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The plant cuticle is an extracellular hydrophobic layer that covers the aerial epidermis of all land plants, providing protection
against desiccation and external environmental stresses. The past decade has seen considerable progress in assembling models
for the biosynthesis of its two major components, the polymer cutin and cuticular waxes. Most recently, two breakthroughs in
the long-sought molecular bases of alkane formation and polyester synthesis have allowed construction of nearly complete
biosynthetic pathways for both waxes and cutin. Concurrently, a complex regulatory network controlling the synthesis of the
cuticle is emerging. It has also become clear that the physiological role of the cuticle extends well beyond its primary function as
a transpiration barrier, playing important roles in processes ranging from development to interaction with microbes. Here, we
review recent progress in the biochemistry and molecular biology of cuticle synthesis and function and highlight some of the
major questions that will drive future research in this field.

The first plant colonizers of land, approximately 450
million years ago in themid-Paleozoic era, faced a daunt-
ing set of challenges associated with their new terres-
trial environment, including desiccation, temperature
extremes, gravity, and increased exposure to UV radia-
tion (Waters, 2003; Leliaert et al., 2011). The transition
from an exclusively aquatic to a terrestrial life style,
therefore, would have necessitated the evolution of a
toolbox of morphological and physiological features,
some of which are apparent through studies of the fossil
record or by examining extant plant lineages. For exam-
ple, the development of architecturally complex cell walls
for biomechanical support and structural protection,
which typify modern land plants, can be traced back to
divergence and radiation within the Charophycean green
algae, their immediate ancestors (Sørensen et al., 2011).
However, the most critical adaptive trait for survival
during terrestrialization would have been the ability to
retain water in increasingly dehydrating habitats. Conse-
quently, the capacity to synthesize, deposit, and maintain
a hydrophobic surface layer, or cuticle, over the surfaces
of aerial organs was arguably one of the most important
innovations in the history of plant evolution. This idea is
borne out by both fossil evidence (Edwards, 1993) and
the ubiquity of cuticles among all extant embryophytes,
from bryophytes (Budke et al., 2012) to angiosperms.

Armed with a protective skin, together with a range of
adaptive strategies for acquiring and conserving water, as
well as for avoiding or tolerating water stress, embryo-
phytes now thrive in a wide range of desiccating envi-
ronments (Ogburn and Edwards, 2010; Aroca et al., 2012;
Delaux et al., 2012; Jones and Dolan, 2012; Obata and
Fernie, 2012; Gaff and Oliver, 2013). Accordingly, cuticles
from a broad range of species, and in various ecological
and agricultural contexts, have been studied from the
perspective of their role as the primary barrier to tran-
spirational water loss. However, it is now clear that cuti-
cles play numerous other roles in plant development,
physiology, and interactions with the abiotic environment
and other organisms. Indeed, in recent years, there have
been many instances of unexpected associations between
the cuticle and diverse aspects of plant biology. In parallel,
the past decade has seen considerable progress in un-
derstanding the biosynthesis of the major cuticle compo-
nents and the complex regulatory networks that control
cuticle synthesis and assembly.

This review summarizes recent progress in elucidating
the biochemistry and molecular biology of cuticle syn-
thesis and function and highlights some of the connec-
tions to other aspects of plant biology, including signaling,
pathogen defense, and development. Given the broad
scope and space limitation, not every aspect of cuticle
biosynthesis is covered in depth, and recent specialized
reviews focusing on cuticle biomechanical properties
(Domínguez et al., 2011), defensive functions (Reina-
Pinto and Yephremov, 2009), and transport barrier
properties (Burghardt and Riederer, 2006) may be of
further interest. In addition, key ongoing questions in
the field are discussed, and potential future approaches
to resolving those questions are suggested.

CUTICLE STRUCTURE, BIOSYNTHESIS,
AND ASSEMBLY

Plant cuticles are composite structures, composed
of a covalently linked macromolecular scaffold of cutin
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and a variety of organic solvent-soluble lipids that are
collectively termedwaxes. Although the cuticle is usually
considered independently from the underlying polysac-
charide cell wall of the epidermis, the two structures are
physically associated and have some overlapping func-
tions. Indeed, the cuticle can be considered a specialized
lipidic modification of the cell wall, just as lignification
is a common modification of plant secondary cell walls.
The microscopic structure of the cuticle is often divided
into two domains based on histochemical staining and
their presumed chemical composition: a cutin-rich do-
main with embedded polysaccharides, which is referred
to as the “cuticular layer,” and an overlying layer that is
less abundant in polysaccharides but enriched in waxes,
referred to as the “cuticle proper” (Fig. 1A). The waxes
are either deposited within the cutin matrix (intracutic-
ular wax) or accumulate on its surface as epicuticular
wax crystals, or films. These epicuticular waxes can con-
fer distinct macroscopic surface properties: epicuticular
films are responsible for the glossy appearance common
to many leaves and fruits, while epicuticular wax crys-
tals account for the dull, glaucous appearance of broccoli
(Brassica oleracea) leaves and Arabidopsis (Arabidopsis
thaliana) stems. Cuticle architectural organization can be
discerned using a number of microscopic techniques.

Scanning electron microscopy can reveal the elaborate
and diverse morphologies of epicuticular wax crystals
(Fig. 1B; Jeffree, 2006), while transmission electron mi-
croscopy shows the distinct patterning of interior layers
of the cuticle, although this approach does not allow
the visualization of wax structures (Fig. 1C). Cuticles
vary considerably in their architecture and, depend-
ing on species and ontogeny, differ dramatically in
hickness, from the nanometer to the micrometer scale
(Jeffree, 2006). In the latter case, light microscopy can
be used to elucidate the fine structures of the cuticle
and epidermal cell wall (Fig. 1D), while histochemical
staining coupled with confocal microscopy can fur-
ther resolve three-dimensional cuticle architecture
(Buda et al., 2009).

Wax Biosynthesis

Wax composition can vary substantially with spe-
cies, ontogeny, and environmental growth conditions
(Jenks and Ashworth, 1999). In most cases, the ma-
jority of compounds comprising the cuticular wax are
derived from very-long-chain fatty acids (VLCFAs;
C20–C34), including alkanes, aldehydes, primary and
secondary alcohols, ketones, and esters (Table I). In

