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Abstract

The WHO recommended intervention of Directly Observed Treatment, Short-course (DOTS) appears to have been less
successful than expected in reducing the burden of TB in some high prevalence settings. One strategy for enhancing DOTS
is incorporating active case-finding through screening contacts of TB patients as widely used in low-prevalence settings.
Predictive models that incorporate population-level effects on transmission provide one means of predicting impacts of
such interventions. We aim to identify all TB transmission modelling studies addressing contact tracing and to describe and
critically assess their modelling assumptions, parameter choices and relevance to policy. We searched MEDLINE, SCOPUS,
COMPENDEX, Google Scholar and Web of Science databases for relevant English language publications up to February
2012. Of the 1285 studies identified, only 5 studies met our inclusion criteria of models of TB transmission dynamics in
human populations designed to incorporate contact tracing as an intervention. Detailed implementation of contact
processes was only present in two studies, while only one study presented a model for a high prevalence, developing world
setting. Some use of relevant data for parameter estimation was made in each study however validation of the predicted
impact of interventions was not attempted in any of the studies. Despite a large body of literature on TB transmission
modelling, few published studies incorporate contact tracing. There is considerable scope for future analyses to make better
use of data and to apply individual based models to facilitate more realistic patterns of infectious contact. Combined with a
focus on high burden settings this would greatly increase the potential for models to inform the use of contract tracing as a
TB control policy. Our findings highlight the potential for collaborative work between clinicians, epidemiologists and
modellers to gather data required to enhance model development and validation and hence better inform future public
health policy.
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Introduction

Tuberculosis (TB) is among the world’s leading infectious causes

of death, ranked second only to HIV/AIDS in mortality due to a

single infectious agent [1]. The WHO estimates that in 2011 there

were 1.4 million deaths from TB and 8.7 million new cases [2].

While TB has largely been controlled in the developed world,

control efforts have been less successful in Africa, Asia and parts of

Eastern Europe. The WHO estimates that over 95% of cases and

deaths occur in developing countries [1].

The WHO reports that the Millennium and Stop TB

Partnership [3] targets for incidence and mortality reduction

could be met by 2015 for the global population [4] based on

current global trends. However the incidence target is unlikely to

be reached in the South East Asian region and the mortality

targets are unlikely to be reached in the African region [5,6].

Directly Observed Treatment, Short-course (DOTS), the interna-

tionally recommended program established to reach these targets

[7], does not appear to have been as successful as expected in some

high prevalence settings. A recent study in Vietnam found that the

prevalence of TB was 1.6 times higher than previously estimated

by WHO [8].

Active case finding provides a promising addition to the passive

case finding approach of DOTS. Active case finding approaches

include screening high risk groups and contact tracing to increase

the rate of TB case identification. Finding and screening case-

contacts may be a very effective method of increasing case

detection rates [9]. The goal of contact tracing is to reduce the

time required to detect and treat a case and hence reduce the

ability of infectious patients to transmit the disease. While contact

tracing has been used extensively as a control strategy for TB in

the developed world (typically low prevalence settings) it is

uncommon in developing countries with high prevalence. Very

few randomized controlled trials (RCTs) have specifically exam-

ined the effect of active case finding among contacts of patients

with microbiologically proven pulmonary TB on case detection

rates [10].

Disease transmission models are frequently used to understand

epidemic dynamics at a population level for a variety of

communicable diseases [11]. They can also be used to help

inform researchers about additional data needed to better inform

policy and future studies. Perhaps most importantly, they can be

used to make predictions about the likely impact of competing

policy options for disease prevention in a very cost-effective
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manner, reducing the need to run expensive RCTs in different

settings for each option. This often involves the integration of data

from a variety of sources to make predictions about future

incidence and the effectiveness of interventions on reducing

incidence.

Models were first used to study the dynamics of TB epidemics in

the 1960s [12] and have been used extensively since the mid 1990s

[13]. Models of TB have been used to describe the epidemiology

of the disease [14], as a tool for evaluating the impact and cost-

effectiveness of interventions [15,16], and for describing the role

that population structure plays on the dynamics of an epidemic

[17,18]. For broader review of mathematical models of TB see the

papers by Colijn et al. [16] or Castillo-Chavez and Song [13].

Most models of TB dynamics in the literature are variants of a

compartmental model structure where the host population is

divided into mutually-exclusive classes (or compartments) based on

their stage of infection – Susceptible (not infected), Exposed or

Latent (infected but without active disease), Infectious (active

disease) and Recovered (SEIR). The transitions an individual may

take between these compartments and the rates at which they do

so are typically represented as a series of ordinary differential

equations that depend on parameters that summarise observed TB

epidemiology.

