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Abstract

Chemotherapy is commonly used in cancer treatments, however only 25% of cancers are responsive and a significant
proportion develops resistance. The p53 tumour suppressor is crucial for cancer development and therapy, but has been
less amenable to therapeutic applications due to the complexity of its action, reflected in 66,000 papers describing its
function. Here we provide a systematic approach to integrate this information by constructing a large-scale logical model of
the p53 interactome using extensive database and literature integration. The model contains 206 nodes representing genes
or proteins, DNA damage input, apoptosis and cellular senescence outputs, connected by 738 logical interactions.
Predictions from in silico knock-outs and steady state model analysis were validated using literature searches and in vitro
based experiments. We identify an upregulation of Chk1, ATM and ATR pathways in p53 negative cells and 61 other
predictions obtained by knockout tests mimicking mutations. The comparison of model simulations with microarray data
demonstrated a significant rate of successful predictions ranging between 52% and 71% depending on the cancer type.
Growth factors and receptors FGF2, IGF1R, PDGFRB and TGFA were identified as factors contributing selectively to the
control of U2OS osteosarcoma and HCT116 colon cancer cell growth. In summary, we provide the proof of principle that this
versatile and predictive model has vast potential for use in cancer treatment by identifying pathways in individual patients
that contribute to tumour growth, defining a sub population of ‘‘high’’ responders and identification of shifts in pathways
leading to chemotherapy resistance.
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Introduction

The p53 protein has been one of the most studied proteins since

its discovery in 1979. It plays a central role in the regulation of cell

survival and cancer development; p53 mutations are found in

more than 50% of human tumours and alterations or lack of p53

function has been linked to most types of cancer cells. The p53

protein acts as a transcription factor, which regulates the

expression of a large number of downstream genes by complex

mechanisms [1]. It has anti-proliferative effects such as cell cycle

arrest, apoptosis, and cell senescence in response to various stress

signals. Moreover, p53 is a critical node of the cellular circuitry

involved in the physiological response to growth factors or

abnormal oncogenic stimuli. Post-translational modifications,

protein-protein interactions and protein stabilization are found

to be crucial levels of control of p53 activity.

However, despite its fundamental role p53 has been less

amenable to therapeutic applications than other target genes or

proteins that are successfully utilized in cancer treatments [2]. The

understanding of p53 pathway mechanisms has both academic

and commercial interest for the design of new cancer therapies

and the selection of safer cancer drug candidates [3]. A major

reason why it has been so difficult to exploit our knowledge of p53

for therapeutic applications is indeed the complexity of its action.

There are more than 66,000 papers about p53 in the scientific

literature, and yet we are still far from understanding the details of

its function. This observation calls for a more systematic approach

to integrate this vast amount of information into consistent

representations that will enable better understanding of the

systems-wide mechanisms regulating p53 function.

Network and systems biology approaches are offering promising

new tools to study complex mechanisms involved in the

development of diseases [4]. In silico models can integrate large

sets of molecular interactions into consistent representations,

amenable to systematic testing and predictive simulations. Models

of various scales and computational complexity are being

developed, from qualitative network representations to quantita-

tive kinetic and stochastic models [5–7]. In the case of p53, the

huge amount and complexity of molecular interactions involved

makes a large-scale kinetic model out of reach. Nevertheless, a vast

amount of biological knowledge is available on p53 that is not in

the form of quantitative kinetic data, but in the form of qualitative

information. For example, numerous reports indicated that ATM

(ataxia telangiectasia mutated) affects p53 in response to DNA

damage [8]. Although 1350 publications describe the link between

ATM and p53 in PubMed, 57 papers indicate that ATM

phosphorylates p53 and only 11 papers include the information

that ATM phosphorylates and activates p53. Similarly, examples
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of downstream p53 target genes such as Bax (BCL2-associated X

protein) that control the apoptosis process or CDKN1A (cyclin-

dependent kinase inhibitor 1A (p21, Cip1)) that control cell cycle

arrest are well studied [9,10]. However, the detailed kinetics of

only a subset of these interactions is known [11].

For this reason, we hypothesized that our understanding of p53

function can be enhanced by the systematic integration of such

qualitative knowledge into a large-scale, consistent logical model.

Unlike kinetic models, logical models do not use kinetic equations

representing the detailed dynamic mechanism of each individual

interaction, but unlike qualitative networks, they do incorporate

information about the effects of interactions. This information is

generally represented in the form of Boolean logic: each node

(gene/protein) in the logical model can have two determined

states, 0 or 1, representing an inactive or active form respectively;

each interaction can have two determined effects, activation or

inhibition of the target node. The advantages of logical models are

that simulations are fast even for large models, they allow an

extensive exploration of the space of node states with the

identification of steady states or cycling attractors, and they

provide an approximation of the actual nonlinear dynamics of the

whole system. For example, Schlatter’s group constructed a

Boolean network based on literature searches and described the

behaviour of both intrinsic and extrinsic apoptosis pathways in

response to diverse stimuli. Their model revealed the importance

of crosstalk and feedback loops in controlling apoptotic pathways

[12]. Rodrı́guez et al. constructed a large Boolean network for the

FA/BRCA (Fanconi Anemia/Breast Cancer) pathway and simu-

lated the repair of DNA ICLs (interstrand cross-links). This model

revealed the relationship between the activated DNA repair

pathway and defects in the FA/BRCA pathway [13].