Figure 1. Plant cuticle structure.
A, Schematic diagram highlighting the
major structural features of the cuticle
and underlying epidermal cell layer
(not drawn to scale). B, Scanning
electron micrograph image of an
Arabidopsis leaf epidermis and over-
lying cuticle, seen in cross section.
Bar = 5 mm. (Image courtesy of
Dr. Lacey Samuels.) C, Transmission
electron micrograph image of an
Arabidopsis stem epidermal cell wall
and cuticle. Bar = 500 nm. (Image
courtesy of Dr. Christiane Nawrath.)
D, Light microscopy image showing
the cuticle of a mature green-stage
tomato fruit stained with Sudan Red
and the polysaccharide cell walls
stained with Alcian Blue. Bar = 50 mm.
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some species, various lipophilic secondary metabo-
lites, such as pentacyclic triterpenoids, flavonoids, and
tocopherols, can also be substantial components (Jetter
et al., 2006). There has been impressive progress in
revealing the molecular biology underlying VLCFA-
derived wax biosynthesis, and to this end, Arabidopsis
has provided an excellent experimental model (Bernard
and Joubès, 2013). In addition to its well-known advan-
tages as a genetic system, the presence of stem epicu-
ticular wax crystals, which impart a glaucous appearance
in the wild type, has enabled an easy screen for wax-
deficient mutants. Such mutants, termed eceriferum (cer;
Koornneef et al., 1989), typically exhibit a glossy stem
phenotype, and it has primarily been through molecular
analyses of these and other wax mutants that an in-
creasingly complete pathway for acyl wax biosynthesis
has been established.
Wax biosynthesis begins with de novo C16 or C18

fatty acid biosynthesis in the plastid of epidermal cells
(Fig. 2). These long-chain fatty acid compounds are con-
verted to CoA thioesters by a long-chain acyl-coenzyme
A synthase (LACS) isozyme and are ultimately trans-
ferred to the endoplasmic reticulum (ER). The mechanism
of intracellular trafficking of fatty acid from the chloro-
plast to the ER remains unknown, although heterologous
expression of Arabidopsis LACS1, LACS2, and LACS3
facilitates fatty acid uptake in yeast, suggesting that this
class of enzymes may play dual roles in fatty acid traf-
ficking and activation (Pulsifer et al., 2012). For reference,
Table II provides a list of the corresponding genes, as well
as others discussed in this review. The C16 acyl-CoA is
then a substrate for the fatty acid elongase (FAE) com-
plex. Through successive addition of two carbons per
cycle derived from malonyl-CoA, the ultimate products

of this complex are VLCFAs. The complex consists of four
core subunits: b-ketoacyl-CoA synthase, b-ketoacyl-CoA
reductase, b-hydroxyacyl-CoA dehydratase, and enoyl-
CoA reductase. In Arabidopsis, 21 genes are predicted
to encode b-ketoacyl-CoA synthase, and for wax bio-
synthesis, the most important gene, based on the mutant
phenotype, is CER6 (Fiebig et al., 2000). Genes encoding
the remaining subunits of the FAE complex, represented
by KCR1, PAS2, and CER10, respectively, are less redun-
dant, and their pleiotropic mutant phenotypes under-
score the shared importance of the FAE in generating
VLCFA precursors for sphingolipid biosynthesis (Zheng
et al., 2005; Bach et al., 2008; Beaudoin et al., 2009). An
additional family of proteins, composed of CER2, CER26,
and CER26-like, appears to be required for the elonga-
tion of fatty acids to lengths greater than 28C (Haslam
et al., 2012; Pascal et al., 2013). Curiously, these enzymes
have sequence homology to BAHD acyltransferases, but
conserved catalytic amino acid residues of this family of
enzymes are dispensable for the elongation-promoting
activity of CER2 (Haslam et al., 2012). The elongation
cycles can be terminated by a thioesterase to form free
VLCFAs, or the VLCFA-CoA esters can undergo further
modifications.

Primary alcohols can be produced from VLCFA-
CoA by fatty acyl-CoA reductase, an enzyme encoded
by CER4 in Arabidopsis (Rowland et al., 2006). Free
primary alcohols can occur in the wax mixture, or they
can be esterified to a fatty acid in order to form wax
esters. In this case, the alcohol is coupled to an acyl
group derived from fatty acyl-CoA. The Arabidopsis
enzyme responsible for this is WSD1, an enzyme of the
wax synthase/diacylglycerol acyltransferase family (Li
et al., 2008).

Table I. Major acyl-lipid classes found in cuticular waxes
Most classes occur as homologous series with broad distributions of chain lengths, compounds with typical average chain lengths are shown.
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A second branch of acyl wax biosynthesis leads to the
formation of aldehydes and, ultimately, alkanes. Inter-
estingly, in Arabidopsis, LACS1, which is also required
for C16 cutin monomer biosynthesis, appears to have
an additional specificity for C30 VLCFA and is required
for the normal accumulation of downstream wax com-
pounds (Lü et al., 2009). This suggests that conversion
of an intracellular pool of free VLCFA back to VLCFA-
CoA is an important route to aldehyde and alkane
biosynthesis, rather than VLCFA-CoA directly derived
from FAE. A long unresolved question in wax bio-
synthesis is the enzymatic basis of alkane synthesis.
Classical biochemistry, using crude extracts from
pea (Pisum sativum), indicated that the reaction likely
occurs via the reduction of VLCFA-CoA to an alde-
hyde intermediate followed by decarbonylation,
yielding an alkane that is 1C shorter (Cheesbrough
and Kolattukudy, 1984; Schneider-Belhaddad and
Kolattukudy, 2000). Although this enzyme was not
purified and identified, compelling evidence was re-
cently obtained, through studies of Arabidopsis, that
CER1 and CER3 in complex act together to catalyze the
formation of alkanes from VLCFA-CoA. It was shown
by a split ubiquitin yeast two-hybrid assay and an
Arabidopsis split luciferase assay that CER1 interacts
with CER3 as well as several isoforms of cytochrome b5.
Furthermore, heterologous expression of the combination
of CER1, CER3, a cytochrome b5, and LACS1 in yeast
resulted in the formation of very-long-chain alkanes

(Bernard et al., 2012). This strongly suggests that a
complex including CER1 and CER3 with cytochrome
b5 as an electron donor catalyzes the reduction and
decarbonylation of VLCFA-CoA in order to form cu-
ticular alkanes. Aside from being a major component
of the wax mixture, alkanes can undergo further modi-
fication to form secondary alcohols and ketones. In
Arabidopsis, both of these oxidations are performed
by the cytochrome P450 enzyme midchain alkane hy-
droxylase (MAH1; Greer et al., 2007).

Synthesis of Cutin Precursors

Cutin is typically composed of interesterified hydroxy
fatty acids, with lesser amounts of glycerol, phenyl-
propanoids, and dicarboxylic acids (Kolattukudy, 2001).
Chemical processes that cleave ester bonds, such as sa-
ponification, readily release these monomeric constitu-
ents, although in some species an additional lipidic
polymer, referred to as cutan, remains recalcitrant to such
treatments. Cutan is rich in ether and C-C bonds, but its
structure is otherwise unknown, and it appears to be
restricted to relatively few extant species (Gupta et al.,
2006). The hydroxy fatty acids of cutin are typically
v-hydroxy fatty acids, usually with one or two additional
midchain hydroxyl groups or an epoxy group (Fig. 3A).
Despite extensive surveys of the chemical composition of
plant cutins in the 1970s and 1980s (Kolattukudy, 2001),

Figure 2. Cutin and wax biosynthetic pathways. Genes (blue text) are described in the review. Red text denotes compound
classes that are typically observed in cuticular wax mixtures.
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Table II. Cuticle-associated genes discussed in this review

