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Seed germination is a critical stage in the plant life cycle and the first step toward successful plant establishment. Therefore, understanding
germination is of important ecological and agronomical relevance. Previous research revealed that different seed compartments (testa,
endosperm, and embryo) control germination, but little is known about the underlying spatial and temporal transcriptome changes that
lead to seed germination. We analyzed genome-wide expression in germinating Arabidopsis (Arabidopsis thaliana) seeds with both temporal
and spatial detail and provide Web-accessible visualizations of the data reported (vseed.nottingham.ac.uk). We show the potential of this high-
resolution data set for the construction of meaningful coexpression networks, which provide insight into the genetic control of germination.
The data set reveals two transcriptional phases during germination that are separated by testa rupture. The first phase is marked by large
transcriptome changes as the seed switches from a dry, quiescent state to a hydrated and active state. At the end of this first transcriptional
phase, the number of differentially expressed genes between consecutive time points drops. This increases again at testa rupture, the start of
the second transcriptional phase. Transcriptome data indicate a role for mechano-induced signaling at this stage and subsequently highlight
the fates of the endosperm and radicle: senescence and growth, respectively. Finally, using a phylotranscriptomic approach, we show that
expression levels of evolutionarily young genes drop during the first transcriptional phase and increase during the second phase.
Evolutionarily old genes show an opposite pattern, suggesting a more conserved transcriptome prior to the completion of germination.
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represent the link between two successive generations.
They are stress-resistant structures that help to bridge
unfavorable periods and allow dispersal. Seed forma-
tion starts with a double fertilization event, and in
Arabidopsis (Arabidopsis thaliana), it takes approxi-
mately 20 d to form a mature dry seed (Debeaujon et al.,
2007; Ohto et al., 2007). At maturity, three major seed
compartments can be distinguished (Holdsworth et al.,
2008a; Belmonte et al., 2013): the testa (seed coat), a dead
tissue that forms a protective outer layer; the endo-
sperm, a single cell layer of tissue positioned directly
underneath the testa; and the embryo (enclosed by the
testa and endosperm), which emerges to become the
future plant (Rajjou et al., 2012; Fig. 1A). A dry seed is a
unique structure in the sense that it allows severe de-
hydration (desiccation tolerance) and enters a phase of
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quiescence, bringing processes occurring in “living”
organisms to a halt without affecting viability (Farrant
and Moore, 2011; Rajjou et al., 2012). Upon imbibition of
water, the dry mature seed swells and metabolic activity
resumes, marking the start of seed germination and the end
of the quiescent state. Arabidopsis germination consists of
two visible sequential events (Holdsworth et al., 2008a;
Weitbrecht et al., 2011). First, the testa splits (testa rupture
[TR]) due to underlying expansion of the endosperm and
embryo. Thereafter, the radicle (RAD; embryonic root)
protrudes through the endosperm (endosperm rupture
[ER]), completing germination sensu stricto (Fig. 1B).
There are two nonexclusive mechanisms proposed to
explain seed germination (Nonogaki, 2006; Nonogaki
et al., 2007). The first involves the increase in embryo
growth potential leading to elongation of the proximal
embryonic axis (hypocotyl and RAD) that overcomes
the restraint of the covering tissues. The second involves
the weakening of these covering layers (including the
micropylar endosperm, positioned over the RAD tip;

Figure 1. Seed compartments and seed germi- A
nation kinetics of Arabidopsis seeds. A, A section
through an Arabidopsis seed depicting the dif-

ferent seed compartments. B, Different stages

during seed germination including TR (which
exposes the underlying endosperm layer) and ER