The aim of this review is to identify all TB transmission

modelling studies addressing contact tracing as an intervention

and to describe and critically assess their modelling assumptions,

parameter choices and relevance to policy. By doing so, we hope

to better inform future modelling efforts and summarise current

findings from models on the value of contact tracing as a public

health intervention.

Methods

Search strategy
We searched MEDLINE, SCOPUS, COMPENDEX, Google

Scholar and Web of Science databases for studies presenting TB

transmission models of human populations with contact tracing as

an intervention. We limited our search to relevant English

language publications from earliest date to February 2012

inclusive. For MEDLINE the search terms used were ‘‘Humans’’

AND (‘‘tuberculosis’’ OR ‘‘latent tuberculosis’’ OR ‘‘tuberculosis,

multidrug-resistant’’ OR ‘‘tuberculosis, pulmonary’’) AND (‘‘mod-

els, theoretical’’ OR ‘‘models, biological’’ OR ‘‘nonlinear dynam-

ics’’). For the other databases, which did not use hierarchical

keyword structures, title searches on (‘‘TB’’ OR ‘‘Tuberculosis’’)

and ‘‘model’’ were used. Titles and abstracts were screened to

identify studies presenting models of TB transmission dynamics in

human populations. Abstracts were then reviewed to limit results

to models incorporating active case finding, population stratifica-

tion or that used a heterogeneous contact structure. Full-text

articles were obtained and articles were included for review if they

presented models designed to incorporate contact tracing as an

intervention. While a number of articles present similar models to

those included, models that did not explicitly discuss contact

tracing were excluded.

Search results
Of the 1285 studies identified through searching, 1114 were

excluded by title search, 151 were excluded through abstract

search and 15 were excluded through full text search. Five studies

met our inclusion criteria and were included in the review (see

Figure 1).

Results

A basic summary of each of the studies reviewed can be found

in Table 1.

Setting of studies
Four of the studies presented models developed for low

prevalence, developed world settings [19–22]. In these settings

the background prevalence of latent TB infection is relatively low

and health care systems frequently include contact tracing as a

routine intervention for TB [19,20]. Mellor et al. present a model

for a high prevalence, developing world setting (Zimbabwe) where

high HIV prevalence also contributes to the TB epidemic [23].

Interventions investigated
Tian et al., Ziv et al. and Aparicio et al. [22] investigate the

scope of contact tracing required to eliminate TB epidemics

[20,21]. Mellor et al. compare likely scenarios for implementation

of contact tracing and high risk group investigations in a specific

setting to compare their potential effects on incidence, prevalence,

mortality and case detection rates [23]. Guzzetta et al. built a

model designed to incorporate contact tracing but do not

implement the intervention [19].

Aims of the studies
All five studies primarily investigate model characteristics and

appropriateness rather than focussing on projections or investi-

gating the epidemiology of TB. For example, Guzzetta et al. and

Mellor et al. investigate the improved fit to data and any increased

insight provided by models with socio-demographic structure

[19,23]. However, all studies, except Guzzetta et al., did attempt

to evaluate the effectiveness of contact tracing programs in a real

world context [20,21,23].

Models used
Models of infectious disease transmission are often categorised

by features such as inclusion or exclusion of random effects

(stochastic vs. deterministic) and the level of aggregation

(compartmental vs. individual based models).

In deterministic models there is a fixed relationship between

input parameters and model outputs so that the same set of initial

conditions will always lead to the same outcomes [11]. Stochastic

models allow some degree of chance at each time step leading to

slightly different outcomes from each simulation. In compartmen-

tal models individuals in each class are only considered at an

aggregate level where the importance of chance events, including

in relation to interventions such as contact tracing, is usually

ignored. Individual based models [24] instead simulate each

individual in a population and allow for a more realistic

implementation of targeted interventions such as contact tracing.

These models are always stochastic in contrast to compartmental

models which are typically (but not exclusively) deterministic and

can be used to gain insight at a population level or for smaller

groups of individuals [11]. Individual based models can provide an

added level of realism that may provide more accurate insights

into disease transmission and control measures. However, they

often cannot be evaluated analytically and require considerably

more computational power to analyse numerically than compart-

mental models. The increase complexity also typically leads to

larger data requirements and other challenges in parameter

estimation.

Tian et al.,Ziv et al. and Aparicio et al. [22] present determin-

istic compartmental models of TB transmission [20,21] with

uniform mixing in homogeneous populations. Mellor et al. present

Contact Tracing of Tuberculosis
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Figure 1. Flow chart of document search.
doi:10.1371/journal.pone.0072470.g001
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an individual based stochastic model with household-level clustering. The model incorporates increased individual contact

Table 1. Summary of key characteristics of studies under review.

Author Guzzetta et al. Mellor et al. Tian et al. Aparicio et al. Ziv et al.