Gene Symbol Gene Name Species Locus Identifier Description

ABCG11 ATP-BINDING CASSETTE G11 Arabidopsis At1G17840 ABC half transporter
ABCG13 ATP-BINDING CASSETTE G13 Arabidopsis At1G51460 ABC half transporter
ABCG32 ATP-BINDING CASSETTE G32 Arabidopsis At2G26910 ABC full transporter
BDG BODYGUARD Arabidopsis At1G64670 a/b-Hydrolase family protein
BDG3 BODYGUARD3 Arabidopsis At4G24140 Homolog of BDG
CD1 CUTIN DEFICIENT1 Tomato Solyc11G006250 Cutin synthase/hydroxyacylglycerol

transesterase
CD2 CUTIN DEFICIENT2 Tomato Solyc01G091630 Homeodomain-Leu zipper IV

transcription factor
CER1 ECERIFERUM1 Arabidopsis At1G02205 Involved in alkane formation
CER10 ECERIFERUM10 Arabidopsis At3G55360 Enoyl-CoA reductase
CER2 ECERIFERUM2 Arabidopsis At4G24510 Required for C28 to C30 elongation

of fatty acids
CER26 ECERIFERUM26 Arabidopsis At4G13840 Homolog of CER2, required for

elongation of fatty acids greater
than C30

CER26-like ECERIFERUM26-like Arabidopsis At3G23840 Homolog of CER2 and CER26
CER3 ECERIFERUM3 Arabidopsis At5G57800 Involved in alkane formation
CER4 ECERIFERUM1 Arabidopsis At4G33790 VLCFA-CoA by fatty acyl-CoA
CER5/ABCG12 ECERIFERUM5/ATP-BINDING

CASSETTE G12
Arabidopsis At1G51500 ABC half transporter

CER6 ECERIFERUM6 Arabidopsis At1G68530 b-Ketoacyl-CoA synthase
CER7 ECERIFERUM7 Arabidopsis At3G60500 Exosomal exoribonuclease
CER9 ECERIFERUM9 Arabidopsis At4G34100 Putative E3 ubiquitin ligase
CFL1 CURLY FLAG LEAF1 Rice Os02G31140 WW domain-containing protein
CYP77A6 CYP77A6 Arabidopsis At3G10570 CYP77A subfamily of cytochrome P450
CYP86A4 CYP86A4 Arabidopsis At1G01600 CYP86A subfamily of cytochrome P450
DCR DEFECTIVE IN CUTICULAR

RIDGES
Arabidopsis At5G23940 BAHD acyltransferase

FDH FIDDLEHEAD Arabidopsis At2G26250 b-Ketoacyl-CoA synthase
GPAT6 GLYCEROL-3-PHOSPHATE

SN-2-ACYLTRANSFERASE6
Arabidopsis At2G38110 Bifunctional glycerol-3-phosphate

sn-2-acyltransferase/phosphatase
HDG1 HOMEODOMAIN GLABROUS1 Arabidopsis At3G61150 Homeodomain-Leu zipper IV

transcription factor
HTH HOTHEAD Arabidopsis At1G72970 Glc-methanol-choline oxidoreductase

family protein
IRG1 INHIBITOR OF RUST GERM

TUBE DIFFERENTIATION1
M. truncatula Medtr5G014400 C2H2 zinc finger transcription factor

KCR1 b-KETOACYL-COENZYME
A REDUCTASE1

Arabidopsis At1G67730 b-Ketoacyl-CoA reductase

LACS1 LONG-CHAIN ACYL-COENZYME
A SYNTHASE1

Arabidopsis At2G47240 Long-chain acyl-CoA synthase

LACS2 LONG-CHAIN ACYL-COENZYME
A SYNTHASE2

Arabidopsis At1G49430 Long-chain acyl-CoA synthase

LACS3 LONG-CHAIN ACYL-COENZYME
A SYNTHASE3

Arabidopsis At1G64400 Long-chain acyl-CoA synthase

LCR LACERATA Arabidopsis At2G45970 CYP86A subfamily of cytochrome P450
LTL1 LI-TOLERANT LIPASE1 Arabidopsis At3G04290 Homolog of CD1
LTPG1 GPI-ANCHORED LIPID

TRANSFER PROTEIN1
Arabidopsis At1G27950 GPI-anchored lipid transfer protein

LTPG2 GPI-ANCHORED LIPID
TRANSFER PROTEIN2

Arabidopsis At3G43720 GPI-anchored lipid transfer protein

MAH1 MIDCHAIN ALKANE
HYDROXYLASE1

Arabidopsis At1G57750 CYP96A subfamily of cytochrome P450

MYB106 Myb DOMAIN PROTEIN106 Arabidopsis At3G01140 Myb transcription factor
MYB16 Myb DOMAIN PROTEIN16 Arabidopsis At5G15310 Myb transcription factor
MYB30 Myb DOMAIN PROTEIN30 Arabidopsis At3G28910 Myb transcription factor
MYB41 Myb DOMAIN PROTEIN41 Arabidopsis At4G28110 Myb transcription factor
MYB96 Myb DOMAIN PROTEIN96 Arabidopsis At5G62470 Myb transcription factor
OCL1 OUTER CELL LAYER1 Maize GRMZM2G026643 Homeodomain-Leu zipper IV

transcription factor
(Table continues on following page.)
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the composition of Arabidopsis cutin was not determined
until relatively recently (Bonaventure et al., 2004; Franke
et al., 2005). It is important to note that, in this important
model species, the cutin of stems and leaves is atypical in
that its major component is a dicarboxylic acid (Fig. 3A),
implying that the predominant structural motif must be a
copolymer with an unknown polyhydroxy compound,
presumably glycerol (Pollard et al., 2008). However, de-
spite the atypical composition of its cutin, Arabidopsis

has proven to be an important model for deciphering the
pathway of cutin biosynthesis, and more recently, it was
discovered that the cutin of its floral organs is more
typical, in that it is composed primarily of 10,16-
dihydroxyhexadecanoic acid (Li-Beisson et al., 2009).

While there is considerable diversity in the structure
of cutin monomers, the pathway for the biosynthesis of
10,16-dihydroxyhexadecanoic acid-based cutin is the most
complete, and the major themes of cutin biosynthesis are

Figure 3. Typical cutin monomers and polymeric
structure. A, Some typical C16 and C18 fatty acid-
derived cutin monomers. From top to bottom: 10,16-
dihydroxyhexadecanoic acid, 16-hydroxyhexadecanoic
acid, 9,10-epoxyoctadecanoic acid, 9,10,18-trihydroxy
octadecanoic acid, and octadeca-cis-6,cis-9-diene-1,
18-dioate, the major cutin monomer of Arabidopsis
stems and leaves. B, Linear and branched domains
made possible by different ester linkages of 10,16-
dihydroxyhexadecanoic acid, depicted schematically
as indicated.

Table II. (Continued from previous page.)

Gene Symbol Gene Name Species Locus Identifier Description

PAS2 PASTICCINO2 Arabidopsis At5G10480 b-Hydroxyacyl-CoA dehydratase
SHN2 SHINE2 Arabidopsis At5G11190 Homolog of WIN1/SHN1
WIN1/ SHN1 WAX INDUCER1/SHINE1 Arabidopsis At1G15360 AP2 domain-containing transcription

factor
WSD1 WAX SYNTHASE/ACYL-

COENZYME
A:DIACYLGLYCEROL
ACYLTRANSFERASE1

Arabidopsis At5G37300 Wax synthase/acyl-CoA:diacylglycerol
acyltransferase family protein

WXP1 WAX PRODUCTION1 M. truncatula Medtr5G062700 AP2 domain-containing transcription
factor

– – Arabidopsis At5G33370 Homolog of CD1
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likely shared for other cutin monomers. Here, we sum-
marize this pathway based on recent molecular genetic
and biochemical studies using Arabidopsis and tomato
(Solanum lycopersicum).

