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Abstract

Blurry organ boundaries and soft tissue structures present a major challenge in biomedical image restoration. In this paper,
we propose a low-rank decomposition-based method for computed tomography (CT) image sequence restoration, where
the CT image sequence is decomposed into a sparse component and a low-rank component. A new point spread function
of Weiner filter is employed to efficiently remove blur in the sparse component; a wiener filtering with the Gaussian PSF is
used to recover the average image of the low-rank component. And then we get the recovered CT image sequence by
combining the recovery low-rank image with all recovery sparse image sequence. Our method achieves restoration results
with higher contrast, sharper organ boundaries and richer soft tissue structure information, compared with existing CT
image restoration methods. The robustness of our method was assessed with numerical experiments using three different
low-rank models: Robust Principle Component Analysis (RPCA), Linearized Alternating Direction Method with Adaptive
Penalty (LADMAP) and Go Decomposition (GoDec). Experimental results demonstrated that the RPCA model was the most
suitable for the small noise CT images whereas the GoDec model was the best for the large noisy CT images.
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Introduction

Accurate display of anatomical detail, in the form of small

structures, features and objects, is a key requirement of computed

tomography (CT). These details carry important information that

may be associated with distinction between normal and patholog-

ical diagnosis. However, blurring of the CT images often

compromises the visibility of such fine details.

Generally, CT modality is an economical way to generate high-

resolution images of human anatomy. CT images show more

complex details of bones structures, compared to magnetic

resonance imaging (MRI) images. However, one side CT images

are degraded by blurring due to many reasons, such as the

imperfect resolution of the imaging system, data loss in acquisition,

and acquisition noise, to name a few. These artifacts and data loss

result in weak contrast and blurry organ boundaries. Furthermore,

streak artifact around thick cortical bone results in degraded

visibility of some soft tissue tumors present in low contrast regions.

Therefore, contrast enhancement for CT images is critical to

facilitate evaluating the extent of disease in soft tissue area [1].

Another, source of degraded CT image is the presence of noise,

which adds further blur to organ boundaries.

Recently, many CT image deblurring methods have been

studied to visualize miniature-sized features. Jiang et al proposed a

deblurring method for spiral CT image based on edge signal-to-

noise ratio in 2003 [2]. Their method obtained the standard

deviationsof two-dimension Gaussian blur kernel by calculating

the minimum value of the edge signal-to-noise ratio of the blurred

CT image, and then deblurred the CT image using the EM

algorithm. This deblurring method significantly improved the

identification of cochlear CT details. In 2005, Wang made an

improvement to Jiang’s method using the Wiener filter in place of

the EM algorithm [3], and accelerated the speed of deblurring

algorithm without sacrificing the deblurring effect. Later, based on

edge-to-noise ratio and constrained least squares, Zhou proposed a

filter blind deblurring algorithm and an iterative blind deblurring

algorithm respectively [4]. Both of them significantly improved the

image quality, compared with Jiang’s and Wang’s methods. In

2010, Hussien also used the Wiener filter to restore CT soft tissue

[1]. In 2012, Zohair presented a fast deblurring method for CT

medical images using a novel kernel set [5].

All the deblurred methods mentioned above only deal with a

single CT image without considering the context of image

sequence. these methods can also deal with CT image sequences

via one by one, which just likes to deblur repeat single image

several times with the same operations and the information

between adjacent frames are not considered. There may be time-

consuming. In this study, we will explore a new image sequence

deblurred algorithm by using sparse representation and low-rank

decompose model. For the reason that we always obtained CT

image sequences from CT medical imaging system and the doctors
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judge the state of illness according to the changes of the CT image

sequence, so we think that dealing with CT image sequence is

more significant than dealing with a single CT image. Our method

is also suitable for a single CT image, the difference is that we

deblur the low-rank component working out the average low-rank

image for sequence image but on own rank of a slice CT for single

image. The result may slightly worse than using the average rank

of image sequence if sequence image have big difference from

slices. It is the fact that a single image can use information between

adjacent slices. Recently, low-rank technology is used to decom-

pose image sequence into a low-rank component and a sparse

component. In low-rank model, noise and blur information is

considered to exist in the sparse component of decomposition

image, whereas original image information exists in the low-rank

component [6]. Following a similar philosophy, CT sequence

images can also be decomposed into the sparse and low-rank

component, and restoration can be applied to the sparse and low-

rank components, respectively. In this paper, a CT sequence

image restoration algorithm is proposed based on low-rank

decomposition. Three classic low-rank models have been assessed

in the experiments; and comparisons were performed on different

medical images.

