10/ps. All the Langevin dynamics simulations performed
by NAMD were subjected at least 130 μs computations at 300 K with 1 ps step size, using
periodic boundary conditions.

In order to validate our coarse grained model, we also carried out Langevin dynamics
simulations on the system with the 50 most abundant proteins, using the proteins and the
corresponding copies from Figure 1 of McGuffee and Elcock [23]. Three independent
simulations were performed with different randomized initial configurations of the
minimum proteome model. Finally, six random systems with different number of copies of
the proteins were also investigated to compare the protein-protein interaction network with
the minimal proteome model. The copies of proteins were generated randomly with at least
one copy and the total individual number was kept at 4161.

The length of the cubic box for the 50 most abundant protein models is 808 Å, and the
lengths of the cubic box for the minimum proteome model and random models are 1090 Å.
The overall specific volume for the 50 most abundant proteins and the minimal proteome
model is 275 g/l. For the random models, due to the variability in protein concentration, the
specific volumes of these six random systems vary from 250 g/l to 350 g/l.

The diffusion coefficients of all the macromolecules were evaluated by the Einstein
equation:

(4)

where 〈ΔX2〉 is the mean square displacement and Δt is the interval. An interval of Δt = 30
ps was selected. The diffusion coefficients were the average values at 10 different periods of
the simulations.

D: Clustering and intermolecular interactions analyses
Two molecules were assigned to be in a cluster and considered in contact with each other if
the distance between them is under 12 Å, and all molecules in one cluster were connected
with each other directly or indirectly. The clustering analysis was performed every 100 ns to
investigate the interactions between macromolecules in the cytoplasm during the last 50μs
simulations. According to the coordinates, the distance matrix was calculated every 100 ns
and the size and the number of clusters were determined subsequently. The intermolecular
contacts between unique molecules were also probed every 5 ns during the last 50 μs BD
simulations.

Results
1. Characterization of the proteome in the minimal genome set

The minimal genome is an estimation of the minimal set of proteins sufficient for
maintaining cellular life [33]. Here we study the properties of a minimal proteome
corresponding to the minimal genome. We focus on two questions: (1) what are the
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abundances of the protein constituents, i.e., how many copies each protein should have; and
(2) what is the charge distribution.

Based on experimental and genome conservation studies, it was estimated that a minimal
bacterial genome that contains 206 protein-coding genes could provide all the functions
necessary for self-maintenance and reproduction, including DNA/RNA metabolism, protein
processing, and energy metabolism [31, 34]. These are listed in Sup-Table 1. The amino
acid sequences of the 206 proteins were subsequently extracted from the UniProt database.

Based on the amino acid sequences of the 206 proteins, we calculated their theoretical pI
values and net charges at pH 7. The distribution of these values in the minimal proteome
appears to be bimodal (Figure 1A), with negatively charged proteins more populated. Such
bimodal distribution is in agreement with previous observations for other proteomes [4-8].
Since now we have the protein copy numbers as well, we also examine the distributions of
the protein copy number versus the protein pI values and net charges. We find that the
distribution of copy numbers versus pI values similarly appears to be bimodal for all three
models derived from experiments (Sup-Figure 1). However, the copy numbers of the
proteins versus the protein net charges at pH 7 are not necessarily bimodal. In total, there are
about thirty weakly charged (net charge -2 to 2) proteins. The distribution of the number of
proteins in the minimal genome versus the net charges has two peaks around -5 and 10
(Figure 1B), and there are more protein copies with net charges around -8 and 10 (Figure
1C). But neither appears bimodal.

The protein net charge distribution in the minimal proteome is not random. The protein copy
numbers in the three minimal proteome sets differ substantially; and the protein copy
numbers in each individual charged state also differ (Figure 1C). However, if we examine
the copy numbers in certain range, we see that there are good correlations among the three
minimal proteome sets (Table 1 and Sup-Figure 1). It is interesting to note that the net
charge of a protein decreases linearly with its molecular weight (Figure 1D). Most of the
positively charged proteins in the minimal genome are small, with ribosomal proteins
dominating (squares, Figure 1D). Large proteins tend to have large negative charges.