Intracellular Acyltransferases and Hydroxylases

The biosynthesis of cutin begins with de novo fatty
acid synthesis in the plastid of epidermal cells (Fig. 2).
The next three steps occur in the ER and consist of
v-hydroxylation and midchain hydroxylation and the
synthesis of an acyl-CoA intermediate. The relative order
of these steps is not known, although it has been shown
that the v-hydroxylation precedes the midchain hy-
droxylation and that the final product of these steps is
most likely a dihydroxyhexadecanoic acid-CoA ester
(Li-Beisson et al., 2009). The v-hydroxylase is encoded
by members of the CYP86 subfamily of cytochrome
P450s (CYP86A4 in Arabidopsis flowers; Li-Beisson
et al., 2009), while the midchain hydroxylase is enco-
ded by the CYP77 subfamily (CYP77A6 in Arabidopsis
flowers; Li-Beisson et al., 2009). The acyltransferases
that synthesize acyl-CoA are encoded by the LACS
family, which consists of nine members in Arabidopsis,
and both LACS1 and LACS2 appear to be responsible
for C16 cutin monomer biosynthesis (Lü et al., 2009).
An additional intracellular acyltransferase required for

the synthesis of cutin polyester is a glycerol 3-phosphate
acyltransferase (GPAT). Recently, it was shown that
plants possess a unique subfamily of bifunctional GPATs
encoding enzymes with both sn-2-specific glycerol-3-
phosphate:acyl-CoA acyltransferase activity as well as
phosphatase activity, yielding a 2-monoacylglyceryl ester
(Yang et al., 2010). In the case of Arabidopsis floral cutin,
this activity is encoded by GPAT6 (Li-Beisson et al.,
2009). Although the specific sequence of all intracellular
biosynthetic steps will require additional characterization
of the substrate specificity of each enzyme, biochemical
characterization of Arabidopsis bifunctional GPATs
indicates that they have a strong preference for
v-hydroxylated acyl-CoA, suggesting that hydroxylation
precedes the transfer to glycerol (Yang et al., 2012). In
any case, the ultimate product of the intracellular steps
of cutin biosynthesis is likely to be 2-monoacylglyceryl
esters of cutin monomers. In the case of 10,16-
dihydroxyhexadecanoic acid-based cutin, this is 2-mono
(10,16)-dihydroxyhexadecanoyl glycerol (2-MHG).

Transport of Cuticle Precursors

After the synthesis of wax and cutin precursors, they
are exported from the ER, across the plasma mem-
brane, through the polysaccharide cell wall, and to the
nascent cuticular membrane. Most of these transport
processes are poorly understood, although trafficking
of both wax and cutin precursors across the plasma
membrane has been shown to depend on ATP-binding
cassette (ABC) transporters. In Arabidopsis, CER5/
ABCG12 (Pighin et al., 2004) and ABCG11 (Bird et al.,

2007) are required for wax export. Both of these encode
half transporters, and based on double mutant analysis
and bimolecular fluorescence complementation analyses,
it has been suggested that an ABCG11/ABCG12 hetero-
dimer is required for wax secretion (McFarlane et al.,
2010). ABCG11 is also required for cutin accumulation,
and since it is also able to dimerize with itself, it has been
proposed that this homodimer is the functional complex
responsible for cutin export (McFarlane et al., 2010). Ad-
ditionally, a third Arabidopsis half transporter, ABCG13,
was shown to be required for cutin deposition in flowers
(Panikashvili et al., 2011).

More recently, full transporters required for cutin de-
position were identified in Arabidopsis (ABCG32; Bessire
et al., 2011) as well as wild barley (Hordeum spontaneum)
and rice (Oryza sativa; Chen et al., 2011). Despite the clear
genetic evidence supporting a role for ABC transporters
in cuticular lipid export, the substrate specificity of these
transporters has not yet been demonstrated in vitro.
However, all the ABC transporters that have been im-
plicated in cuticle biosynthesis to date are members of the
ABCG subfamily, which has been associated with the
transport of lipids and hydrophobic compounds in other
systems (Moitra et al., 2011). Moreover, in several cases,
intracellular lipidic inclusionswere observed inABC trans-
porter mutants, further supporting their direct involve-
ment in cuticular lipid export (Pighin et al., 2004; Bird
et al., 2007; Bessire et al., 2011).

Export of some wax compounds also appears to
be facilitated by glycosylphosphatidylinositol (GPI)-
anchored lipid-transfer proteins (LTPs), LTPG1 and
LTPG2, which are bound to the extracellular side of the
plasma membrane (Debono et al., 2009; Lee et al., 2009;
Kim et al., 2012). These proteins represent a unique class
of LTPs, a family of small and typically soluble proteins
that bind a variety of lipid substrates in vitro (Yeats and
Rose, 2008). A major remaining question is how hy-
drophobic cuticle precursors are transported across the
hydrophilic environment of the polysaccharide cell wall
to the cuticle. Apoplastic LTPs have been proposed to
play a role, although genetic or biochemical evidence
for their involvement in transport is generally lacking
(Yeats and Rose, 2008). In the case of the dihydroxyacyl
cutin precursor 2-MHG, the glycerol moiety imparts
sufficient polarity to allow aqueous solubility at low
millimolar concentrations (Yeats et al., 2012b). This
suggests that lipid-binding proteins or other factors are
not necessary in order to facilitate the transport of this
major precursor of cutin biosynthesis. However, the
solubility of glyceryl esters of less polar cutin monomers
has not been investigated, and they, along with waxes,
may require additional factors to increase their solu-
bility in the apoplast.

Cutin Polymerization

The final step of cutin synthesis is incorporation of
the hydroxyacyl monomer into the polymer, but the
molecular mechanism of cutin polymerization has been
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a longstanding enigma. Recent progress in this area was
achieved by studying the tomato mutant cutin deficient1
(cd1) and transgenic tomato plants in which CD1 ex-
pression was suppressed using an RNA interference
strategy (Girard et al., 2012; Yeats et al., 2012b). The cd1
mutant exhibits a severe reduction in the amount of
polymerized cutin in the fruit cuticle (Isaacson et al.,
2009), although chemical analysis indicated that, unlike
wild-type fruit, those of the mutant accumulate non-
polymerized 2-MHG (Yeats et al., 2012b). Cloning of
the mutated gene revealed that it encodes a protein of
the GDSL-motif lipase/hydrolase (GDSL) family, which
localizes to the developing cuticle (Girard et al., 2012;
Yeats et al., 2012b). Despite its similarity to lipolytic
enzymes, the recombinant protein acts as an acyltrans-
ferase in vitro, forming polyester oligomers from
2-MHG (Yeats et al., 2012b).

The identification of CD1 as the first known cutin
synthase raises several questions about the specificity
and generality of the reaction that it catalyzes. Phyloge-
netic analysis of CD1 and homologous genes indicates
that despite belonging to a very large gene family, the
subfamily of GDSLs represented by CD1 is relatively
small and well conserved, with sequences represented
across diverse taxa of land plants (Volokita et al., 2011).
In Arabidopsis, its putative orthologs form a five-
member gene family, and silencing of the expression of
two of these (LTL1 and At5g33370) resulted in plants
exhibiting floral organ fusions and lacking nanoridges
on the petal surface, phenotypes that are consistent with
a cutin deficiency (Shi et al., 2011). An additional puta-
tive ortholog of CD1 from Agave americana exhibited
similar localization and expression, further supporting
a conserved mechanism of CD1-like enzymes acting as
cutin synthases (Reina et al., 2007). Despite the presence
of a null allele, the cd1mutant is not completely deficient
in cutin, so the identity of additional cutin synthases, or
perhaps nonenzymatic mechanisms of cutin synthesis,
represents an intriguing line of future research.