Year 2011 2011 2011 2006 2001

Model Type Individual Based
Model (Stochastic)

Discrete Event (Stochastic) Systems Dynamics
(Deterministic)

Compartment
(Deterministic)

Compartment
(Deterministic)

Contact Structure Multiple clusters –
household, work,
school, etc.

Clustered households Homogeneous Homogeneous Homogeneous

Model
Implementation Of
Contact Structure

Spatial network
structure

Clustering of HIV and TB
infections

N/A N/A N/A

Other Modelling
Elements

Reactivation, re-
infection, spatial
effects, age

HIV, age, gender, Fast/Slow
Latency, Re-infection, Non-
infectious tracking

Parallel classes for
investigated and un-
investigated cases

Primary/Latent exposure
classes

Early/Late Latent classes

Interventions Contact tracing
proposed but not
implemented

Contact Tracing, Targeted
active case finding (HIV)

Contact Tracing (approx.) Contact Tracing (approx.)
Screening

Contact Tracing (approx.)
Screening

Implementation Of
Contact Tracing

N/A Direct simulation Transition rates between
un-investigated and
investigated compartments

Increased treatment
rates for latent TB

Increased treatment rates for
latent and active TB

Setting Low prevalence High prevalence Low prevalence Low prevalance Theoretical

Region USA Africa Canada USA Theoretical

Lifespan 80 years Calculated from life tables 37 years Varies (50–110 approx.) 50 years

Constant
Population

Yes Yes No No No

Transmissibility Varies 10 per person per year
(1 in household)

18.8 per person per year Varies 7 per person per year

Mean Survival
Time with TB

7.5 years 3.3 years without HIV
0.3 years with HIV

27 years 10 years 7.2 years

Duration of
infectious
period

0.3 years* 2.0 years 0.5 years 0.5 years 1.5 years{

Sensitivity
Analysis

Variables which could
not be directly
estimated from data

Analysis conducted for HIV
prevalence only

Coefficient and mean
time of tracing contacts

Variables which could
not be directly estimated
from data

None{

High Influence
Parameters

N/A HIV prevalence Contact detection rate N/A N/A

Validation Population compared
to US census
and CDC data

Household and community
transmission rates, TB
incidence, HIV modeling,
age
distribution of pop
validated
against separate sources

None None None

Recommendations Agent based models
extended to include
the effect of contact
tracing, immigration;
more data required
to
produce accurate
estimates of
transmission within
households

Strategy of targeting TB
control at HIV+ could be
cost effect intervention;
future modeling should
incorporate improvement
to social network modeling
– either through graphing/
network or introduction
of spatial relationships
between households

Contact tracing is self-
limiting in its cost
effectiveness; individual
based model with a
network structure is next
step

Interventions which treat as few
as 5% of recent infections

Intervention which treats up to
40% of early LTBI

Self-reported
limitations

Immigration, social
risk factors and
genetic risk factors
not taken
into account.

No cost effectiveness
information for comparison
with other interventions.

No age, contact structure
or vaccination considered.

Does not account for HIV
Preventative treatment
may not be cost effective
for certain targets.

Does not account for HIV High
treatment rates for latent
infection hard to achieve in
practice as tracing majority of
infections is difficult.

*Mean treatment duration assumed to be 0.5 years.
{Study cites previous study in which sensitivity analysis was conducted but did not repeat for this study [38].
doi:10.1371/journal.pone.0072470.t001
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within clusters but assumes that interactions between households

are random, so that there is no wider community structure.

Guzzetta et al. compare three different models of increasing

complexity, starting with a homogenous compartmental deter-

ministic model, followed by two individual based stochastic models

which incorporate varying degrees of stratification, clustering and

geographic complexity [19]. In their most complex implementa-

tion they include workplace and school clustering in addition to

household clustering [19,23]. Guzzetta et al. also assume random

interactions outside of the specified clusters but in addition restrict

these interactions spatially to emphasise contacts within nearby

locations [19].

Disease classes
The disease classes common to all five reviewed studies were

susceptible, latently infected, and infectious. All of the studies

except Aparicio et al. incorporated reactivation from latent

infection into their models.Mellor et al. and Guzzetta et al.

included relapse rates for recovered individuals [19,23]. Aparicio

et al. [22], Guzzetta et al. and Mellor et al. incorporate re-

infection in their models and assume that latent infection or

successful treatment/recovery provided some protection. None of

the studies incorporated the Bacillus Calmette–Guérin (BCG)

vaccination.

Tian et al. and Mellor et al. include a recovered class from

which individuals may transition back to susceptible [25,27], while

only Ziv et al. assumed recovery from the disease provided full

immunity against future disease [21]. Aparicio et al., Tian et al.

and Mellor et al. include a treated class [20,22,23]. Mellor et al.

and Ziv et al. include a breakdown of the latent class into early/

late or fast/slow disease progression [21,23]. Tian et al. subdivide

classes by case detection status and along with Mellor et al. have

classes for non-infectious active disease [20,23].