Review

A CT medical imaging system can be modeled as a linear

transformation of an incoming analog signal, which is corrupted

by intrinsic measurement fluctuations or electronic noise. A

blurred image g x,yð Þis assumed to be generated by convolving the

latent image f x,yð Þ with a blur kernel h x,yð Þwith a latent image,

with additive noisen x,yð Þ:

g x,yð Þ~f x,yð Þ � h x,yð Þzn x,yð Þ , ð1Þ

where � denotes convolution operator [7–10].

The main cause of degradation in medical CT images is the

imperfect resolution of the imaging system, and the degradation

function of a two-dimensional medical CT image is generally

approximated as an isotropic two-dimensional Gaussian Point

Spread Function (PSF) [11]:

h x,yð Þ~Ae{k

x{x0ð Þ2
2s2

x

z
y{y0ð Þ2

2s2
y

� �
ð2Þ

whereAw0is a constant, sis the variance.

Image restoration technique aims to recover an image from its

observation, degraded with blur and noise. In order to restore the

image, prior knowledge of the degradation and inverse filtering

must be obtained. Direct inverse filtering is usually used.

Unfortunately,it is invalid when noise is taken into consideration.

Another, degradation process typically happens in CT medical

imaging, which includes blurring caused by imperfect resolution of

the imaging system and noise by random fluctuations in signal

intensity. Therefore, Wiener filtering [12–14] is a better choice

Figure 1. Flow chart of our algorithm.
doi:10.1371/journal.pone.0072696.g001
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than inverse filtering since it takes noise into consideration for

inverse filtering.

We can obtain the expression of the formula 1ð Þin the frequency

domain through the discrete Fourier transform:

G u,vð Þ~F u,vð ÞH u,vð ÞzN u,vð Þ ð3Þ

whereF u,vð Þ,H u,vð Þ,G u,vð Þ and N u,vð Þ are the discrete Fourier

transform of the latent imagef x,yð Þ, blur kernel h x,yð Þ, blurred

input imageg x,yð Þ and noise n x,yð Þ respectively. Wiener filtering

restoration is a method that regards H u,vð Þ as its transmission

function, and generates the recovery image f � x,yð Þ by minimizing

the mean square error between the recovery image f � x,yð Þand the

latent imagef x,yð Þ, namely f x,yð Þ{f � x,yð Þ½ �2?min. The expres-

sion of the recovery image by wiener filtering is

F u,vð Þ~ H� u,vð Þ
DH u,vð ÞDzpn u,vð Þ

�
pf u,vð Þ

" #
G u,vð Þ ð4Þ

where :½ �denotes wiener filtering, H� u,vð Þ is the conjugate matrix

of H u,vð Þ,pn u,vð Þ and pf u,vð Þ are the power spectrums of noise

and latent image respectively. It is often hard to estimate the values

of pn u,vð Þandpf u,vð Þ, and we use the following expression to

approximate the wiener filtering restoration.

F u,vð Þ~ H� u,vð Þ
DH u,vð ÞDzc

� �
G u,vð Þ , ð5Þ

wherecis a constant, which is numerically takes the reciprocal

value of the signal-to-noise ratio of the blur image. The recovery

image can be further calculated according to equation 5ð Þby the

Fourier inverse transform:f x,yð Þ~F{1 F u,vð Þð Þ.