Protein copy number can be defined by the specific function in a cell, which may also relate
to charge and mass. In order to investigate the robustness of the protein copy number, we
generated six random model sets. For each set, there are still 206 protein types and a total of
4161 protein copies, but the copy number for each protein is randomly generated. Since the
protein types are the same for the native and the random sets, the distributions of the pI are
still bimodal (Sup–Fig 2). However, the relative ratios of positively and negatively charged
proteins are different for these model sets.

The average charges in the minimal proteome models are around -1.4 (yeast set), -0.6
(MC4100 set) and 1.1 (DY330 set), which are close to that of the complete yeast proteome
(-3.6, Sup-Fig 3A). In comparison, the average charge for the 50 most redundant proteins in
E. coli is highly negative (-14.4), and that from random sets varies from -0.6 to -9.4 (Sup-
Fig 3). The small average charges for the minimal proteome models are consistent with the
observation that smaller proteomes are more basic than larger proteomes [6, 8].

2. Calibration of the physical properties of modeled protein particles
In order to study the spatio-temporal dynamics of proteins in the minimal proteome, we
simulate the minimal proteome and its random set controls. Each protein is represented as a
spherical particle, with the mass being the molecular weight and the radius set to maintain a
protein density of 0.83 g/ml. In all models, we added 30 ribosome particles and 8 copies of
the GFP protein. The ribosome was represented by two spherical particles (one based on the
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mass of 30S and another based on 50S) connected by a rigid bond. The simulations were run
using Langevin dynamics in a cubic box with a length of 1090 Å. Thus, the protein
concentration in our simulated systems has a specific density of 275 g/l, consistent with
McGuffee and Elcock’s work [23], but less than other estimation of 300-400 g/l [35].

We calibrate our simulation with published results of atomistic simulations of the 50 most
abundant proteins [23] and experimental results [36]. If we compare the diffusion constants
obtained for all 50 proteins, we can see that the constructed minimal proteome is more mass-
dependent and agrees well with the value obtained from Brownian dynamics simulations
[23] (Figure 2A). There are small differences between the protein masses used in our
simulation and McGuffee and Elcock’s work [23]. We use the entire protein sequences to
calculate protein mass; while McGuffee and Elcock used only the structures available either
in the PDB or obtained by homology modeling, which often have missing residues. The
diffusion constant for the GFP protein from our simulations is 9.31 μm2/s, which is very
close to 9.1 μm2/s and 9.0±2.1 μm2/s from McGuffee and Elcock’s work [23] and in vivo
experiments [36], respectively.

Our simulations tested a range of dielectric constants. The dielectric constant in the
cytoplasm could change from 50 to 200 [37, 38]. As can be seen in Figure 2B, for dielectric
constants ranging from 10 to 240, the diffusion constants in our simulations change only
slightly. This observation indicates that the electrostatic screen may not have a large
influence on the overall diffusion behavior of the whole proteome. Thus, we used the
dielectric constant of the water (80) and the friction coefficient of 10 in all simulations when
no specific dielectric constant is mentioned.

Since the diffusion constant is inversely dependent on the weight of a particle, smaller
proteins always have higher diffusion constant. As can be seen in Figure 1D, positively
charged proteins are usually small. Therefore, they have higher diffusion constants (Figure
2B). We found that in a negatively charged environment, the diffusion constants for charged
particles increase linearly with the ratio of charge and mass. As can be seen in Figure 2C,
the smaller positively charged particles (higher charge/mass ratio) move quickly. As we
show in the next section, the distribution of proteins with different diffusion rates, combined
with their charge states, may have a profound effect on the protein-protein interaction
network.