For compartmental models such as that used in Tian et al.,

additional classes or compartments provide a more detailed

method of incorporating contact investigation into the model. This

has the potential to be more realistic than simply aggregating

interventions into a detection or treatment rate but also causes a

rise in model complexity. Individual based models are more

readily adaptable to realistic implementations of contact tracing.

Stratification
Risk factors such as age, gender, smoking or the presence of

interacting infections such as HIV may also be taken into

consideration in disease transmission models. Stratifying the

simulated population by risk factor enables interactions between

risk factors and transitions between disease classes to be

incorporated. Key examples of where this may be important

include rates of re-activation and the dependence of contact

patterns on age, gender or location. Age is often a key determinant

in disease transmission modelling as it strongly informs patterns of

infectious contact. For many diseases age also influences suscep-

tibility to infection or disease. In TB models the absence of age

may result in an underestimation of transmission rates resulting in

overestimation of reactivation rates [19,26].

[TIGHER]Age stratification was implemented in Guzzetta

et al. and Mellor et al. [19,23] while Aparicio et al., Tian et al.

and Ziv et al. implemented homogenous population structures

[20–22]. Mellor et al. made use of age, not only directly in the TB

model, but also as a means of determining the impact of sexual

activity on HIV as a risk factor for TB [23]. Tian et al. suggest that

the model they present would be improved by the use of age

stratification and recommend future modelling efforts should

include this feature [20].

While none of the models include the BCG vaccine,

implementation of BCG in models is challenging due to variable

estimates of its efficacy as well as its apparently differential impact

on disseminated (and potentially fatal) disease as opposed to

pulmonary (and hence transmissible) disease [27].

Implementation of contact tracing
The practical conduct of contact tracing involves several steps,

including identification of relevant contacts, decisions on the

extent of tracing required and active recruiting of contacts for

evaluation. Each step could be represented explicitly in models

through the inclusion of additional classes and transition rates.

Modelled steps would include probabilities of tracing any given

contact, of contacts complying with testing, of tests detecting

additional cases and the success probabilities of treatment –

although these latter detection and treatment steps would also be

required for regular passive detection with DOTS. Depending on

the degree of complexity of the model being implemented some or

all of these steps might be aggregated. For example an increased

rate of detection could be implemented through an increased

overall ‘treatment’ rate which incorporates both detection rates

and subsequent treatment rates.

In the studies reviewed, contact tracing was implemented with

varying degrees of realism. Aparicio et al. and Ziv et al. implement

contact tracing at an aggregate population level in the form of

increased preventative treatment rates for latently infected cases

[21,22]. Tian et al. include additional compartments for the

population previously investigated through contact tracing or

passive case detection [20]. Mellor et al. incorporate tracing of

household level contacts using tests with specific detection param-

eters governing their accuracy (the tuberculin skin test (TST) and

sputum microscopy) [23]. Guzzetta et al. while justifying their

detailed community structure in terms of contact tracing, do not

actually implement the intervention in their study [19].

Comparisons with data
In an ideal situation modellers would have at least two

independent data sets, where the first data set could be used for

model fitting and parameter estimation and the second as a

validation set to compare with model results [28]. However as data

is typically limited modellers must often make a choice between

the use of the available data for parameterisation or validation, or

to use data from one data set for both purposes. Approaches taken

in the reviewed papers are discussed below.

Parameterization
The parameters of the model govern dynamic changes in

disease classes through events such as disease transmission or

recovery, as well as demographic processes such as births and

deaths. All five studies made extensive use of literature to inform

parameter values with additional estimation conducted through

fitting models in all studies except Ziv et al. who took parameter

values from previous work [21]. Epidemiological data used in

parameter estimates was taken from a variety of sources including

the WHO, CDC and other published studies. Mellor et al. made

use of UNAIDS data and UK based sexual surveys in estimates of

HIV prevalence [23]. Household surveys and census data were

used for models incorporating heterogeneity in the population (age

and/or household clustering) [19,23].

Calibration of model parameters to data was attempted in four

of the five papers, with Ziv et al. [21] choosing instead to use

parameters taken from previous work. The method of calibration

was different in each study, with maximum likelihood estimation

used in Mellor et al. [23], polynomial least squares used in

Contact Tracing of Tuberculosis

PLOS ONE | www.plosone.org 5 September 2013 | Volume 8 | Issue 9 | e72470



Aparicio et al. [22], a search optimization method in Tian et al.

[20] and Latin-Hypercube samples combined with a least-squares

threshold used in Guzzetta et al. [19] The source data for

individual parameters in Tian et al. and Ziv et al. were not

presented in their studies; Tian et al. list a number of sources for

all parameter estimates while Ziv et al. state that estimates are

taken directly from earlier work [20,21].