(also known as RAD protrusion or germination

sensu stricto). C, Arabidopsis seed germination
analyzed by measuring TR (gray line), ER (black B
line), and seed water content (WC; blue dia-
monds). Below the graph, the time points and
physiological stages (dry, NR, TR, and ER) are
indicated for each sample. The 29 samples that
were analyzed are schematically shown below
the germination graph by the yellow pictograms.
D, The four seed sections that were used for
transcriptome analysis.
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Fig. 1A) to ease the protrusion of the RAD (for review,
see Finch-Savage and Leubner-Metzger, 2006). The en-
dosperm has been shown to affect germination even in
species with a thin endosperm layer, such as Arabidopsis
(Miiller et al., 2006; Bethke et al., 2007; Lee et al., 2010).
Genome-wide expression studies have been previously
applied to gain insight into several aspects of seed biology
(Holdsworth et al., 2008a, 2008b; Le et al., 2010), including
temporal changes during Arabidopsis germination
(Nakabayashi et al., 2005; Preston et al., 2009; Narsai et al.,
2011) and in spatial differences between embryo and en-
dosperm (Penfield et al., 2006; Endo et al., 2012). Never-
theless, a detailed knowledge of the temporal changes in
gene expression in the different compartments of the
Arabidopsis seed is thus far missing, but it is essential to
understanding the control of the timing of germination
as well as the underlying molecular processes contrib-
uted by these different seed compartments. Therefore,
we have analyzed the Arabidopsis transcriptome by
sampling 11 points along the germination time course,
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including those that allow an analysis of gene expres-
sion changes at the key events of germination (TR and ER),
with a focus on the micropylar endosperm and the RAD.

RESULTS AND DISCUSSION

Arabidopsis Seed Imbibition, Germination Kinetics, and

Transcriptome Analyses

We characterized Arabidopsis seed germination by

scoring TR and ER over time. TR started around 20 h
after sowing (HAS), and at 31 HAS almost all seeds were
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fully ruptured. From 31 HAS onward, ER was observed,
which was completed in the entire seed population
by 45 HAS (Fig. 1C). Microarray experiments were
performed using dry seeds and seeds at nine time points
along the germination time course until the completion
of germination (Fig. 1C). The time points 25 and 38 HAS
showed a mixture of nonruptured (NR) and TR seeds
and TR and ER seeds, respectively; at these time points,
both classes were separated and collected as distinct
samples, which enabled us to map the transcriptome
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changes induced by TR and ER. To capture spatial dy-
namics, imbibed seeds were dissected into four parts.

Figure 2. Transcriptional differences between
seed compartments. A, PCA of the 116 samples.
The four replicates of all 29 samples are indicated
by color. B, Tissue differences are represented by
the number of differentially expressed genes at
three time points during imbibition (3, 16, and 31
HAS, the time points in which all four tissues
were sampled). Comparisons were made between
endosperm and embryo (MCE versus RAD), be-
tween embryo tissues (RAD versus COT), and be-
tween both endosperm samples (MCE versus PE).
The bars show the number of differentially expressed
genes at a 2-, 3-, 5-, and 10-fold cutoff. The pie di-
agrams below the graph indicate the fraction of the
total number of differentially expressed genes (at
a 3-fold cutoff level) in either of the two tissues
that were compared at 31 HAS.
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The key compartments for germination, the RAD (in-
cluding a large part of the hypocotyl to ensure that it
encompasses the region that elongates [Sliwinska et al.,
2009]) and the micropylar end of the endosperm (which
is a combination of micropylar and chalazal endosperm
[MCE]), were sampled at all time points. At three time
points (3,16, and 31 HAS), the cotyledons (COT) and the
remainder of the endosperm (peripheral endosperm
[PE]) were collected (Fig. 1, A, C, and D; Supplemental
Fig. S1). The 29 samples, with four replicates for each
sample, were analyzed using Affymetrix ATH1 gene
chips. Plotting probe set values in a histogram showed
clearly distinguishable peaks for noise and signal and
revealed that an appropriate cutoff for considering a
gene as potentially expressed was 5 on a log, scale
(Supplemental Fig. S1). The percentage of genes detec-
ted in the different seed compartments was within the
same range described for other Arabidopsis seed tran-
scriptome analyses (Nakabayashi et al., 2005; Penfield
et al., 2006; Belmonte et al., 2013). In total, 14,317 genes
(67.2% of the 21,313 genes on the chip) were found to be
expressed at least once in the 29 samples, of which
11,298 (78.8%) were shared between all compartments
(Supplemental Fig. S2A).