Our Method

1. Ethics Statement
This study was approved by Key Lab of Intelligent Perception

and Image Understanding of Ministry of Education and by the

institutional review board (IRB) of The School of Oncology,

Peking University (Beijing Cancer Hospital). The doctors obtained

signed informed consent forms from all selected patients prior to

the routine clinical course of CT examinations.

2. Motivation
Generally, we obtained CT image sequences from CT medical

imaging system, but the existing deblurred methods always focus

on the single image. In fact, each CT image in the same sequence

is similar with its adjacent frames or maybe with a little change.

Another, it was shown that a low-rank matrix could be recovered

from incomplete sampling of its entries by computing the matrix of

minimum nuclear norm the data [15]. Inspired by the image

decomposition in Ref. [6] and the video processing, CT image

sequences are decomposed by sparse and low-rank here. We can

find noise and blur information exist in the sparse component of

Figure 2. Shows restoration procedure of sparse and low-rank decomposition. From left to right, from top to bottom: the first image of the
chest CT image sequence, the sparse component, the low-rank component, the recovery image of the sparse component, the recovery image of the
low-rank component and the recovery CT image. We can see that the detailed information and the visual effect of the CT image after restoration are
obviously improved.
doi:10.1371/journal.pone.0072696.g002
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decomposition image, whereas most of the original image

information exists in the low-rank component. Thus, CT sequence

images restoration can be operated both in sparse and low-rank

components, respectively. Now, sparse and low-rank technology

mainly includes three kinds of low-rank decomposition models,

and each low-rank model has its emphasis. In this study, both

RPCA and GoDec models will be used to deblur CT image

sequences. More details can be seen from the following

subsections. The frame of our work is shown in Figure 1.

3. Framework of sparse and low-rank matrix
decomposition

Sparse and low-rank decomposition is widely used in back-

ground modeling and shadow removal; it usually focuses on image

sequences due to their intrinsic sparse characteristics. Medical CT

image sequence has strong correlation between adjacent frames,

and it is pointed out that medical CT images are sparse [16],

Inspired by the image decomposition in natural image deblurring,

we applied the sparse and low-rank decomposition for CT image

deblurring. In this section, we will briefly introduce the image

decomposition with three low-rank models.

Model 1. X~LzS, whereX is the data matrix of the original

image,Lis a low-rank matrix, Sis a sparse matrix.

By using thel1-norm as the proxy of sparsity and the nuclear

norm as the surrogate for low-rank, as in statistics and image

processing [15-18], the sparse and low-rank recovery can be

accomplished by solving the following RPCA problem:

min
L,S

Lk k�zl Sk k1 , subject to X~LzS ð6Þ

whereX[Rm|nis the data matrix of the original image,L[Rm|nis

the low-rank component ofX ,S[Rm|nis the sparse component

ofX , :k k1is the l1-norm defined by the component-wise sum of the

absolute values of all entries, :k k�is the nuclear norm defined by the

sum of singular values, lis a positive weighting parameter. This

problem arises in many applications, such as image processing,

web data ranking, and bioinformatic data analysis. Under

surprisingly broad conditions, the RPCA problem can be exactly

solved via convex optimization that minimizes a combination of

the nuclear norm and the l1-norm. It has the advantages of high

speed and precision. For the RPCA problem 6ð Þ, we may apply the

augmented Lagrange multiplier method by identifying:

W~ L,Sð Þ,f Wð Þ~ Lk k�zl Sk k1 and h Wð Þ~X{L{S: ð7Þ

Then its Lagrangian function [19–22] is:

L L,S,Y ,bð Þ~l Sk k1z Lk k�zSY ,X{L{STz
b

2
X{L{Sk k2

ð8Þ

whereY is the Lagrange multiplier, bis a positive scalar, S:Tdenotes

the standard trace inner product and :k k2
is the Frobenius norm.