3. The spatial distribution of the protein-protein interaction network depends on the
balance of charged proteins

The process of protein-protein interaction can be classified into three steps: (1) spatial
clustering through diffusion/collision; (2) formation of a complex via conformational
selection and population shift [39-44]; and (3) optimization of side chains and slight
backbone movements via induced fit, to form the bound complex [44-46]. Here we focus on
the formation of protein clusters of the minimal proteome. We analyze the collision rate of
each protein and the spatial distributions of the protein clusters.

We define protein clusters to be any proteins within 12 Å from each other, a value which
corresponds to about two solvation layers for each protein (Figure 3). In order to analyze the
spatial distributions of the interacting proteins, all proteins within this range are merged into
one cluster. The size and location of the clusters may reflect the spatial distributions of the
network. We also follow the stability of the cluster by monitoring 10 snapshots in the
simulation with 5 μs intervals. If a protein particle appears in the cluster in all 10 snapshots,
regardless of its geometrical location, it is classified to be in that cluster (Figure 3).
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After counting the number of collisions for each protein with other kinds of proteins, we
found that the protein collision rate increases linearly with the absolute charge (the net
positive or negative charges) of the proteins (Figure 4A). As a result, proteins with near
neutral charge have the lowest collision rates. This interesting observation is the outcome of
interplay between the collision cross section and diffusion speed. The sizes of negatively
charged proteins are large (Figure 1D). These provide a large target collision cross-section,
which leads to higher collision rates. On the other hand, the higher diffusion speed of
positively charged proteins (Figures 2B and 2C) leads to frequent, and quicker movements
within the crowded cellular environment, which translate into higher collision rates with
other proteins.

We compare the collision behavior of the six random control sets with the minimal
proteome model. The random sets also obey the linear relationship between the collision rate
and protein charge, except for random set 4 (Sup-Fig 3B). However, comparing with the
minimal proteome model, the random sets have lower collision rates (Figure 4B), except
random set 3 which could be due to too many negatively charged proteins. Indeed, we found
that there is a strong correlation between the total number of collisions and the average
charge of the proteomes. As shown in Figure 4C, the total collision counts increase when the
average protein net charges within proteomes decreases (moves toward neutrality).

The proteins in the minimal proteome model form larger clusters than the random control
sets. Among clusters of different sizes, we monitor the largest cluster size along the
Langevin dynamics simulation trajectories. The dominant (largest) clusters in the minimal
proteome models are comprised of more than 3000 individual molecules and span the
periodic simulation box, which indicates that there is an interaction network between the
proteins across the cytoplasm. As shown in Figure 5, the size of this cluster fluctuates
slightly over time, indicating that the cluster is dynamic. It is important to notice that three
minimal proteome models (the yeast, MC4100, and DY330 sets) have similar behavior, even
though the protein concentrations in the three models differ substantially. In contrast, the
cluster sizes for all random sets are smaller than those of the minimal proteome models. The
cluster sizes for random set 4 are close to those of the minimal proteome model.
Comparisons of the stable (across time) cluster sizes of the PPI (Figure 4D), indicates that
for the minimal proteome model, the stable clusters are also the largest.

Figure 4D also reveals that the total charges for the stable clusters are constant (dashed line),
regardless of the cluster size. Random set 4 which has the most negative average charges is
an exception. Essentially, the number of charged proteins controls the size of the stable
cluster, with a linear increase of the size with the number of positively and negatively
charged proteins in the cluster. It should be noted that it is not the overall number of
positively charged proteins that controls the size of a stable cluster. This can be illustrated
by counting the positively charged proteins in each set, with five of the six random sets
having more positively charged proteins than the minimal proteome set (the number of
positively charged proteins in the minimal proteome yeast set: 2300; in the random 1 set:
2611; random 2: 2487; random 3: 2233; random 4; 2802; random 5: 2478; random 6: 2637).
However, the random sets have a stable cluster which is smaller than that formed in the
minimal proteome model. Thus, the balance between the number of positively charged and
negatively charged proteins in the minimal proteome model appears to influence the size of
the stable protein-protein interaction cluster.