The studies reviewed showed considerable variance in several

key parameters (Table 1). For example, the number of new

infections per infectious person per year varies between 7 and 18.8

infections while the mean duration of infectious period also varies

from 0.3 to 2 years (Table 1). The mean survival time for TB cases

also ranges from 3.3 years to 27 years. While setting dependent

differences do occur in such parameters the variation in these key

parameters is large and hinders model comparison. The models

also incorporate treatment in different ways with Mellor et al. [23]

and Tian et al. [20] using explicit detection and treatment rates

while the other models use only aggregate treatment rates. When

combined with the significant differences in parameter values

described above, this variation makes parameter study outcomes

difficult to summarise collectively. Choices in parameterization,

both in terms of values and the structural form of the parameters,

affect both the way interventions are implemented and their

impacts with flow on effects to policy implications.

Validation of model predictions
Baseline predictions (pre-intervention) were compared to

observed epidemics to validate models in Aparicio et al., Guzzetta

et al. and Mellor et al. [19,22,23] while Tian et al. present no

baseline predictions [20] and Ziv et al. present models parame-

terized from previous work [21]. None of the reviewed studies

attempt to validate the predicted efficacy of the contact tracing

intervention with data. While there is little or no RCT data

available to use in this instance, some observational data should be

available in settings in which contact tracing has been in place as

an intervention for some time (such as the USA) [29].

Sensitivity Analysis
Aparicio et al. [22], Tian et al. and Mellor et al. discuss the

sensitivity analysis conducted for the models they present [20,23].

Aparicio et al. [22] vary the contact number (the number of

secondary infections caused by an average case in a fully

susceptible environment) through a realistic range. Tian et al.

separately vary the number of contacts traced and mean time

taken per investigation to determine how sensitive the model is to

these parameters [20]. Mellor et al. find that their model is

sensitive to reducing the long-term HIV prevalence, with reduced

TB incidence the main impact (increases in this parameter had

little effect) [23]. Ziv et al. do not perform sensitivity analysis for

the model presented. Instead, they use estimates from previous

work in which LHS was used in estimating parameters, but do not

discuss sensitivity to this parameterization [21]. Similarly Guzzetta

et al. use LHS in parameter estimation but do not discuss

sensitivity [19].

Key Findings of the Studies
Tian et al. demonstrate that for a specific low burden setting

there are limited gains to be made from increased levels of

detection beyond a certain point. They suggest that there is an

optimal level that will result in eventual epidemic elimination

beyond which there are diminishing returns from increased

number of investigations [20]. Aparicio et al. and Ziv et al. find

that effective treatment of latent TB cases (discovered through

contact tracing) should result in TB epidemic elimination in a low

burden setting [21,22]. Mellor et al. find that targeting known

high risk households with HIV positive individuals may be more

effective than contact tracing [23]. Guzzetta et al. compare

modelling methodologies for TB and find that socio-demographic

individual based models provide good fits to available data and are

of a form which allows evaluation of control strategies such as

contact tracing [19].

Recommendations of the Studies
The three recent studies recommend developing individual

based models for the modelling of sophisticated social networks

required for a detailed implementation of contact tracing

[19,20,23]. Mellor et al. also suggests that targeted active case

finding interventions in households with HIV-infected individuals

may be more effective than contact tracing of TB-infected patients

[23]. Tian et al. suggested that contact tracing is in a sense self-

limiting and an optimal strategy could involve targeted investiga-

tions of intimate or close contacts, although their model does not

provide information on the nature of contacts [25]. Aparicio et.al.

and Ziv et al. suggest that using contact investigation programs to

find recently infected persons may substantially contribute to the

effort to control tuberculosis [21,22], and Aparicio et al. go further

to state that such a strategy may be more cost efficient than current

strategies Guzzetta et al. [19] note the need for household

transmission data to accurately estimate the impact of contact

investigation interventions.

Discussion

The papers reviewed in this study demonstrate alternative

approaches to modelling contact tracing with differing potential to

inform TB control policy. As Aparicio et al. and Ziv et al. [21,22]

illustrate, even a simple implementation of contact tracing through

additional transition and rate parameters in a population-

aggregated compartmental model has some utility in terms of

the broad effects achievable through such a strategy. This

approach requires assumptions to be made about the effectiveness

of the intervention on a broad scale and avoids specifically

modelling the interactions between individuals that give rise to

infection risk. Models of this kind introduce contact tracing or

other active case finding interventions with either increased

detection rates or through further aggregation into an increased

treatment rate. While the simplicity of this approach is advanta-

geous for communication general predictions about contact-based

strategies, such models are difficult to directly compare with data

from TB control programs and cannot be used to address

questions such as the optimal extent of contact tracing.