The polymeric structure of cutin is not well under-
stood. Monomeric composition can provide a “parts
list,” but the relative abundance of possible linkages in
the polymer is difficult to determine, largely due to the
difficulty of solubilizing intact cutin (Serra et al., 2012).
Nevertheless, the multiple functionalities present in
many cutin monomers suggests that native cutin poly-
mers can range from linear to branched or cross-
linked structures (Pollard et al., 2008). For example,
in an idealized cutin polymer composed exclusively of
10,16-dihydroxyhexadecanoic acid, the monomers can
be joined by esterification of either the terminal or
midchain hydroxyl group. Esterification of a single
hydroxyl would result in a linear polymer, while esterifi-
cation of both hydroxyl groups would generate branched
structures (Fig. 3B). The identification of the hydroxyl
groups that are esterified by CD1 and other cutin
synthases should indicate whether the regiospecificity
of cutin polymerization is enzymatically controlled and
whether specific cutin synthases catalyze the formation
of linear or branched domains of the cutin polymer.

Moreover, it is not known how branching or cross
linking of cutin affects cuticle function, and the identi-
fication of additional cutin synthases will allow this to
be investigated using genetic approaches.

REGULATION OF CUTICLE BIOSYNTHESIS

The regulation of cuticle biosynthesis is complex and
involves interacting signaling networks associated with
environmental stress responses, pathogen responses, and
feedback regulation based on the structure and integrity
of the cuticle itself. Furthermore, as the cuticle is exclu-
sively synthesized by epidermal cells, the regulation of
epidermis identity during development can also be con-
sidered to play a regulatory role in cuticle development.
This is covered in more depth in an excellent review by
Javelle et al. (2011), and we focus here only on direct
regulators of cutin and wax biosynthesis (Fig. 4). Even
within this restricted context, the analysis of regulatory
mutants is complicated by compensatory mechanisms
between cutin andwax biosynthesis and other pleiotropic
phenotypes. Nevertheless, a complex regulatory network
that responds to developmental and environmental cues,
mediated by hormones, transcription factors, and post-
transcriptional regulation, is beginning to emerge.

Environment and Hormones

A systematic analysis of both cuticle composition and
gene expression in Arabidopsis indicates that wax syn-
thesis is induced by water deficit, sodium chloride, and
abscisic acid (ABA) treatments (Kosma et al., 2009). In
contrast, cutin biosynthesis was reported only to be in-
duced by water deficit and not ABA or sodium chloride,
suggesting that, at least in Arabidopsis, the detection of
various osmotic stresses is complex and only partially
dependent on ABA (Kosma et al., 2009). However, given
that ABA is already well established as a regulator of
plant responses to water deficit through the regulation of
stomatal aperture (Lee and Luan, 2012), ABA regulation
of cuticle biosynthesis is an intriguing area for further

Figure 4. Regulation of cuticle biosynthesis. A summary of the inter-
action of environmental factors and regulatory genes that are known to
influence cutin or wax biosynthesis is shown.

12 Plant Physiol. Vol. 163, 2013

Yeats and Rose



research aimed at understanding and engineering drought
tolerance in crops.
In addition, dark and cold treatments have been

shown to reduce the expression of several components
of the FAE complex (Hooker et al., 2002; Joubès et al.,
2008). Several wax biosynthetic genes have been shown
to be induced by bacterial pathogens (Raffaele et al.,
2008) and during infestation of wheat (Triticum aesti-
vum) by the Hessian fly (Mayetiola destructor; Kosma
et al., 2010), but in general, the relevance of the induc-
tion of cuticle synthesis to pest or pathogen resistance is
poorly understood.

Transcription Factors and Cuticle Biosynthesis

The first transcription factor gene identified as hav-
ing a role in regulating cuticle biosynthesis was the
AP2 domain-containing WAX INDUCER1/SHINE1
(WIN1/SHN1; Aharoni et al., 2004; Broun et al., 2004).
Overexpression of this gene led to glossy leaves with a
greater wax load than the wild type and lower tran-
spiration, although this was likely due to a reduced
density of stomata rather than the wax phenotype
(Aharoni et al., 2004). Later studies indicated that cutin
levels are also increased in WIN1/SHN1-overexpressing
plants and that the up-regulation of genes encoding cutin
biosynthetic enzymes precedes the induction of wax bio-
synthetic genes (Kannangara et al., 2007). WIN1/SHN1 is
part of a three-member gene family in Arabidopsis, and
silencing of all three genes led to a reduction in the
amount of cutin but not waxes (Shi et al., 2011). These
authors also demonstrated that these transcription fac-
tors directly activate promoters of several cutin biosyn-
thetic genes, further supporting a primary role in cutin
regulation with a downstream effect on wax biosynthesis
(Shi et al., 2011). In addition to regulating cutin biosyn-
thesis, the SHN transcription factors also induced the
expression of several pectin-modifying enzymes, sug-
gesting a coordination of the synthesis of the cuticle with
the polysaccharide cell wall (Shi et al., 2011). This second
function of SHN transcription factors in regulating the
polysaccharide cell wall is further suggested by ex-
periments in which the overexpression of Arabidopsis
SHN2 in rice resulted in a significant increase in the
amount of cellulose and a concomitant decrease in lignin
(Ambavaram et al., 2011). On the other hand, a general
role of WIN1/SHN1-related transcription factors in the
regulation of cutin synthesis is indicated by studies of
orthologous genes in barley (Hordeum vulgare; Taketa
et al., 2008) and tomato (Shi et al., 2013). The balance of
evidence thus suggests that SHN transcription factors
coordinate not just the synthesis of cutin but also the
polysaccharide cell wall of the epidermis. This ultimately
highlights the fact that the cuticle is a specialized modi-
fication of the cell wall, and like other modifications,
such as lignification or suberization, it should be con-
sidered within the context of polysaccharide cell wall
components. Aside from the SHN family, other AP2
domain transcription factors from different clades
may also play a role in cuticle regulation. For example,

overexpression of WXP1 from Medicago truncatula in
alfalfa (Medicago sativa) induced wax production (Zhang
et al., 2005).

Recently, two transcription factors, MYB106 and
MYB16, were identified as regulators of cuticle biosyn-
thesis that function in a similar manner to WIN1/SHN1
(Oshima et al., 2013). They both appear to act upstream of,
and directly activate, WIN1/SHN1 but also some cuticle
biosynthetic genes (Oshima et al., 2013). Several other
transcription factors of the MYB family have also been
implicated in the regulation of wax and cutin biosynthesis
in response to environmental stresses. MYB30 is induced
during infection by bacterial pathogens, leading to the up-
regulation of several genes of the FAE complex, and ec-
topic overexpression of MYB30 leads to an increased wax
load (Raffaele et al., 2008). MYB96 was identified as an
ABA-inducible transcription factor that mediates drought
tolerance (Seo et al., 2009), in part due to an induction of
wax biosynthesis resulting from MYB96 directly activat-
ing the promoters of several wax synthesis genes (Seo
et al., 2011). While MYB96 positively regulates wax pro-
duction in response to stress, MYB41 mediates the nega-
tive regulation of cutin biosynthesis in response to similar
stresses. MYB41 is induced by ABA, drought, and osmotic
stress, leading to the down-regulation of cutin bio-
synthesis genes and the disruption of cuticle struc-
ture (Cominelli et al., 2008).