4. M. Pneumoniae has less protein-protein interactions
Mycoplasma pneumoniae is one of the smallest known self-replicating bacteria [28]. M.
pneumoniae has only 690 ORFs. It is interesting to examine if the M. pneumoniae has
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similar protein-protein interactions properties as those we observed for the minimal
proteome model.

The copy numbers of 413 proteins (59.9% of total predicted proteome) have been quantified
recently [29]. Comparing these 413 proteins with the minimal proteome set, we identified
172 that have the same functions; we call these 172 proteins in M. pneumoniae the MP172
set. The correlation coefficient of the protein mass of the MP172 set with the corresponding
proteins in the minimal proteome model is very high (R2 = 0.74); however, the correlation
of protein charge between the two sets is much lower (R2 = 0.29).

Using the experimentally characterized copy numbers ratios of the MP172, we run the
simulations with the same conditions as we did for the minimal proteome model (4161
protein particles, 8 GFP and 30 Ribosome). We found that the protein-protein interaction
network of the MP172 is much smaller than in the minimal proteome model. As can be seen
in Figure 6A, the cluster size of the MP172 set fluctuates only around 2000. The results
could indicate that there are fewer protein types in the MP172 set than required to maintain a
minimal proteome.

To check these results, using less strictly matching criteria we expand the MP172 set to 206
kinds of proteins, the same number as in the minimal proteome. We call these 206 proteins
in the M. pneumoniae the MP206 set. The correlation between the MP206 set and minimal
proteome model decreased (R2 = 0.59 and 0.12 for protein mass and charge, respectively).
However, the subsequent simulation indicated that the MP206 set has a larger protein-
protein interaction network than the MP172 set, but still smaller than that of the minimal
proteome model (Figure 6A). Further simulations with all 413 proteins with known copy
numbers in the M. pneumoniae (the MP413 set) reveal that the protein-protein interaction
cluster size in the MP413 set is similar to that of MP206 set. These results confirmed that a
minimal number of protein types in a proteome are required to maintain efficient protein-
protein interactions.

We examined the effects of randomized protein copy numbers in the MP206 set. Five
random sets were generated and simulated. As can be seen in Figure 6B, while the MP206
still has the largest cluster, the gaps between the random sets and the experimentally
observed MP206 set are marginal. Similar results were obtained using all 413 proteins.

Unlike the proteomes of E. coli and higher organism of yeast, the proteome of M.
pneumoniae is highly positively charged (Figure 6C), and there is no correlation between
protein mass and charge (Figure 6D). The uncoupling of protein mass and charge in the M.
pneumoniae proteome could be responsible for the smaller protein-protein interaction
cluster. To check this possibility, we run the simulations of 206 proteins using the charge
and mass of E. coli proteins, but with the protein copy numbers obtained from M.
pneumoniae proteome. Interestingly, we found that the protein-protein interaction cluster
using the combinations of E. coli proteins and M. pneumoniae copies are not stable. As
shown in Figure 6E, the cluster sizes observed during the simulations fluctuate from 1500 to
3000, which is the range observed in random simulations for the minimal proteome model
(Figure 5).

The above simulation results are consistent with the experimental characterizations of the M.
pneumonia network [47, 48]. While there is little difference between the M. pneumoniae, E.
coli, and yeast for individual protein-protein interactions [48], the network in M.
pneumoniae is less interconnected [47]. Consistently, we have shown that the M.
pneumoniae cluster size is smaller than that in the minimal proteome model, which is based
on E. coli proteins. The smaller gap between the cluster sizes of the random sets and MP206
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(and MP413) indicates that the protein-protein interactions networks in the M. pneumoniae
could be less organized than in more complex organism.