Its iterative scheme is:

Lkz1[ arg min
A

L(L,Sk,Yk,bk),

Skz1[ arg min
E

L(Lkz1,S,Yk,bk),

Ykz1~Yk{bk X{Lkz1{Skz1ð Þ:

8>><
>>: ð9Þ

Formula 9ð Þcan be solved by the following:

Figure 3. Shows comparison of restoration effect of three low-rank models in dealing with the noiseless CT images. From left to right:
the 10th original chest CT image, the result of RPCA model, the result of LADMAP model, the result of GoDec model.We can see that for noiseless CT
image, our method can get satisfactory results, but ringing effect of the recovery image based on the RPCA model is much smaller than the other two
models, its advantage in visual effect especially shown in the component which is circled with red ellipses in the images.
doi:10.1371/journal.pone.0072696.g003

Table 1. Comparison of evaluation index values of the
recovery images of the three models.

SD IE IQMFV

The 10th CT image 49.2172 5.5966 2422.3

RPCA model 55.0057 6.1122 3025.6

LADMAP model 54.4365 6.0759 2963.3

GoDec model 57.1869 6.0368 3270.3

doi:10.1371/journal.pone.0072696.t001

CT Images Restoration with Low-Rank Decomposition
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Lkz1~US
b{1

k
S½ �VT , U ,S,Vð Þ~svd X{Skzb{1

k Yk

� �
,

Skz1~S
lb{1

k
X{Lkz1zb{1

k Yk

	 

,

Ykz1~Ykzbk X{Lkz1{Skz1ð Þ:

8>>><
>>>:

ð10Þ

This algorithm solves the RPCA problem through the Lagrange

multiplier method, which recovers a low-rank matrix with an

unknown fraction of its entries arbitrarily corrupted.

Model 2. X~XZzS, whereX is the data matrix of the

original image, Zis the skinny SVD, Sis a sparse matrix.

The decomposition problem based on model 2 can be

converted into the following optimization problem:

min
Z,S

Zk k�zl Sk k2,1, s:t: X~LzS, L~XZ ð11Þ

Its augmented Lagrangian function [23–28] can be written as

the following equation:

L L,S,Yð Þ~f Lð Þzg Sð Þ{SY ,A(L)zB(S){XT

z
b

2
A(L)zB(S){Xk k2

ð12Þ

where Y is the Lagrange multiplier, Aand B are linear mappings,

f and gare convex functions,bw0is the penalty parameter, S:T
denotes the inner product, :k k2

is the Frobenius norm. Its iterative

scheme is:

Lkz1~ arg min
A

f Lð Þz bgA

2
L{LkzA� Ykzb A Lkð ÞzB Skð Þ{Xð Þð Þ= bgAð Þk k2,

Skz1~ arg min
E

g Sð Þz bgB

2
S{SkzB� Ykzb A Lkz1ð ÞzB Skð Þ{Xð Þð Þ= bgBð Þk k2,

Ykz1~Ykzb A Lkz1ð ÞzB Skz1ð Þ{X½ �:

8>>>><
>>>>:

ð13Þ

whereA�is the adjoint ofA,gAw0 and gBw0are parameters.

Penalty parameterbis updated according to the formula:

bkz1~ min bmax,rbkð Þ, wherebmaxis an upper bound of bkf g.
The value ofris defined as

r~
r0,if bk max

ffiffiffiffiffiffi
gA

p
Lkz1{Lkk k, ffiffiffiffiffi

gB

p
Skz1{Skk k

� ��
ck kve2,

1,otherwise:

(
ð14Þ

wherer0§1is a constant.

This is the LADMAP algorithm. It solves the low-rank

representation problem through the alternating direction method,

and linearizes the quadratic penalty term adaptively. Compared

with the traditional alternating direction method, this method has

a novel rule to update the penalty so that it converges fast, without

the need to introduce auxiliary variables or to invert matrices

during the operation process. It has found wide applications in

computer vision and machine learning.

Model 3. X~LzSzG,rank Lð Þƒr,card Sð Þƒk, whereX is

the data matrix of the original image,Lis a low-rank matrix, Sis a

sparse matrix, Gis a noise matrix, ris the rank ofX , kis the

candinality. During the decomposition process, the algorithm

alternatingly assigns the r{rankapproximation ofX{StoLand

assigns the sparse approximation with cardinalitykofX{LtoS.