Another regulatory factor was identified through
characterization of the rice CURLY FLAG LEAF1 (CFL1)
gene, which encodes a WW domain-containing protein
that negatively regulates cuticle biosynthesis. Studies of
the orthologous CFL1 gene in Arabidopsis indicated that
it down-regulates cutin biosynthesis by suppressing the
function of HDG1, a homeodomain-leucine zipper IV
transcription factor (HD-ZIP IV), which has been shown
to induce the expression of several cutin biosynthesis
genes (Wu et al., 2011). A more general role of HD-ZIP
IV proteins in regulating cutin synthesis is further sug-
gested by the homologous tomato gene CD2, which is
required for the biosynthesis of cutin in the fruit and
other organs (Isaacson et al., 2009; Nadakuduti et al.,
2012). In maize (Zea mays), the HD-ZIP IV gene OUTER
CELL LAYER1 (OCL1) was shown to be an epidermis-
specific positive regulator of wax biosynthesis, although
cutin was not quantified in plants overexpressing this
gene (Javelle et al., 2010). Interestingly, HD-ZIP IV
proteins have also been implicated in regulating other
epidermis-specific processes, such as trichome differ-
entiation and the formation of root hairs and stomatal
guard cells (Masucci et al., 1996; Nakamura et al., 2006;
Takada et al., 2013). Given their additional association
with cuticle biosynthesis, it appears that a common
feature of members of this protein family is playing key
roles in the biology of the plant epidermis and the de-
termination of epidermal cell fate.

Beyond Transcription Factors

In addition to the network of transcription factors that
regulate cuticle biosynthesis, regulatory mechanisms
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that do not involve direct transcriptional activation or
repression by promoter binding have recently been dis-
covered. A recent example resulted from studies of the
Arabidopsis cer9 mutant, which exhibits alterations in
the amount and composition of leaf and stem waxes.
Cloning of the CER9 gene revealed it to encode a protein
with sequence similarity to yeast Doa10, an E3 ubiquitin
ligase involved in ER-associated degradation of mis-
folded proteins (Lü et al., 2012). Given the ER localiza-
tion of wax and cutin biosynthetic processes, the authors
proposed a role for CER9 in the homeostasis of key
cuticle biosynthetic enzyme levels. Experiments further
addressing this hypothesis will be particularly interest-
ing, given the surprising finding that the cer9 mutant
actually exhibits enhanced drought tolerance and water
use efficiency (Lü et al., 2012).

One of the most intriguing mechanisms of cuticle
regulation resulted from characterization of the cer7 mu-
tant. CER7 encodes an exosomal exoribonuclease, and
the cer7 mutant exhibits reductions in stem wax and
transcription of CER3, a major wax biosynthetic enzyme
(Hooker et al., 2007). Recently, two suppressors of cer7
that restore the CER3 transcript and stem wax levels
were identified, and cloning of the respective genes
identified RDR1 and SGS3, two conserved components
of the RNA-mediated gene-silencing pathway (Lam
et al., 2012). A model was proposed wherein CER7 is
involved in the degradation of a small RNA species that
negatively regulates the CER3 transcript. Future work
involving the identification of such a small RNA species
and other components of this pathway will be especially
intriguing, since no known plant small RNA species
mapped to the CER7-dependent region of the CER3
promoter (Lam et al., 2012).

ENIGMATIC FACTORS IN CUTICLE BIOSYNTHESIS

In addition to the characterized components of cuticle
biosynthesis that can be incorporated into a coherent
model, as discussed above, several genes/proteins have
been identified that are required for cuticle formation
but that lack a clear associated biochemical function that
would place them in a specific point in the pathways.
One example is HOTHEAD (HTH), a Glc-methanol-
choline oxidoreductase family protein that is required
for proper cuticle organization (Krolikowski et al., 2003).
Chemical analysis indicated that the Arabidopsis hth
mutant has wild-type wax levels but abnormal cutin
quantity and composition. Specifically, it has decreased
levels of dicarboxylic acids and increased amounts of
v-hydroxy acids, leading the authors to suggest that
HTH may have a role in the oxidation of v-hydroxy
fatty acids to the dicarboxylic acid cutin monomers that
are characteristic of Arabidopsis stem and leaf cuticles
(Kurdyukov et al., 2006b). As dicarboxylic acid cutin
monomers are unusually abundant in Arabidopsis, it
will be interesting to see whether HTH-related proteins
are as essential to cuticle formation in other species
where this class of monomers is scarce.

Another example of an “orphan” cuticle-associated
protein resulted from analysis of the Arabidopsis body-
guard (bdg) mutant, which exhibits a microscopically
disorganized cuticle with increased permeability but sig-
nificantly increased levels of wax and cutin (Kurdyukov
et al., 2006a). The BDG protein has sequence similarity
to the a/b-hydrolase family of proteins, but no enzy-
matic activity has been reported. The protein is local-
ized in the outer cell wall of the epidermis below the
cuticle, which led the authors to propose that BDG
may be involved in cutin polymerization, although the
increased amounts of polymeric cutin in the mutant
would argue against this (Kurdyukov et al., 2006a).
Mutation of BDG3, a close homolog of BDG, resulted
in the disorganization of floral nanoridges, petal epi-
dermis structures that are composed of cutin (Shi et al.,
2011). Moreover, the key cutin regulatory transcription
factors SHN1, SHN2, and SHN3 were shown to
activate the BDG3 promoter (Shi et al., 2011). Taken
together, these results strongly indicate that BDG
proteins are closely linked to cutin polymer formation,
although their mode of action remains mysterious.

Lastly, a defect in the formation of floral nanoridges
was also identified in the Arabidopsis mutant defective in
cuticular ridges (dcr), which showed a substantial defi-
ciency in floral cutin but a less drastic alteration of leaf
and stem cutin (Panikashvili et al., 2009).DCR encodes a
protein of the BAHD acyltransferase family that local-
izes to the cytoplasm, and it has been proposed that it
may be involved in acyl transfer of cutin monomers to
form precursor intermediates or oligomeric structures
(Panikashvili et al., 2009). However, DCR was later
biochemically characterized and shown to possess in
vitro diacylglycerol acyltransferase activity, leading to
the formation of triacylglycerol (Rani et al., 2010). A role
for cytoplasmic triacylglycerol intermediates in cutin
biosynthesis is not consistent with any known steps in
this pathway, yet DCR is clearly required for cutin bio-
synthesis in Arabidopsis floral organs. Further work will
be needed in order to determine the native substrate and
product of DCR in order for its role in cutin biosynthesis
to be elucidated.