Discussion
Understanding the behavior of fundamental cellular processes is important. Various
experimental and computational methods have been used to study the dynamic locations of
proteins in the cell to understand protein functions and network complexity [13, 49]. Signals
enter the cell via some perturbation event taking place on the extracellular domain of a
receptor; or via diffusion of small molecules through the cytoplasm. Signaling propagates
through dynamic conformational changes and population shift of the network which takes
place through direct protein-protein interactions. Eventually, these lead to cellular response,
often by turning on/off genes. Efficient signaling and metabolic responses are critical for
cellular health. To prevent delays which may occur if proteins and metabolites would diffuse
in the cell, the protein network is spatially organized, such that proteins fulfilling similar
functions are near each other.

To study large scale protein-protein interactions, here we represent protein molecules as
charged spherical particles. The simplification allows us to investigate the dynamic behavior
of a complete proteome of a minimal genome. Proteins are not spherical; and their
dimensions could change upon interaction, as in intrinsically disordered proteins [43, 50,
51]. Further, the charges are not homogeneously distributed across the molecular surface.
Estimation of net protein charges is also challenging [52], and dual-targeted proteins can
have different net charge at different locations [53, 54]. Solvation effects also change protein
electrostatic interactions [55]. Moreover, crowding was shown to modulate the kinetics of
diffusion-limited processes, and can increase the association rate several fold, with a non-
monotonic trend of the rate as a function of the bulk density of the particles [56, 57]. In
addition, simulation times are always shorter than biological time scales. Nevertheless, using
our representation of protein charge and mass distribution, our simulations revealed several
fundamental features governing protein-protein interactions on the proteomic scale.

First, our study enhanced and extended the previous minimal genome compilations [31, 34]
by assigning protein sequences and copy numbers to all 206 proteins in the minimal
genome, leading to a complete workable model. We found that net charges and molecular
weights for the proteins in the minimal genome are not random. The net charge of a protein
decreases linearly with its molecular weight, with small proteins mostly positively charged
and large proteins negatively charged. The diffusion constants for charged protein particles
increase linearly with the ratio of charge and protein mass.

Secondly, we found that the protein copy numbers in the minimal genome have the tendency
to maximize the size of the protein network. Our models are theoretical construction of
essential proteins for a possible minimal cell. The assignment of protein copy number to the
theoretical minimal proteome introduced certain inevitable distortion of intrinsic ratio of
protein copy numbers, mainly due to two sources. First, there is no complete experimentally
characterized protein copy number for an E. coli proteome. The combination of protein copy
number from different experimental approaches and E. coli strains may have some
inconsistencies. Second, to be able to carry out simulation, we have to reduce the real
protein copy number to a practical level. Proteins with low concentrations may have large
ratio change due to the copy number reduction. For example, the experimental copy
numbers of ycfF and ycfH show a 10-fold difference, whereas in the MC4100 dataset used
for simulation, the difference is only 4-fold. Nonetheless, these changes of the intrinsic ratio
of several individual proteins do not distort the overall charge distributions in the minimal
proteome. As can be seen in Table 1 and Supplementary Material Figure 1, the protein
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numbers in similar charge distribution regions are correlated, even though the actual protein
numbers from different experimental datasets differ due to either experimental observation
or our dataset scaling. Furthermore, we found that the protein copy number ratios have
certain fluctuation tolerance, since all three datasets sets of protein copy numbers derived
from different experiments converged to similar simulation results, which are different from
those of randomly generated protein copy numbers. The tolerance of protein number
fluctuations is probably due to the pressure to accommodate protein concentration change
during cellular life cycle.

Our study revealed the importance of the relative populations of negatively and positively
charged proteins in a proteome. Negatively charged proteins have large sizes and can
provide large collision cross-sections which facilitate interaction with other proteins; and
positively charged proteins have high diffusion speed and higher collision frequencies with
other proteins. Thus, with proper ratio, negatively and positively charged proteins can form
stable clusters spanning large area. Proteomes with random populations of negatively
charged and positively charged proteins form less stable clusters than those with protein
populations derived from experimentally observed protein copy numbers. Using E. coli
proteins as the model for the protein charge and mass in a minimal proteome model, it is
interesting to see that protein concentration mapped from yeast provided a better framework
for protein-protein interactions than that mapped from M. pneumoniae, which is among the
smallest organisms. There are two reasons that might account for the outcome. Firstly, the
compilation of minimal proteome was based on selection from many organisms. As a result,
it is easy to map the correct protein concentration from a larger organism than from a
smaller organism, which cannot match all protein in the theoretical minimal proteome.
Second, both yeast and E. coli are much more complex than M. pneumoniae. While both
these proteomes are negatively charged, the M. pneumoniae proteome is positively charged.