At the start of the time course, a lower number of
genes were found to be expressed, and this number in-
creased during the time course in all tissues, most no-
tably during the first 12 to 16 HAS (Supplemental Fig.
S52B). We identified gene sets that were tissue specifi-
cally expressed by considering genes as specifically
expressed in one tissue when expressed above 6 (on a
log, scale) in that tissue and expressed below 5 in all the
other tissues (which, therefore, is in the noise region).
This resulted in 415 genes specific to the endosperm
and 546 genes specific to the embryo in our data set
(Supplemental Fig. S2; Supplemental Data Set S1),
which overlaps with previously published data sets
(Penfield et al., 2006; Le et al., 2010; Supplemental Fig.
S3). In total, 12,856 genes are expressed above 6 in either
tissue, with 10,801 expressed above 6 in both tissues.
Thus, according to this definition, 84.01% of the genes
are shared between both tissues, while 3.22% are spe-
cific to the embryo and 4.24% are specific to the endo-
sperm. The remaining genes (8.53%) are expressed over
6 in one tissue but between 5 and 6 in another tissue and
so are not classed as being highly specific to any one
tissue. Interrogation using overrepresentation analysis
(ORA) revealed that the endosperm gene set was
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Figure 3. The endosperm coexpression network, EndoNet. A, Sample layout of EndoNet. The nodes (genes) are indicated by
gray circles, and edges (gray lines) are drawn between two nodes if their correlation of expression is above 0.932. The 30 largest
clusters are indicated by different colors. To visualize the gene expression profiles captured in the network, the expression
profiles of exemplar genes are shown around the network. B, Details of the largest 30 clusters are shown, including the number
of nodes, edges, and the percentage of edges that are shared with RadNet (at a cutoff of 0.85). The expression profiles of genes
in the EndoNet clusters 1, 7, 12, and 27 are shown (the positions of these clusters in EndoNet are shown A). The right side of the
graph depicts the expression profiles of the same set of genes in the RAD samples.
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overrepresented for genes related to response to
abscisic acid, defense response, cell wall macromol-
ecule metabolism/catabolism, and cell death as well
as genes associated with the regulation of transcription
(Supplemental Fig. S2D), in agreement with recent
findings (Endo et al., 2012). In the embryo, the largest
class was related to plant development. Other Gene
Ontology (GO) classes that were overrepresented
included cell division, hormone metabolic process,
protein amino acid phosphorylation, signaling, and
regulation of transcription (Supplemental Fig. S2E).
Thus, different GO classes were found to be overrepre-
sented in each tissue, with regulation of transcription/gene
expression appearing in both. Both tissue-specific gene
sets are enriched for transcription factors (Supplemental
Fig. S2F). In the endosperm, transcription factors of
NAC, WRKY, and C3H classes, and in the embryo, tran-
scription factors of bHLH, G2-like, and HB classes,
are particularly enriched (Supplemental Fig. S2F).
Compartment-specific gene sets containing 106, 47, 21,
and two genes were identified for the RAD, COT, MCE,
and PE (Supplemental Fig. S2; Supplemental Data Set
S1), respectively, and quantitative reverse transcription-
PCR confirmed the compartment-specific expression of
20 genes (Supplemental Fig. 54).

In order to globally compare gene expression between
the samples, all 116 arrays were plotted using principal
component analysis (PCA; Fig. 2A). In general, the
largest transcriptome differences were observed be-
tween the endosperm and embryo (MCE versus RAD)
followed by the comparison between both embryo parts
(RAD versus COT). The smallest differences were found
between both endosperm (MCE versus PE) parts (Fig. 2).
The quality controls (Supplemental Fig. S1), the high
correlation between the replicates (Supplemental Table S1),
and the confirmation by quantitative reverse transcription-
PCR of compartment-specific expression (Supplemental
Fig. 54) indicate that this is a robust data set revealing
transcriptome changes during seed rehydration and the
developmental switch from a quiescent dry seed to ger-
mination in both temporal and spatial detail.