The decomposition problem based on model 3 can be

converted into the following optimization problem [29–34]:

Figure 4. Shows comparison of restoration effect of three low-rank models in dealing with the CT images that contain large noise.
From left to right: the 10th original stomach CT image, the result of RPCA model, the result of LADMAP model, the result of GoDec model, we can see
our method can do some good effect on the medical CT images which contain large noise, the contrast of the images after restoration enhance
obviously and the human organ boundaries are clear, there is more detailed information shown out, but the recovery image based on GoDec model
shows less noise than the other two images.
doi:10.1371/journal.pone.0072696.g004

Table 2. Comparison of evaluation index values of the
recovery images of the three models.

SD IE IQMFV

The 10th CT image 68.0978 3.9737 4637.3

RPCA model 75.8182 4.7177 5748.4

LADMAP model 75.1148 4.7347 5642.2

GoDec model 76.3726 4.6915 5832.7

doi:10.1371/journal.pone.0072696.t002

ð13Þ
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min
L,S

X{L{Sk k2; s:t: rank Lð Þƒr card Sð Þƒk : ð15Þ

Formula 15ð Þ can be converted into the following two sub-

problems:

Lt~ arg min
rank Lð Þƒr

X{L{St{1k k2,

St~ arg min
card Sð Þƒk

X{Lt{Sk k2:

8><
>: , ð16Þ

which is equivalent to

Lt~Q1 R1 AT
2 Y1

� �{1
RT

2

h i1= 2qz1ð Þ
QT

2 ;

St~PV X{Xtð Þ,V : D X{Ltð Þi,j[VD=0

St§D X{Ltð Þi,j[�VVD,DVDƒk:

8>><
>>: , ð17Þ

where Y1~~LLA1,~LL~Y1 AT
2 Y1

� �{1
Y T

2 ,A2~Y1;Y2~~LLT Y1~Q2R2,

Y1~~LLY2~Q1R1,Q1R1and Q2R2are the QR-decomposition of

Y1and Y2respectively.

This is the GoDec algorithm, which is a low-rank approxima-

tion method based on bilateral random projections. The algorithm

can approximate the low-rank component, the sparse component

and the noise component of the input data matrix. It has the

advantage of small relative error and high decomposition speed.

To sum up, RPCA and GoDec share similar motivations in that

they both explore the low-rank and sparse structures in the given

data matrixX . They differ, however, by their distinctive ways of

handling the specific decomposition but they are intrinsically

different. RPCA assumesX~LzS (Sis sparse noise) and exactly

decomposesX intoLandSwithout pre-defined rank(L) and card(S),

that is, RPCA offers a blind separation of low-rank data and sparse

noise, however, GoDec produces approximated decomposition of

a general matrix Xwhose exact RPCA decomposition does not

exist due to the additive noise Gand pre-defined rank(L) and

card(S); GoDec directly constrains the rank range of Land the

cardinality range of S, while RPCA minimizes their corresponding

convex polytopes (i.e., the nuclear norm of Land l1-norm of S);

GoDec usually produces less relative error with much less CPU

seconds than RPCA. And the improvement of accuracy for the

model of GoDec is due to more general than that of RPCA by

considering the noise component. LADMAP and RPCA are same

intrinsically, but LADMAP reduces the auxiliary variables and

constraints, further accelerates the convergence speed and

improves the accuracy of decomposition.

4. Restoration using low-rank matrix decomposition on
CT image sequence

In this paper, sparse and low-rank matrix decomposition was

applied to the problem of medical CT image sequence restoration.

For the blurred CT image, it is necessary to recover its low-rank

component, because it conveys major information on the latent

image. The sparse component, on the other hand, normally

reflects the majority of blurring. In practice, CT images differ in

their characteristics: some contain high level of noise that seriously

degrades image quality and affects visualization; in others, the

noise level is relatively low and has little impact on the visual

quality of the image or diagnosis of the lesions. Therefore, it is

necessary for us to select the appropriate low-rank model based on

the image characteristics, and to perform low-rank decomposition

and restoration in order to obtain the desirable recovery results.