Proteins are clustered within inter-connected regions based on their physical properties such
as charge, mass, size, geometry, topology and stability which have been optimized by
evolution. Within a proteome, each protein has a unique characteristic ratio of net charge
versus molecular mass which fit its functions in the cell. A study of human serum
immunoglobulin along a pH gradient of ampholytes indicated that each isotype displays a
specific pI range, with limited overlap [58], indicating the importance of net charge for
finding the interacting partner within the local environment [59]. It has been observed that
charge and size drive spontaneous self-assembly of oppositely charged globular proteins into
microspheres [60], which may correspond to local arrangements of different proteins within
a cell. Proteins typically cluster to perform their functions, for example, by forming
transcriptional factories [9], or the assemblies of the general transcription factors and RNA
polymerase II on promoters for transcription initiation/activation [61]. Therefore, the
arrangement of proteins with different charges and sizes can be important for functional
efficiency. In addition to the local organization, our observation of large stable clusters may
also suggest how cells can maximize productive encounters. Nonspecific protein-protein
interaction could limit the number of proteins in a cell [62]. Living cells need to form
functional protein complexes while minimizing promiscuous nonspecific interactions [63];
this is important in metabolic and signaling pathways. Therefore, clustering at given sites in
the cell would increase functional (and decrease non-functional) interactions.

Our study demonstrates the critical roles of positively charged proteins in maintaining the
network. It has been found that small proteomes often have more positively charged proteins
[6, 8]; an observation which is consistent with our finding of the fundamental roles of
positively charged proteins. Many positively charged proteins are ribosomal or DNA-
binding proteins, with clear biological functions; one example is the interactions between
positively charged proteins and DNA phosphate backbones which are involved in a four-
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way Holliday DNA junction, an intermediate in homologous recombination and a central
component in DNA recombination and repair [64]. However, proteins with extremely
alkaline pI are often very poorly represented using traditional proteome technology [65-67],
and the functions of positively charged proteins still need to be investigated. Ribosomal
proteins are such examples. In addition to their roles in ribosome assembly, they also have
important functions in cell signaling [68]. Analysis of the essential core of protein-protein
interaction networks in E. coli also found that ribosomal proteins have additional important
functional roles [69].

The requirement to maintain proper concentration of positively charged proteins in the
cytoplasm can also be illustrated by the highly abundant lysozyme in egg-white. Lysozyme
constitutes about 3.4% of the egg white proteins, and it is unusual among the major egg
white proteins in being highly basic (pI =10.7) [70]. Lysozyme may also have an anti-
bacterial role [70, 71] important for cell defense. Lysozyme is one of the smallest major egg
white proteins. It is possible that lysozyme helps to maintain the architecture of protein-
protein interaction network in egg-white, for example by forming complexes with
ovomucin, ovalbumin and ovotransferrin [70].