Generation of Coexpression Networks and Data
Visualization Tools

We generated coexpression networks (Bassel et al.,
2011) for the endosperm (EndoNet) and the RAD sam-
ples (RadNet). We identified compact clusters of genes
in the networks (Supplemental Data Set S1) that were
further scrutinized with the network topological ana-
lyzer, TopoGSA (http://www.topogsa.net/; Glaab
et al., 2010; Supplemental Fig. S5). Interactive visuali-
zations of both networks are available online at
http:/ /vseed.nottingham.ac.uk. Compared with our
previous visualization tool (Bassel et al., 2011), these
visualizations offer improved performance and more
advanced gene selection options, such as the high-
lighting of individual genes or entire clusters, searching for
genes by name or descriptive keywords, and visualization
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of gene expression using our new Electronic Fluorescent
Pictograph browser (Winter et al., 2007).

EndoNet shows a ring-like display, a result of the
scarcity of genes with constant expression (Fig. 3A). This
indicates that the regulation of gene expression is very
dynamic in the endosperm during germination. The
largest 30 EndoNet clusters are spread around the net-
work and thus represent the major gene expression
profiles. ORA revealed cluster-specific overrepresenta-
tion of specific biological processes (Supplemental Fig.
56). These clusters consist of 26 to 195 genes and contain
at least 99.7% of all possible edges within them (Fig. 3),
indicating that genes within such clusters have very
similar expression patterns. Genes of some clusters (e.g.
EndoNet cluster 1) are also coexpressed in RadNet (81%
of the edges in cluster 1 are also found in RadNet at a
0.85 correlation) and show similar expression patterns
in both compartments, while other genes (such as
EndoNet cluster 27) show an endosperm-specific ex-
pression pattern and have few edges in common with
RadNet (Fig. 3B). On the other hand, almost all con-
nections in EndoNet clusters 7 and 14 (98% and 88%,
respectively) are also present in RadNet (Fig. 3B). De-
spite strong coexpression between both networks, the
expression profiles in these clusters are different be-
tween the two compartments, being induced in both but
subsequently repressed in the endosperm.

Arabidopsis Seed Germination Is Composed of Two
Transcriptional Phases

Analyzing the transcriptional dynamics between
consecutive time points of the germination time course

Transcriptional phase

250 4 S 11 »
e |
200 - B MCE
ORAD

150 4

100 -

50 4

# of up-regulated genes / h

3 7 12 16 20 25NR 25TR 31 38TR 38ER HAS

0
50 '

g 100

# of down-regulated
genes / h

150

Figure 4. Arabidopsis seed germination is characterized by two tran-
scriptional phases. The number of differentially expressed genes (both
up- and down-regulated) between consecutive time points (3 was
compared with 1, 7 with 3, 12 with 7, etc.) in the MCE (white bars) and
RAD (brown bars) with a reasonable fold change (taking a 3-fold dif-
ference as the cutoff) are presented. The two transcriptional phases,
phase | from 1 to 25 HAS NR and phase Il from 25 HAS NR to 38 HAS
ER, are indicated by the red arrows.
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revealed two transcriptional phases (Fig. 4). The first
phase runs from 1 to 25 HAS NR and is characterized
by large transcriptional changes in both up- and
down-regulated genes. At the end of this first phase,
the number of differentially expressed genes was re-
duced (Fig. 4). The second phase, which runs from TR
to the completion of germination, was marked by re-
sumption of differential gene expression, most notably
at TR. During the second phase, the majority of the
differentially expressed genes are induced rather than
repressed, in contrast to the first phase.

The First Transcriptional Phase Is Characterized by an
Inversion of the Seed Maturation Transcriptional Program

Between 1 and 3 HAS, differential gene expression
was observed, particularly in the MCE (Fig. 4). In com-
parison, the response of the RAD was delayed, which
could be due to its slower imbibition kinetics compared

with the more outward-positioned MCE (Fig. 4). Large
transcriptional changes occurred in the first 16 HAS.
ORA of this phase suggests a large overlap in the func-
tional classes that are activated in the MCE and RAD (i.e.
genes related to cell wall function, nucleotide metabo-
lism, amino acid metabolism, and protein translation;
Fig. 5). A major difference is the activation of classes
related to transport and energy metabolism (lipid
metabolism, glycolysis, TCA, and mitochondrial elec-
tron transport) that are specifically activated in the
MCE from 20 HAS, in agreement with findings that
storage lipids are more rapidly mobilized in the en-
dosperm compared with the embryo (Penfield et al.,
2005).