As contact tracing is necessarily an activity based around

individuals, more detailed approaches require inclusion of

individual characteristic in models. Elements which may need to

be considered include incorporation of close as well as casual

contacts, location-based clustering (such as within households,

schools or workplaces), age-related associations, communal contact

structures, and historical contact information. As more of these

elements are incorporated into the study the choice of model

structure must change to encompass them. For example by using a

stochastic model with both individual and aggregate components

Mellor et al. are able to include household clustering in their

model [23] while Guzzetta et al. expand on this to incorporate

clustering within households, schools and workplaces as well as

spatial restrictions on the likelihood of contact based on

commuting distance [19].

Each of the three recent papers [19,20,23] suggests moving to an

individual-based modelling framework in which contact tracing can

Contact Tracing of Tuberculosis
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be simulated more directly. These allow the tracking and recording

of interactions between individuals within an extended contact

structure providing the potential to assess fine-grained variation in

interventions and the effect of this detailed structure on outcomes.

By directly tracking individuals in a population an increased level of

realism regarding contact tracing intervention and disease trans-

mission can be provided to policy makers who need to make

decisions about implementing interventions. The individual based

approach also has advantages in relation to modelling other

components of TB disease including the complex natural history

and characteristics relating to treatment completion.

However realism is not a virtue in and of itself and the

additional complexity is only beneficial if it leads to an

improvement in the accuracy and validity of model predictions.

It is currently an open question as to what specific benefits

individual based models of contact tracing will provide over

simpler models as the reviewed studies have not yet implemented

this approach in evaluation of interventions. However, there is

clearly potential to improve the use of observational data in model

fitting and validation through this approach.

While Guzzetta et al. [19] and Mellor et al. [23] make use of

data to construct the social structure of their models, none of the

reviewed studies use data to inform the effectiveness of contact

tracing as an intervention. While the papers do not provide

explanations for the omission of effectiveness data, it may relate to

limited public availability of data from TB control units in settings

where tracing is conducted. Modelling can be very valuable in the

absence of high-quality data but to inform policy it is preferable for

as much relevant data as possible to be used in order to produce

accurate and robust predictions. Access to data on contact

structures (such as household surveys) and on the effectiveness of

contact tracing from trials and observational studies are likely to be

particularly valuable. Setting specific data, where available, can

often be essential in producing well calibrated models but also has

the potential to mislead if applied out of context. For example,

much of the reliable data available in the literature relates to

declining European epidemics that were well-contained, while

many models are being developed for high prevalence settings

such as sub-Saharan Africa. Without setting-specific data, realistic

predictions based on either direct or aggregate simulation of

contact tracing interventions may not be achievable or of value to

policy makers.

In general the availability of data should be a limiting factor on

the level of complexity of a model. The models of Guzzetta et al.

[19] incorporate a significant level of detail, however they still do

so at the loss of a certain measure of realism, for example with the

absence of immigration and vaccination programs. In the absence

of specific data on household or workplace transmission rates this

extra detail can introduce additional uncertainty, with additional

assumptions required to generate simulations. Complex models

can also be a barrier to translating findings into practice since they

can be hard to explain and have computational demands that can

limit analysis of robustness. Despite these challenges, complex

models can also play a role in epidemiologic understanding by

exposing influential processes which can be the subject of future

field studies. In regard to contact tracing, it seems likely that

development of individual based models will be required to

improve understanding of the key factors underpinning its

effectiveness.

Existing models used to address other questions in TB control

including network based approaches [30] and alternative ap-

proaches to household clustering [31] have the potential to be

adapted to assessment of contact tracing as an intervention. This

approach has been used for other infections, such as Chlamydia,

where transmission depends upon extended or repeated contact

[32]. In low prevalence settings repeated close contact (often in the

household or workplace) is the dominant cause of TB transmission.

In this regard TB has similarities to STIs in which partners are

usually known and can be traced [33],[34]. Techniques used to

model these other diseases may be applicable to models of TB, but

results or specific recommendations from these studies may be less

transferable.

There are also a number of papers which attempt to develop

broadly applicable implementations of contact tracing for use in

deterministic models either directly or by approximation [25,35–

37]. These techniques may be applicable to TB models but are

motivated by an intention to improve the implementation of

contact tracing in commonly used deterministic models without

requiring individual-based models. These approaches require less

data than individual or network models while incorporating some

features of more complex contact structures.

Recommendations
Realistic implementations of contact tracing as an intervention

in TB epidemics require the development of individual based

models which can incorporate the required detail of contact

structure. At present it is not clear that such approaches are

superior to compartmental models as the value of this added

realism will be best assessed through direct comparison between

such models and simplified approaches.

The settings with the most potential to gain from implementing

interventions such as contact tracing in addition to existing DOTS

are those with high burdens from TB epidemics in which DOTS

alone has not been sufficient to control the epidemic. There is an

urgent need to develop models for settings both with and without

high HIV prevalence which can be used to help make decisions

about which interventions to put in place.