We propose a new CT image sequence restoration model based

on low-rank decomposition as follows:

w Xið Þ~u(�LL)zv Sið Þzcni s:t: Xi~LizSizcni ð18Þ

whereXiis the ith slice of the original CT sequence, Liis a low-rank

matrix, Siis a sparse matrix, ni is a noise matrix of Xi, �LLis the

average of all the low-rank matrix Li,i§1, w,u,v are recovery

functions, cis 0 or 1 according to the low-rank model.

Also, there exist several methods using the information of the

adjacent frames, such as the methods introduced in ref. [35,36],

but they use the idea that the corrupted portions of the projection

data can be substituted with the corresponding portions from an

unaffected adjacent slice, and restore the image one by one. Our

method can restore the image sequence by one-time processing,

which can not only consider the common characters of the image

sequence but also take the different features of each image into

account.

In natural imaging, the image blur can be regarded as

atmospheric turbulence affecting the observed scene captured by

the camera due to fluctuations of the refraction index of the

medium [37]. This phenomenon may also exist in the medical CT

imaging process caused by the refraction of the human tissue when

the X-ray go into the human body, so we propose another

degradation function we call turbulence PSF in this paper, which is

acted on the sparse component for wiener filtering, the expression

is as follows [38]:

H u,vð Þ~e{l½u2zv2 �
5=6

ð19Þ

wherel is a constant.

This degradation function we provided was inspired by the

blurring natural image and then we think the turbulence also exist

in CT imaging based on the reference [11]. Furthermore, after CT

image sequences are decomposed into sparse and low-rank

components, blur information has often concentrated on the

sparse component of decomposition image and there is not much

difference from low-rank components. Therefore, turbulence PSF

is acted on the sparse component as well as Gaussian PSF is used

on the average low-rank component. In order to demonstrate the

performance of provided degradation function, we did some

comparison experiments that we deblur a single CT image with

only turbulence PSF, only Gaussian PSF and both the two PSFs,

the result shows that use both the PSFs have more advantages.

The detailed steps of our algorithm are as follows:

Algorithm: CT image sequence restoration based on sparse

and low-rank decomposition

Input: the blurred CT image sequence

Output: the latent CT image sequence

Step 1: Input the medical CT image sequenceX . Xirepresents

theithimage in the sequence X ,i§1. IfXiis acolor image, convert it

to gray scale;

Step 2: Use all the CT images in the sequenceX to synthesize a

high dimensional matrix, each column of the high dimensional

matrix represents a single CT imageXi;

CT Images Restoration with Low-Rank Decomposition
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Step 3: select a reasonable low-rank model to decompose the

high dimensional matrix in step 2 into high dimensional sparse

matrix, low-rank matrix and noise matrix according to the actual

situation of the CT image sequenceX ;

Step 4: convert the high dimensional sparse matrix, low-rank

matrix and noise matrix into sparse image sequenceS, low-rank

image sequenceLand noise image sequence n, respectively;

Step 5: Using our restoration model w Xið Þ~u(�LL)zv Sið Þ
zcnito restore the blurred CT imageXi, whereXi~LizSizcni.

Li,Siand niare theithimages of image sequenceL,Sandn,respec-

,respectively. For each slice image, when Gaussian PSF acts on �LL,

common knowledge of sequence images is used to restore a low-

rank matrix of Li whereas sparse blurring component uses own Si

matrix to restore by turbulence PSF.

5. Evaluation of Recover
In order to objectively evaluate the performance of the image

restoration algorithm, we use standard deviation, image informa-

Figure 5. Shows comparisons of different methods. From top to bottom: chest CT experiment, lung CT experiment, stomach CT (1)
experiment, stomach CT (2) experiment. From left to right in each row: the original image, the recovery image using Wang’s method, the recovery
image using Hussien’s method, the recovery image using our method. It needs to say, we select the RPCA model in chest CT and lung CT, and select
the GoDec model in stomach CT. We can see that using our method to restore the medical CT image sequence can obtain satisfactory results, the
recovery images can show high contrast, clear detail information and clear organ boundaries which are especially shown in the components circled
with red ellipses in the images.
doi:10.1371/journal.pone.0072696.g005

CT Images Restoration with Low-Rank Decomposition
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tion entropy and image quality measurement function value [39–

41] as evaluation indices for comparison in this paper.