We compared gene expression during seed germi-
nation with gene expression during seed development
and identified two gene sets containing 602 and 907
genes (Supplemental Data Set S1) that were strongly up-
and down-regulated, respectively, between the embryo
COT phase (early seed maturation) and the postmature

Figure 5. Temporal differences between endo-
sperm and embryo using ORA. The overrepre- r}
sented gene categories of the up-regulated genes i

of the germination time course (all time points
were compared with 1 HAS) were identified in
the MCE (top graph) and the RAD (bottom graph)
using PageMan (Usadel et al., 2006). Selected
categories are summarized in the graphs, and
black bars show the time points during germina-
tion at which the indicated gene categories are
overrepresented. OPP, Oxidative pentose pho-
phate pathway.
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green stage (late maturation) from a publicly available
data set (Le et al., 2010). The expression of the two gene
sets was analyzed during germination, and the majority
of the genes of both sets showed inverse expression
patterns during seed germination (Fig. 6). The largest
overlap (75%) was found between genes that were up-
regulated during seed maturation and those down-
regulated during germination. Additionally, 67% of
the genes from the set that were down-regulated during
seed maturation showed an inverse expression pattern
(were induced) during germination. The reinduction of
these seed maturation down-regulated genes during
germination was slower than the removal of the seed
maturation-induced genes. Nevertheless, the majority
of the seed maturation-repressed genes were reactivated
in the first transcriptional phase rather than the second
transcriptional phase.

TR Is Marked by High Transcriptional Activity
That Overlaps in Part with a Response to
Touch-Induced Signaling

TRis characterized by a large number of differentially
expressed genes when compared with NR seeds at
25 HAS, mostly genes that are up-regulated in the
MCE (Fig. 7A). At TR, 104 genes were over 5-fold up-
regulated in the MCE (Supplemental Data Set S1), 30 of
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Figure 6. Inverse expression of seed maturation genes during germi-
nation in temporal and spatial detail. The top panel shows the per-
centage of up-regulated genes during germination among a set of 907
genes that are down-regulated during seed maturation. The bottom
panel shows the percentage of down-regulated genes during germi-
nation among a set of 602 genes that are up-regulated during seed
maturation. Genes expressed specifically in the MCE (in brown), in the
RAD (in white), and in both (in black) are indicated.
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which are related to cell wall function. Other classes
induced by TR in the MCE include genes related to biotic
stress, hormone metabolism, regulation of transcrip-
tion, signaling (receptor kinases), and transport (Fig.
7B). Possible reasons for these large transcriptional
changes between NR and TR seeds include an enhanced
access to oxygen, light signaling, and/or a touch
(mechano)-sensing response (Fig. 7C). ORA did not
reveal a clear indication of the involvement of either
oxygen or light. However, the gene set included TOUCH3
and TOUCH4 (both more than 8-fold induced), which are
known to respond rapidly to touch (Braam, 2005; Fig. 7D).
To investigate whether the transcriptional up-regulation
at TR resembles touch sensing, we compared our MCETR
up-regulated data set with genes up-regulated upon
touch in aerial parts of plants (Lee et al., 2005). We
reanalyzed a published touch data set (Lee et al., 2005;
Supplemental Materials and Methods S1) and found a
30% overlap with our TR-induced set in the MCE and
the touch up-regulated genes, with a lower overlap
between the touch data set and the TR-induced genes
inthe RAD (Fig. 7E). The overlap between the gene sets
induced by TR in the MCE and touch was more strik-
ing when the gene classes were considered. Touch-
induced signaling resulted in a relatively higher
abundance of genes related to the GO classes cell wall
associated, calcium binding, disease resistance, ki-
nase, and transcription factor (Lee et al., 2005), which
match well with the classes identified at TR (Fig. 7B).
We also observed that gene expression associated with
jasmonate biosynthesis was activated upon TR in the
MCE; this plant hormone was recently shown to be a
key regulator of plant morphogenesis and enhanced
pest resistance upon touch (Chehab et al., 2012). It has
been hypothesized that gene expression in the endo-
sperm during germination might be affected by touch/
mechano sensing (Martinez-Anddjar et al., 2012), and
this transcriptome study provides a strong sugges-
tion that touch signaling is indeed, at least in part,
responsible for the induction of gene expression in
the endosperm.