Access to and better use of more detailed data on the

implementation and impact of contact tracing as an intervention,

in addition to improved demographic data on contact and

household structures are likely to be important elements of

progress in this field. There is a great potential for collaborative

work between clinicians, epidemiologists and modellers to use field

studies and routine surveillance activities to gather the data

required to inform future models.

Conclusions

Models of contact based interventions have substantial potential

to inform policy on TB control. Combined with cost effectiveness

information models could be used to help make decisions about

appropriate choice of interventions by comparing the relative costs

and benefits of different strategies for contact tracing with other

active case finding interventions (such as high risk group screening

and mass radiography).

Although there is a large body of literature on TB transmission

modelling there have been comparatively few models published

which incorporate contact tracing as an intervention for TB. The

existing studies we have reviewed offer insights into the potential

benefits of contact tracing but are limited in detail and in context.

There is considerable scope for future analyses to make better

use of data for model validation and to apply individual based

models to facilitate more realistic patterns of infectious contact. A

key focus of future modelling efforts should be to investigate the

value of contact tracing as an intervention in settings with a high

prevalence of TB (both with and without high HIV prevalence) or

provide results which are generalizable to those settings. These
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settings are where the most gains can be made in global TB

control.

Supporting Information

Checklist S1 PRISMA Checklist used in this study.
(DOCX)

Author Contributions

Conceived and designed the experiments: MB ATN GBM JGW.

Performed the experiments: MB ATN GBM JGW. Analyzed the data:

MB ATN GBM JGW. Wrote the paper: MB ATN GBM JGW.

References

1. WHO (2012) Tuberculosis: WHO fact sheet no. 104. Available: http://www.
who.int/mediacentre/factsheets/fs104/en/. Accessed 2012 Aug 7.

2. WHO (2012) GLOBAL TUBERCULOSIS REPORT 2012. Elsevier.
3. WHO (2006) THE STOP TB STRATEGY.

4. WHO (2011) Global Tuberculosis Control 2011.

5. Glaziou P, Floyd K, Korenromp EL, Sismanidis C, Bierrenbach AL, et al. (2011)
Lives saved by tuberculosis control and prospects for achieving the 2015 global

target for reducing tuberculosis mortality. Bulletin of the World Health
Organization 89: 573–582. doi:10.2471/BLT.11.087510.

6. Nair N, Wares F, Sahu S (2010) Tuberculosis in the WHO South-East Asia

Region. Bulletin of the World Health Organization 88: 164. doi:10.2471/
BLT.09.073874.

7. WHO (1997) Treatment of tuberculosis: guidelines for national programmes.
8. Hoa NB, Sy DN, Nhung NV, Tiemersma EW, Borgdorff MW, et al. (2010)

National survey of tuberculosis prevalence in Viet Nam. Bulletin of the World
Health Organization 88: 273–280. doi:10.2471/BLT.09.067801.

9. Behr MA, Hopewell PC, Paz EA, Kawamura LM, Schecter GF, et al. (1998)

Predictive value of contact investigation for identifying recent transmission of
Mycobacterium tuberculosis. American journal of respiratory and critical care

medicine 158: 465–469.
10. Fox GJ, Dobler CC, Marks GB (2011) Active case finding in contacts of people

with tuberculosis. Cochrane database of systematic reviews (Online) 9:

CD008477. doi:10.1002/14651858.CD008477.pub2.
11. Keeling MJ, Rohani P (2008) Modelling Infectious Diseases in Humans and

Animals. Princeton University Press.
12. Waaler H, Geser A, Andersen S(1962) The use of mathematical models in the

study of the epidemiology of tuberculosis. Am J Public Health Nations Health.
1962 June; 52(6): 1002–1013.

13. Castillo-Chavez C, Song BJ (2004) Dynamical models of tuberculosis and their

applications. Mathematical Biosciences and Engineering 1: 361–404.
14. Waaler HT (1968) A dynamic model for the epidemiology of tuberculosis.

American Review of Respiratory Disease 98: 591–600.
15. Abu-Raddad LJ, Sabatelli L, Achterberg JT, Sugimoto JD, Longini IM, et al.

(2009) Epidemiological benefits of more-effective tuberculosis vaccines, drugs,

and diagnostics. Proceedings of the National Academy of Sciences of the United
States of America 106: 13980–13985. doi:10.1073/pnas.0901720106.

16. Colijn C, Cohen TED, Murray M (2007) Mathematical Models of Tuberculosis:
Accomplishments and Future Challenges. BIOMAT 2006: 123–148.

doi:10.1142/9789812708779_0008.