The concept of the minimal genome provides insight into a fundamental genomic
requirement to maintain cellular life. Our construction of the corresponding proteome which
is based on the minimal genome allows direct simulation of the virtual minimal cell. Our
observation that the minimal genome model has the highest number of interacting proteins
reveals nature’s requirement: to fulfill its native function, a protein should maintain a certain
combination of charge/mass/concentration. It is interesting to note that the minimal genome
model based on the charge and mass of E. coli could have more extensive protein-protein
interaction network than that based on the lower organism M. pneumoniae.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Characterization of the proteome in a minimal genome set reveals that the net charges and
molecular weights for the proteins in the minimal proteome are not random. (A) Bimodal
distribution of the Isoelectric point (pI) for 206 kinds of proteins agrees with other known
proteomes. (B) The distribution of protein net charges for the 206 proteins. (C) The
distribution of protein net charges for the 4161 protein particles used in simulation. Three
sets of protein copy numbers of the minimal proteome are compared: Deep blue: yeast set;
red: MC4100 set; Green: DY330 set. (D) Charge-Mass profile indicated that the net charge
of a protein decreases linearly with its molecular weight. The squares are ribosomal proteins.
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Figure 2.
(A) Comparison of the diffusion constants obtained from the simulations (black dots) with
published work for the 50 most abundant proteins (squares). (B) Diffusion constants are not
dependent on the dielectric constant used in simulations. (C) Diffusion constants are
correlated with the ratio of protein net-charges/mass.
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Figure 3.
The clustering procedure used to study the spatial protein-protein interaction network. The
cluster was defined to constitute of any proteins within 12 Å from each other. All proteins
within this range were classified to be in one cluster which extended to the whole simulation
box. In the box, the numbers (120 for the bottom purple; 76 for the orange; 716 for the
green; and 115 for the top purple cluster) indicate the cluster size. The stable cluster is
defined by overlapping 10 snapshots taken from the simulation, at 5 μs intervals. If a protein
particle appears in the cluster in all 10 snapshots, regardless of its geometrical location, it is
classified to be in the stable cluster.
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Figure 4.
Net charge controls protein interaction network. (A) Collision rate increases linearly with
the absolute charges on the proteins, i.e. it increases with the net positive and negative
charges. The result from minimal proteome yeast set is shown; similar results were obtained
from the simulations of MC4100 and DY330 sets. (B) The minimal proteome models have
high total collision count because there are fewer proteins with low collision frequencies,
which are the summation from the lowest 10 proteins. The diamonds are for the simulations
of the random proteomes, and the circles represent the minimal proteome models (each with
three runs). (C) The total collision counts within a proteome increase with the number of
positively charge proteins. (D) The size of the stable cluster depends on the ratio between
negatively and positively charged proteins with different masses. The minimal proteome
models have larger stable cluster size.
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Figure 5.
Proteomes with random populations of negatively and positively charged proteins form
smaller clusters than the minimal proteome models, whose protein populations were derived
from experimentally observed protein copy numbers. (A-C) The changes in the cluster size
during the simulations in three independent runs of minimal proteome models. (D-H)
Comparison of the cluster sizes for the minimal proteome versus random proteomes. The
comparison indicates that the minimal proteome models have larger cluster sizes during the
simulations.
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Figure 6.
M. pneumoniae has less protein-protein interaction than E. Coli based minimal proteome.
(A) The changes in the cluster size during the simulations with 172 and 206 types of
proteins in the M. pneumoniae. (B) The gap between the cluster size of the MP206 set with
experimental protein copy numbers and randomized protein copy numbers is small. (C) The
distribution of protein net charges for the 206 proteins in the MP206 set. (D) Charge-Mass
profile indicated that there is no correlation between the net charge of a protein with its
molecular weight in the M. pneumoniae proteome. (E) The cluster size obtained in the
simulations of 206 proteins using the charge and mass of E. coli proteins, but with the
protein copy numbers obtained from M. pneumoniae proteome.
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Table 1

comparison of the charge distribution of three minimal proteome sets

Charge range Protein copy number (Yeast set) Protein copy number (MC4100 set) Protein copy number (DY330 set)

-49, -40 5 4 5

-39, -35 11 19 47

-34, -30 3 15 21

-29, -25 122 82 128

-24, -20 67 122 40

-19, -15 275 206 214

-14, -10 577 562 399

-9, -5 975 682 424

-4, 0 414 667 657

1, 5 393 193 232

6, 10 446 840 980

11,15 711 521 645

16, 20 271 423 584

25, 35 30 27 32
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