The Second Transcriptional Phase Highlights Distinct
Fates for the Embryo and the Endosperm

The second transcriptional phase starts at TR and in-
cludes gene expression changes related to the comple-
tion of germination. Using ORA, we analyzed the
temporal changes in the MCE and the RAD (Fig. 5) as
well as gene sets that are more highly expressed within
the MCE or RAD along the time course (Supplemental
Fig. 57). This revealed that, in the MCE genes related
to secondary metabolism, amino acid metabolism and
protein synthesis are overrepresented transiently (Fig. 5).
Genes more highly expressed in the MCE than the RAD
are enriched for protein degradation, transport, and
stress-related genes (although the latter are overrepre-
sented in the MCE over the whole time course;
Supplemental Fig. S7). The RAD, particularly at the
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Figure 7. Genes induced with respect to TR show
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later stage, is enriched for cellular metabolism related
to DNA, RNA, and proteins compared with the
MCE (Supplemental Fig. 57). ORA suggests that
energy metabolism (lipid metabolism, glycolysis,
TCA, and mitochondrial electron transport) is acti-
vated by 38 HAS. At this stage, genes for cell wall
biosynthesis, transport, and secondary metabolism
are activated, notably just prior to ER (Fig. 5). In
addition, genes related to the cell cycle and lipid and
amino acid metabolism are overrepresented within
genes more highly expressed in the RAD than the
MCE (Supplemental Fig. S7), which are all classes
supporting tissue growth. The GO gene class “ag-
ing” becomes overrepresented in the latter part of
the germination time course in the MCE (Fig. 5;
Supplemental Fig. S7). This is in agreement with the
down-regulation of key cellular metabolic pathways
and the induction of gene classes related to remobi-
lization, reminiscent of the transcriptional changes
described for senescence (Lim et al., 2007; Breeze
etal., 2011).
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The Transition from a Dry Quiescent to a Hydrated
and Germinating Seed Coincides with Increased
Transcriptional Differences between Seed Compartments

From the PCA of all 116 arrays (Fig. 2A), we conclude
that the transcriptome differences between seed com-
partments are small during early germination and in-
crease with time. This is in agreement with the observation
that the number of endosperm- and embryo-specific genes
expressed increased along the time course from approxi-
mately 40 to 400 (Supplemental Fig. S8A). This may be
explained by the fact that the majority of genes induced
in seed maturation and that are subsequently removed
during germination are shared by the MCE and RAD
(72%) and that seed maturation-repressed genes (reac-
tivated during germination) are, in contrast, mostly spe-
cific to either the RAD or the MCE (Fig. 6). Presumably, the
repression of genes related to development and differen-
tiation is a more general response for an organism passing
through a desiccated state, as is shown for the expression
of genes involved in stomatal development (in the COT
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samples) and root development (in the RAD samples).
Many of these genes are induced (sometimes transiently)
during germination, with low or no expression initially
(Supplemental Fig. S8B).

Differential Gene Expression in the Endosperm
Is Concentrated at the Micropylar End