The formula of standard deviation is as follows

SD~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
i~1

XN

j~1

xi,j{
XM
i~1

XN

j~1

xi,j

,
M �N

 !2,
M �N{1ð Þ

vuut
ð20Þ

where xi,jdenotes the pixel value of location i,jð Þof the recovery

image, and the size of the recovery image is M|N.The greater

the standard deviation value, the more dispersed the gray level

distribution, the greater the image contrast, and the more detailed

information.

Information entropy is one of the key indicators to measure how

much image information is: the greater the value, the larger the

amount of information contained in the image, its expression is

IE~
XM
i~1

XN

j~1

{P xi,j

� �
� log P xi,j

� �
ð21Þ

where P :ð Þdenotes the probability.

Image quality measurement function value is defined as

IQMFV~
XM
i~1

XN

j~1

xi,j
2

,
M �Nð Þ{

XM
i~1

XN

j~1

xi,j

,
M �Nð Þ

" #2

ð22Þ

The greater the image quality measurement function value, the

more uniform the gray level distribution, and the better the image

quality.

Experiments and Analysis

Based on the methods we described in Section 3, we investigate

the most appropriate low-rank models for various types of CT

images, differing in their noise levels and properties. Each image in

our CT image sequences is 512 by 512 in size, with RGB color,

obtained on a Discovery CT750 HD at the Beijing Cancer

Hospital. We used s~1:3 in the Gaussian PSF, andl~0:0005 in

the turbulence PSF for our experiments. All methods were

implemented in Matlab7.10.0 (R2010a), running on desktop with

an Intel Core i3 CPU at 2.20GHz and 2GB memory, employing a

32-bit windows 7 operating system.

A. Comparison of different low-rank models
We first use the chest CT image sequence to evaluate the

contrast of different low-rank models. The noise is small on each

image of the CT sequence and does not affect the basic

visualization. We decompose the input chest CT image sequence

into a sparse component and a low-rank component in the RPCA

model, and then recover the two components using wiener

filtering, we usel~0:002in this experiment, and the decomposi-

tion criterion is to keep all the low-rank component as much as

possible, the procedure is shown in Figure 2.

In order to analyze the scope of application of the three different

low-rank models, we applied all decomposition models to the same

chest CT image, and restored the chest CT image sequence. To

illustrate the effectiveness of the proposed method in recovering

the CT image sequence, the 10th original image of the chest CT

image sequence and its recovery images in different models are

shown in Figure 3. For RPCA and LADMAP, we

usedl~0:002andl~10respectively, and for GoD-

ec,rank~2,card~8:15e4.

To further compare the recovery effect of the three models, we

list in Table 1 the image evaluation index values mentioned above

for every image in Figure 3, as is shown.

From Table 1, we can see that the recovery images using our

method have great improvement in image standard deviation,

information entropy, and quality measurement function value,

compared with the original chest CT image. Although the image

standard deviation and quality measurement function value of

GoDec model is much greater, indicating sharper contrast, the

recovery image has more serious ringing effect. Therefore, for the

medical CT image sequence containing a low level of noise, the

RPCA model is preferable to decompose the sequence, resulting in

better recovery results.

The same comparative experiments were also performed on a

stomach CT image sequence, which has a much larger noise

component. The results of comparison are shown in Figure 4 and

the corresponding evaluation index values of every image are

Table 3. Comparison of evaluation index values of the chest
CT image.

SD IE IQMFV

Original CT image 50.3358 5.5876 2533.7

Wang’s [3] 50.2142 5.2891 2521.5

Hussien’s [1] 50.4130 5.7766 2541.5

ours 54.5948 6.0645 2980.6

doi:10.1371/journal.pone.0072696.t003

Table 4. Comparison of evaluation index values of the lung
CT image.