17. Song B, Castillo-Chavez C, Aparicio JP (2002) Tuberculosis models with fast
and slow dynamics: the role of close and casual contacts. Mathematical

biosciences 180: 187–205.
18. Mills HL, Cohen T, Colijn C (2011) Modelling the performance of isoniazid

preventive therapy for reducing tuberculosis in HIV endemic settings: the effects
of network structure. Journal of the Royal Society, Interface/the Royal Society

8: 1510–1520. doi:10.1098/rsif.2011.0160.

19. Guzzetta G, Ajelli M, Yang Z, Merler S, Furlanello C, et al. (2011) Modeling
socio-demography to capture tuberculosis transmission dynamics in a low

burden setting. Journal of theoretical biology 289: 197–205.
20. Tian Y, Alawami F, Al-Azem A, Osgood N, Hoeppner V, et al. (2011) A System

Dynamics model of tuberculosis diffusion with respect to contact tracing

investigation. Proceedings of the Winter Simulation Conference (WSC): 1362–
1373. doi:10.1109/WSC.2011.6147857.

21. Ziv E, Daley CL, Blower SM (2001) Early therapy for latent tuberculosis

infection. American journal of epidemiology 153: 381–385.

22. Aparicio J, Hernández J (2006) Preventive treatment of tuberculosis through

contact tracing. Contemporary Mathematics 410: 17–29.

23. Mellor GR, Currie CSM, Corbett EL (2011) Incorporating household structure

into a discrete-event simulation model of tuberculosis and HIV. CM

Transactions on Modeling and Computer Simulation (TOMACS) 21: 26.

24. Keeling MJ, Eames KTD (2005) Networks and epidemic models. Journal of the

Royal Society, Interface/the Royal Society 2: 295–307. doi:10.1098/

rsif.2005.0051.

25. Müller J, Kretzschmar M, Dietz K (2000) Contact tracing in stochastic and

deterministic epidemic models. Mathematical biosciences 164: 39–64.

26. Aparicio JP, Castillo-Chavez C, Pablo Aparicio J (2009) Mathematical

Modelling of Tuberculosis Epidemics. Mathematical biosciences and engineer-

ing: MBE 6: 209–237. doi:10.3934/mbe.2009.6.209.

27. Comstock GW (1994) Field trials of tuberculosis vaccines: how could we have

done them better? Controlled clinical trials 15: 247–276.

28. Good PI (2005) Resampling Methods: A Practical Guide to Data Analysis

(Google eBook). Springer.

29. CDC (2009) National TB Program Objectives and Performance Targets for

2015.

30. Cohen T, Colijn C, Finklea B, Murray M (2007) Exogenous re-infection and the

dynamics of tuberculosis epidemics: local effects in a network model of

transmission. Journal of the Royal Society, Interface/the Royal Society 4: 523–

531. doi:10.1098/rsif.2006.0193.

31. Aparicio JP, Capurro a F, Castillo-Chavez C (2000) Transmission and dynamics

of tuberculosis on generalized households. Journal of theoretical biology 206:

327–341. doi:10.1006/jtbi.2000.2129.

32. Eames KTD, Keeling MJ (2003) Contact tracing and disease control.

Proceedings Biological sciences/The Royal Society 270: 2565–2571.

doi:10.1098/rspb.2003.2554.

33. Rothenberg R, McElroy P (2003) Contact tracing: comparing the approaches

for sexually transmitted diseases and tuberculosis. Int J Tuberc Lung Dis 7: 342–

348.

34. Gray RT, Hoare A, Prestage GP, Donovan B, Kaldor JM, et al. (2010) Frequent

testing of highly sexually active gay men is required to control syphilis. Sexually

transmitted diseases 37: 298–305. doi:10.1097/OLQ.0b013e3181ca3c0a.

35. Fraser C, Riley S, Anderson RM, Ferguson NM (2004) Factors that make an

infectious disease outbreak controllable. Proceedings of the National Academy of

Sciences of the United States of America 101: 6146–6151. doi:10.1073/

pnas.0307506101.

36. Klinkenberg D, Fraser C, Heesterbeek H (2006) The effectiveness of contact

tracing in emerging epidemics. PloS one 1: e12. doi:10.1371/journal.-

pone.0000012.

37. Mizumoto K, Ejima K, Yamamoto T, Nishiura H (2013) Vaccination and

clinical severity: is the effectiveness of contact tracing and case isolation

hampered by past vaccination? International journal of environmental research

and public health 10: 816–829. doi:10.3390/ijerph10030816.

38. Blower SM, Mclean AR, Porco TC, Small PM, Hopewell PC, et al. (1995) The

intrinsic transmission dynamics of tuberculosis epidemics. Nature medicine 1:

815–821.

Contact Tracing of Tuberculosis

PLOS ONE | www.plosone.org 8 September 2013 | Volume 8 | Issue 9 | e72470