The observation that the transcriptional differences
increase with time between seed compartments is also
shown, besides the PCA, in the number of differentially
expressed genes between the seed compartments. The
number of differentially expressed genes was least
between both endosperm compartments. At 31 HAS,
about 200 genes were differentially expressed (more
than 3-fold difference), with the majority of these (95%)
being up-regulated in the MCE (Fig. 2B) compared with
the PE. Such a skewed division was not observed for
other comparisons (Fig. 2B). The micropylar endosperm
is hypothesized to possess an inhibitory role in germi-
nation, and endosperm changes, in particular of cell
wall properties, are suggested to be important for ger-
mination control (Nonogaki et al., 2007). Recently, using
in situ cell wall epitope detection, Arabidopsis endo-
sperm cell walls were shown to have a different struc-
ture compared with the embryo cell wall, and the
endosperm walls were shown to contain cellulose,
unesterified homogalacturonan, arabinan, and xylo-
glucan polymers (Lee et al., 2012). However, no spatial
or temporal heterogeneity in cell wall polymers was
observed prior to germination (Lee et al., 2012). This
could indicate that cell wall changes leading to germi-
nation are modifications that are not detectable by in
situ analysis and/or that occur very locally. We com-
pared both endosperm samples and found many dif-
ferentially expressed genes between the MCE and PE

Transcriptional Dynamics in Two Seed Compartments

(Supplemental Data Set S1). The largest differences were
found close to the point of germination (31 HAS) in the
MCE, and this set was investigated for candidates that
are potentially involved in ER.

Several transcription factors were found to be highly
expressed in the MCE compared with the PE that may
function in gene regulation in this particular compart-
ment. Genes related to cell wall function, including per-
oxidases, a pectin lyase-like superfamily protein, chitinase
family protein, and ARABINOGALACTAN PROTEIN31
were identified in this set, and these could be potential
candidates for affecting cell wall properties to enable seed
germination. It is notable that one of the most highly
differentially expressed (more than 20-fold) genes in the
MCE is INFLORESCENCE DEFICIENT IN ABSCISSION-
LIKE1 (IDL1). This encodes a putative ligand that pro-
motes cell separation and floral organ abscission via the
interaction with receptor-like kinases (Stenvik et al., 2008).
Recently, it has been reported that the INFLORESCENCE
DEFICIENT IN ABSCISSION (IDA) peptide and its re-
ceptors HAESA (HAE) and HAESA-LIKE2 (HSL2) are also
important for cell separation during lateral root emer-
gence (Kumpf et al.,, 2013), suggesting that Arabidopsis
seed germination may occur via a cell separation event
that is potentially regulated by the IDA/IDL-HAE/HSL
signaling module. This detailed data set allowed the
identification of transcription factors, cell wall-related
genes, and genes related to cell separation, although fur-
ther research is needed to investigate their potential role in
seed germination.

Seed Germination Is Characterized by Coordinated
Expression of Evolutionarily Old and Young Genes

Recently, it has been shown that, like animal em-
bryogenesis, plant embryogenesis involves a passage
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through a conserved and evolutionarily old transcrip-
tional stage (Quint etal., 2012). This so-called phylotypic
stage is mainly caused by the repression of evolutionarily
young genes and is proposed to help the spatiotemporal
organization and differentiation of multicellular life
(Quint et al., 2012). Since we observed a largely inverse
expression pattern during germination of gene sets that
are up- and down-regulated during seed development
(Fig. 6), we asked whether (1) seed germination is also
characterized by the coordinated expression of evolu-
tionarily old and young genes and (2), if so, whether these
patterns are linked to the two transcriptomic phases we
observed. To answer these questions, we first applied the
phylostratigraphic approach (Domazet-Loso et al., 2007;
Domazet-Loso and Tautz, 2010; Quint et al., 2012), in
which we ordered the Arabidopsis genome into 12 evo-
lutionary age classes (phylostrata; designated PS1-PS12).
Each Arabidopsis gene is BLASTed against all genomes
underlying the 12 phylostrata and is sorted in its phy-
lostratum, defined as the most distant phylogenetic node
containing at least one species with a detectable homolog
(Quintetal., 2012). This resulted in the phylostratigraphic
map in which PS1 (cellular organisms) contains the
evolutionarily oldest genes and PS12 (Arabidopsis)
contains the youngest genes that are specific to Arabi-
dopsis, with no homologs detected in any of the other
species (Supplemental Fig. S9A).