SD IE IQMFV

Original CT image 47.2274 5.5265 2230.4

Wang’s [3] 46.7205 5.2103 2182.8

Hussien’s [1] 48.6962 5.8733 2371.3

ours 54.3555 6.0751 2954.5

doi:10.1371/journal.pone.0072696.t004

Table 5. Comparison of evaluation index values of the
stomach CT image (1).

SD IE IQMFV

Original CT image 71.1016 4.2681 5055.4

Wang’s [3] 71.9176 4.9294 5172.1

Hussien’s [1] 67.9674 4.9868 4619.5

ours 74.0204 4.6054 5479.0

doi:10.1371/journal.pone.0072696.t005
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shown in Table 2. For RPCA and LADMAP, we usedl~0:002

and l~5respectively, and for GoDec, rank~1,card~8:15e4.

From Table 2, we can see the recovery images using our

method have a great improvement in image standard deviation,

information entropy and quality measurement function value

compared with the original CT image. Although the difference

among the evaluation index values of the three recovery images is

small, the recovered image based on the GoDec model shows less

noise than the results from the other two methods. Therefore, for

the CT images with large noise, the GoDec model is more

preferable to decompose the image sequence.

B. Comparison of different recovery methods
To illustrate the effectiveness of the proposed method, we make

several groups of contrast experiments between different methods

which are shown in Figure 5. We list the image evaluation index

values of every group above in Tables 3–6.

For the chest CT image comparative experiment, we used

variances~0:01, noise-to-signal nsr~0:49for Wang’s method,

and useds~0:03,nsr~0:005for Hussien’s method. The decom-

position parameter in our method were 0.002,k~0:0005,
nsr~0:002. For the lung CT image comparative experiment, we

useds~0:02, nsr~0:58for Wang’s method, and s~0:8,
nsr~0:008 for Hussien’s method. In our method, the decompo-

sition parameter were 0.0025,k~0:0005,nsr~0:003. For the

stomach CT image comparative experiment, we used s~0:01,

nsr~0:49 for Wang’s method, and s~0:1,nsr~0:005 for

Hussien’s method. In our method, the decomposition parameters

were 8.15e4,rank~1,k~0:0005,nsr~0:01.

The four groups of comparison of evaluation index values reveal

that our method have advantages in all the evaluation index values

when deal with the low level noise CT image. But the information

entropy values of our method is lower than some of the others in

case of high level noise CT images. What we want to clear is that

there is no more other effective evaluation index to address this

problem so far, So we used information entropy to try it on.

Overall, our method is more effective in CT image sequence

restoration than the alternative methods.

Conclusion and Prospect

This paper proposed image sequence restoration for CT scan

image using Wiener filtering, based on sparse and low-rank

decomposition. One of the key points to this method is uniting the

CT image restoration under the framework of low-rank models:

we first decompose the CT image sequence into sparse component

and low-rank component in the RPCA model if noise level is low,

and then restore both the two components using wiener filtering;

in the presence of high level noise, it is better to select the GoDec

model to decompose the images into three components, namely a

sparse component, a low-rank component and a noise component,

and then restore the sparse component and low-rank component

using wiener filtering. It takes about 1.5s for our algorithm to

recover a CT image of size 512|512. Experiments demonstrated

that our method generated better results, compared with the other

methods. In terms of medical CT image sequence restoration, our

method is highly practical, with clear organ boundary and detailed

information in the recovered image. The recovered images also

have good soft tissue visibility and image quality. One limitation of

our method is the reliance on matrix decomposition: in particular,

if the low-rank component of every image in the sequence has a

large variation, then our method does not work well. In this paper,

both the parameters of the blur kernel and the noise-signal ratio of

wiener filtering take empirical values, in the future work, we will

seek other paths to determine these parameter values automati-

cally and to explore more accurate blur kernels for the CT images.
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