FUNCTIONS OF THE CUTICLE

The plant cuticle is most typically associated with
providing a fixed barrier to excessive transpirational
water loss, allowing gas exchange and transpiration to
be dynamically controlled by stomata. However, it has
evolved a number of secondary functions that are con-
sistent with its place as the outermost layer of primary
aerial organs: it forms a physical barrier that is the first
line of defense against pests and pathogens; in many
species, elaborate epicuticular crystals help to form a
self-cleaning surface, preventing dust and other debris
from blocking sunlight; in some cases, it can act to screen
excessive UV light; finally, as a defining feature of the
epidermis, it plays a central role in development by
physically establishing organ boundaries.
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Cuticle Structure and Water Barrier Properties

A common perception is that a thick cuticle is associ-
ated with a lower water permeability and thus increased
tolerance to water stress. However, comparative studies
of the water permeability of cuticles from diverse species
have indicated that there is no correlation with either the
thickness of the cuticle or the amount of wax (Riederer
and Schreiber, 2001). Similarly, the amount of cutin is not
necessarily an indication of cuticular water permeability
(CWP). For example, studies of three tomato mutants
(cd1–cd3), each of which has a greater than 95% reduction
in fruit cutin levels, revealed only minor increases in the
rate of water loss, and even among the mutants there was
no clear correlation between cutin amount and suscepti-
bility to desiccation (Isaacson et al., 2009). However, cutin
deficiency that leads to organizational defects can be
detrimental to the cuticle permeability (Bessire et al.,
2011). In contrast to the lack of association with cutin,
extensive removal of wax from tomato fruit, accom-
plished by brief immersion of the fruit in an organic
solvent, indicates that waxes contribute approximately
95% of the cuticle-mediated resistance to water diffusion,
at least in tomato fruit (Leide et al., 2007).
Specific compound classes appear to be associated

with water barrier properties of the cuticle; notably, the
more nonpolar components, such as alkanes, tend to be
associated with decreased CWP, while nonaliphatic wax
compounds, such as triterpenoids, are likely a less ef-
fective water barrier (Leide et al., 2007; Buschhaus and
Jetter, 2012). This is consistent with a model in which
cuticular waxes localize within either crystalline or
amorphous domains of the cuticle, with aliphatic com-
pounds forming crystallite “rafts” that are impervious to
water, forcing water, and other polar metabolites, to
diffuse by a circuitous route through the amorphous
domains that are formed by more polar and cyclic
waxes (Riederer and Schreiber, 1995). The idea that the
proportion of alkanes and not the total wax amount has
the most significant effect on CWP was illustrated by a
recent study with a backcrossed population of Capsicum
annum and Capsicum chinense, two pepper species with
high and low postharvest water loss rates, respectively.
In 20 backcrossed families, CWP was inversely corre-
lated with the amount of alkanes in the wax but not the
total amount of wax, and the more rapidly desiccating
parent had three times the wax coverage as the parent
that exhibited low postharvest water loss (Parsons et al.,
2012). In summary, resistance to water loss is primarily
attributed to wax and not cutin, but there is not a direct
correlation between the amount of either component
and CWP. Rather, it appears that CWP is primarily
determined by the particular mixture of intracuticular
and epicuticular waxes and by their packing and orga-
nization within the cuticle architecture.

The Lotus Effect

A striking feature of many plant leaves is that water
tends to bead into drops and roll to the ground,

collecting and washing particles and debris from the leaf
surface. The efficiency of this self-cleaning mechanism,
termed the “lotus effect,” varies between species and
during organ ontogeny, but it has been correlated with
the abundance of epicuticular wax crystals that repel
water and allow a pocket of air to form beneath the
droplets (Barthlott and Neinhuis, 1997). It is thought that
this self-cleaning surface helps to prevent the buildup of
dust that would block sunlight and slow photosynthesis
and that this could also play an important role in
washing away pathogen spores before they germinate.
Despite the apparent advantages of a self-cleaning sur-
face, there is not a clear example of this trait conferring
an adaptive advantage. In terms of photosynthesis, there
is likely a tradeoff between a self-cleaning surface and
the increased dispersion of light by epicuticular wax
crystals, as discussed below. Nevertheless, based on
the discovery of this effect, surfaces with high degrees
of hydrophobicity and microscopic texture have been
employed as effective biomimetic technical materials
(Bhushan, 2012), and improved self-cleaning surfaces
in agricultural crops may be a productive avenue of
research.

The Cuticle as a Barrier against Pests and Pathogens

The plant cuticle presents a physical barrier to path-
ogens that do not otherwise enter the plant by way of
the stomata, wounds, or vectors. However, fungal
pathogens have been shown to breach the cuticle using a
combination of enzymatic degradation and mechanical
rupture. The latter is often accomplished by the forma-
tion of a swollen appressorium structure that extends an
infectious peg via turgor pressure (Deising et al., 2000).
While mechanical rupture may be sufficient for cuticle
penetration, particularly of thinner cuticles (Tenberge,
2007), most fungal pathogens also secrete cutinases, a
class of small, nonspecific esterases that hydrolyze the
cutin polyester and release free cutin monomers (Longhi
and Cambillau, 1999). The cutin monomers that are
released during polymeric cutin hydrolysis can act as
elicitors of plant defense responses and are thus classi-
fied as damage-associated molecular patterns. At mi-
cromolar concentrations, these compounds induce the
production of hydrogen peroxide and other defense
responses (Schweizer et al., 1996; Kauss et al., 1999).
However, the mechanism of plant perception of free
cutin monomers is currently unknown (Boller and Felix,
2009).

Cutin appears to be more important than wax for
forming a barrier to pathogen entry, although there is
not a consistent correlation between cutin amount and
pathogen resistance. In tomato fruit, severely decreased
cutin levels in three cd mutants was associated with
increased susceptibility to infection by Botrytis cinerea
surface inoculation and also to opportunistic microbes
(Isaacson et al., 2009). However, in Arabidopsis, a
number of cutin-deficient mutants and plants that ec-
topically overexpress fungal cutinases exhibit enhanced
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resistance to B. cinerea (Bessire et al., 2007, 2011; Chassot
et al., 2007; Tang et al., 2007). In this case, increased
cuticular permeability appears to enhance the diffusion
of inoculum-derived elicitors that induce the produc-
tion of small, polar antifungal compounds, which in
turn inhibit B. cinerea growth (Bessire et al., 2007). Con-
versely, the Arabidopsis lacs2 mutant and cutinase
overexpressers exhibited no alteration in their suscepti-
bility to a range of other fungal pathogens (Bessire et al.,
2007), and the lacs2mutation also increased susceptibility
to a normally avirulent strain of Pseudomonas syringae
(Tang et al., 2007). Thus, cutin plays an important role as
a physical barrier to many pathogens, yet extreme defi-
ciencies in Arabidopsis can result in increased resistance
to some pathogens by way of a secondary, but not well
understood, mechanism that involves the induction of
plant defenses. An additional layer of complexity was
suggested by the observation that cutin can induce gene
expression in plant pathogens and has been shown to
induce appressorium expression in Colletotrichum trifolii
(Dickman et al., 2003). This highlights the competing
selective pressures to generate and breach cuticle barriers
at the frontier of the plant surface (Chassot and Metraux,
2005).