Next, we interrogated the gene expression data of the
MCE and plotted the relative expression values of (1)
genes that arose before plant evolution (PS1 and PS2
combined), (2) genes that arose during early plant evolu-
tion (algae and non-seed-bearing plants; PS3-PS5), and (3)
the evolutionarily youngest genes (which evolved in seed-
bearing plants; PS6-PS12). The analysis shows that in
the MCE, the relative expression of evolutionarily young
genes is high shortly after imbibition but drops during the
first transcriptional phase, followed by an increase in the
second transcriptional phase (Fig. 8A; Supplemental Fig.
S9). Interestingly, the oldest genes (PS1 and PS2) showed
an inverse behavior, starting low at the beginning of ger-
mination, peaking at the end of the first transcriptional
phase, followed by a decrease in the second transcriptional
phase. Genes of PS3 to PS5 show a different pattern,
starting low and increasing during the course of germi-
nation. Comparable results were obtained for the RAD
during germination (Fig. 8B; Supplemental Fig. S9). The
patterns in both seed parts, particularly the inverse pat-
terns of the evolutionarily old and young genes, suggest
that seeds not only pass through an evolutionarily con-
served stage during seed development but also during
the successive germination phase. Coordinated expres-
sion of evolutionarily old and young genes (and, in this
way, passage through a conserved transcriptional state)
may help to channel large physiological transitions.

CONCLUSION

This study revealed two separate transcriptional
phases for seed germination that are separated by TR
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and provides a strong indication that mechano-induced
signaling affects gene expression at TR in the MCE. It
also shows that time is an important determinant for
spatial expression differences. Surprisingly, we found
similar patterns of expression of evolutionarily old and
young genes in seed development and seed germina-
tion, suggesting that plants passing through a tran-
scriptional old and conserved stage may not be limited
to embryogenesis. In addition to the novel biological
insight, we are convinced that these detailed tran-
scriptome data, including the tools developed for data
visualization and mining, provide a powerful resource
to gain further understanding of the roles of different
seed compartments in germination, novel regulators,
and gene networks underlying seed germination.

MATERIALS AND METHODS
Plant Material, Sampling, and Microarray Analysis

For this experiment, the Arabidopsis (Arabidopsis thaliana) accession
Columbia-0 (N60000) was used. Seeds were sown on 0.7% water agarose
(Eurogentec) and incubated in a germination cabinet at 22°C with continuous
light. Germination curves (for both testa and endosperm rupture) were assessed
by scoring germination in time. After the indicated HAS, seeds were harvested
and dissected using forceps and a scalpel knife. For the isolation of RNA, a
commercial kit (Absolutely RNA Nanoprep Kit; Agilent Technologies) was
used. In total, 100 ng of RNA was used to synthesize biotin-labeled copy RNA
(using the Affymetrix 3’ IVT-Express Labeling Kit), which was hybridized on the
Affymetrix GeneChips Arabidopsis ATH1 Genome Array. The raw .cel files
were background corrected and normalized using the Robust Microarray
Averaging procedure (Irizarry et al., 2003). A detailed version of the methods
used is available as Supplemental Materials and Methods S1.

The microarray data used in this article have been deposited in the National
Center for Biotechnology Information’s Gene Expression Omnibus with ac-
cession number GEO 41212.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. ATH1 Genechip quality assessment and
reproducibility.

Supplemental Figure S2. General expression numbers.

Supplemental Figure S3. Comparisons with two other seed microarray
datasets.

Supplemental Figure S4. RT-qPCR confirms tissue-specific expression
found in the microarray dataset.

Supplemental Figure S5. Topological features of the EndoNet and RadNet.

Supplemental Figure S6. Overrepresentation analysis of the 30 largest
clusters from the EndoNet co-expression network.

Supplemental Figure S7. ORA using Pageman of genes that are either
higher expressed in the MCE or the RAD.

Supplemental Figure S8. Seed tissues differentiate during germination.

Supplemental Figure S9. Expression of evolutionary old and young genes
during Arabidopsis seed germination.

Supplemental Figure S10. The node degree distribution for the correlation
networks.

Supplemental Table S1. Correlations between the sample replicates.
Supplemental Table S2. Primer information of the genes tested by

RT-qPCR.
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Methods.

Supplemental Data Set S1. Collection of gene lists.
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