Despite the importance of cutin in plant-pathogen
interactions, the first surface encountered by foliar
pathogens is formed by epicuticular wax crystals and
films. In addition to the lotus effect that promotes the
washing of spores from the plant surface before ger-
mination, there are several indications that the epicu-
ticular wax structures and composition are important
in determining fungal pathogen development and,
thus, pathogenicity. The C26 aldehyde n-hexacosanyl,
a component of cuticular wax in many species of the
Poaceae, can induce in vitro appressorium formation
by the powdery mildew Blumeria graminis (Tsuba et al.,
2002; Ringelmann et al., 2009; Hansjakob et al., 2010).
This observation is further corroborated by studies of
the maize mutant glossy1, which does not accumulate
aldehydes in its wax complement. B. graminis appres-
sorium formation is substantially reduced on the leaf
surface of the glossy1 mutant but can be restored to
normal levels by the application of n-hexacosanyl
(Hansjakob et al., 2011). Another example of the in-
fluence of waxes on pathogenicity is provided by the
inhibitor of rust tube germination1 (irg1) mutant of
M. truncatula, which exhibits decreased amounts of
epicuticular wax crystals on the abaxial leaf surface,
corresponding to a substantial decrease in wax pri-
mary alcohol groups. This surface alteration was
shown to reduce spore differentiation of the rust fun-
gal pathogens Phakopsora pachyrhizi and Puccinia
emaculata and the anthracnose fungus C. trifolii, resulting
in nonhost resistance (Uppalapati et al., 2012). The
IRG1 gene was found to encode a C2H2 zinc finger
transcription factor that had previously been identified
as a regulator of dissected leaf morphology (Chen et al.,
2010). Reduced transcript levels of putative MYB96 and
CER4 orthologs were also observed in the irg1 mutant,
which is consistent with the wax phenotype. The

significance of waxes and cutin in pathogen resistance,
therefore, is suggested in a general sense, but, as with
cuticle permeability, little is known about the relative
importance of specific molecular classes or their in-
termolecular associations and packing within the ar-
chitecture of the cuticle.

Epicuticular waxes may also play an important role in
plant-insect interactions; indeed, epicuticular wax crys-
tals can form an unstable surface that prevents insect
attachment or locomotion on plant surfaces (Borodich
et al., 2010). A striking example of this is seen in the
carnivorous pitcher plants (Nepenthes spp.), which catch
insects by way of a slippery interior surface that is coated
with epicuticular wax crystals (Riedel et al., 2007). For a
more detailed review of cuticle chemical ecology, see
Müller and Riederer (2005).

The Cuticle and Development

In addition to providing physical barriers to water
and microbes, the cuticle appears to play an important
role in defining organ boundaries during development,
since plants with cuticles showing increased permea-
bility and structural defects often exhibit numerous
ectopic organ fusions. This phenomenon has been
observed in a wax-deficient tomato mutant (Smirnova
et al., 2013), a range of Arabidopsis mutants with ab-
normal cuticles (Yephremov et al., 1999; Wellesen et al.,
2001; Kurdyukov et al., 2006a; Bird et al., 2007), and
transgenic Arabidopsis plants overexpressing a secreted
fungal cutinase (Sieber et al., 2000). The fusion zones are
often marked by two adjacent polysaccharide cell walls
with no visible cuticle separating the two organs, al-
though the fused epidermal layers maintain their iden-
tity, as indicated by the differentiation of internal
nonfunctional stomata within fusion zones (Sieber et al.,
2000). In each of three Arabidopsis mutants exhibiting
organ fusions, lacerata, bodyguard, and fiddlehead, ec-
topic organ fusions and cuticular permeability defects
could be partially suppressed by a second mutation in
SERRATE (Voisin et al., 2009). SERRATE is a C2H2 zinc
finger protein that is required for microRNA biogenesis,
and hypomorphic alleles exhibit numerous develop-
mental defects, including serrated leaf margins (Dong
et al., 2008). While the mechanism of SERRATE action as
a suppressor of cuticle fusions remains unclear, this re-
sult suggests the existence of a cuticle integrity pathway
that is integrated with epidermal developmental pro-
grams. The identification of additional suppressors of
cuticle mutant-associated developmental phenotypes
should be informative in elucidating the cuticle integrity
pathway.

Protection against UV Radiation

UV light in the UV-B spectrum is a considerable
portion of the daylight that reaches the terrestrial
surface, and it can threaten plant life by damaging
DNA, the photosynthetic apparatus, and membrane
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lipids (Rozema et al., 1997). As a result, plants have
evolved a number of strategies for screening UV-B radi-
ation. These include a variety of soluble flavonoid pig-
ments that are typically localized within the vacuoles of
epidermal cells, phenolic compounds present in the poly-
saccharide cell wall, and lipophilic phenolic molecules
that are covalently bound to cutin or associated with
waxes (Pfündel et al., 2006). A survey of isolated cuticles
from a range of species indicated generally effective
screening of the UV-B spectrum but consistently high
transmittance in the higher wavelengths that are photo-
synthetically active (Krauss et al., 1997). In addition to
absorbing light, the plant cuticle can reflect light to some
degree, presumably depending on the abundance of
epicuticular wax crystals. For example, Dudleya brittonnii
can reflect up to 83% of UV-B, but this value is sub-
stantially reduced when epicuticular waxes are removed
(Mulroy, 1979). Smooth, glossy “glabrous” cuticles typi-
cally reflect only small amounts of light (less than 10%),
but glaucous plant surfaces are moderately reflective and
generally show approximately 20% to 30% reflectance in
the UV and visible spectra (Pfündel et al., 2006). Waxes
reflect both UV and visible light, but not necessarily to the
same extent, and the reflectance of UV has been reported
to be greater in some cases (Holmes and Keiller, 2002).
While light reflection provides an important protective
mechanism, especially by limiting damaging UV radia-
tion, there is likely a tradeoff with photosynthetic effi-
ciency under conditions when light intensity is limiting
(Pfündel et al., 2006). In this regard, an interesting area
of future research might to determine whether relative
proportions of UV and visible light reflection can be
predictively changed by altering the composition of epi-
cuticular waxes.

CONCLUSION AND PERSPECTIVES

As described above, several key areas of cuticle bio-
genesis remain poorly understood. First, the mechanism
of intracellular and extracellular transport of wax and
cutin precursors remains unknown, although key ABC
transporters required for their export across the plasma
membrane have been identified (Pighin et al., 2004; Bird
et al., 2007; Chen et al., 2011). The first cutin synthase has
been identified (Girard et al., 2012; Yeats et al., 2012b),
but there are certainly additional cutin synthases, and
whether they are closely related to CD1 or belong to
distinct protein families remains to be discovered. After
cutin is polymerized, is modification of the polymeric
structure required to accommodate organ expansion? If
so, which enzymes are involved in this process?
While our understanding of cuticle biosynthesis at the

molecular level remains incomplete, recent progress in
deciphering these pathways is bringing us closer than
ever to an ability to selectively modify cuticle properties
in order to improve agricultural productivity. However,
the ability to make such modifications rationally will
require an understanding of the complexity of cuticle
function at the molecular level, and far less progress has

been made in this regard. To this end, further work
aimed at understanding the ecophysiological functions
of the cuticle in defined mutant backgrounds, as well as
in genetically tractable wild species, will provide a frame-
work for understanding the complex interaction of struc-
ture, composition, and function of cuticles (Yeats et al.,
2012a). While the past decade has seen unprecedented
progress in the molecular biology of cuticle biogenesis,
many studies have revealed complexities in cuticle function
that underscore the fact that the cuticle is much more than
just a preformed barrier to water loss.
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