In this article, we present a logical model of the p53 system that

integrates 203 genes/proteins, DNA damage input, apoptosis and

cellular senescence outputs, connected by 738 logical interactions

compiled from existing databases and the scientific literature. The

model, hereafter named PKT206 (PKT standing for p53 model

constructed by Kun Tian, and the number indicating the

population of protein or gene nodes included in the model) can

be used to predict effects of DNA damage pathways onto cellular

fate. We present a functional analysis of this model and investigate

the effects of knockouts using the CellNetAnalyzer software [14].

Several predictions produced by the model were validated from

external literature and new experimental data, adding new

contributions to our knowledge of the p53 system. The model’s

performance was tested using microarray analysis and we show

that the ratio of good predictions substantially exceeds that of

random predictions, ranging between 52% and 71%. It is found

that the PKT206 model is a promising predictive tool that can

increase our understanding of the complex mechanisms of p53

pathways and provides a novel approach to personalized cancer

therapy.

Results

Model construction
In order to organize knowledge of the p53 interactome into a

coherent framework, a logical model of the p53 system was

constructed (Figure 1, Table S1 in File S1). In this model, nodes

represent genes or associated proteins that interact with p53, and

edges represent the interactions between them. Two types of

interacting processes are considered: activating or inhibiting. In an

activating interaction, the result is an induction of activity of target

node(s), and in an inhibitory interaction, the result is a repression

of activity of target node(s) [14]. For example, the induction of p53

stimulates the expression of MDM2 (Mdm2, p53 E3 ubiquitin

protein ligase homolog (mouse)) [15], which is represented by an

activating interaction from p53 to MDM2. At the same time,

MDM2 activation leads to the down-regulation of p53, which is

represented by an inhibiting interaction from MDM2 to p53 [16].

Although there are numerous databases recording genetic and

protein-protein interactions, few record the effect the interaction

has on the target node. A notable exception is the STRING

(Search Tool for the Retrieval of Interacting Genes/Proteins)

database [17], which distinguishes between different modes of

action, including activation, inhibition and binding. Interaction

records of the human p53 interactome were first retrieved

Figure 1. Flow chart of PKT206 logical model construction and analysis. Java interface programs were created to extract p53 interactions
from the STRING database. We then manually curated the data and used Gene Ontology annotations to connect the network to DNA damage input
and apoptosis output. CellNetAnalyzer was used for analysis and simulations, and the results were validated using literature surveys and experimental
approaches including western blotting and microarray analysis.
doi:10.1371/journal.pone.0072303.g001
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automatically from the STRING database (see Material and

Methods). The interactions were filtered by retaining only high

confidence scores as defined by STRING (more than 0.7).

However, because of the limitations of current text mining

methods in identifying modes of action, even the group of high-

confidence interactions was found to contain some errors. To

avoid incorrect data being included into the model, all interaction

records were thus manually curated by surveying the associated

literature and searching for additional evidence. Examples of the

types of errors found and details of interactions that were corrected

following the manual curation process are provided in Table 2 and

Figures S1–S4 in File S1.

A recurrent question in the construction of in silico models is to

define the boundaries of the system. In order to obtain a complete

coverage of the p53 interactome, yet keep the size of the system

within acceptable limits for simulation, we included all high-

confidence interactions with genes/proteins interacting directly

with p53, and added all interactions between these genes/proteins

that do not involve p53 directly. This process ensured that

regulatory feedback loops were included in the model. In a few

cases, different proteins were combined into a single node

reflecting the fact that earlier literature did not distinguish between

them: this was the case for HRAS (v-Ha-ras, Harvey rat sarcoma

viral oncogene homolog), KRAS (v-Ki-ras2, Kirsten rat sarcoma

viral oncogene homolog), NRAS (neuroblastoma RAS viral (v-ras)

oncogene homolog) and RASD1 (RAS, dexamethasone-induced

1), represented as a single node RAS; CCNA1 (cyclin A1) and

CCNA2 (cyclin A2) represented as CCNA; CSNK2A1 (casein

kinase 2, alpha 1 polypeptide) and CSNK2A2 (casein kinase 2,

alpha prime polypeptide) represented as CSNK2.

Cells respond to numerous stress stimuli including ionizing and

UV (ultraviolet) radiation, oncogene activation, heat shock,

hypoxia, etc [18]. The DNA damage response mediated by p53

is well studied and most clinically relevant as the majority of

cancer treatment strategies involve DNA damage pathways.

Therefore, DNA damage was added as an input signal by

connecting the network to a single input node representing DNA

damage. Similarly, apoptosis and cellular senescence were selected

as the best studied and most clinically relevant outputs among

numerous other possibilities including cell cycle arrest, DNA

repair and angiogenesis. Thus, the network was connected to two

output nodes representing apoptosis and senescence. Links from

Figure 2. The PKT206 model. The PKT206 model represented by Cytoscape includes 203 gene/protein nodes, an input node (DNA damage), two
output nodes (apoptosis and cellular senescence) and 738 edges. Activation and inhibition connections are represented by blue and red arrows,
respectively. The input node was marked by green; the nodes upstream of p53 were marked by yellow; p53 and MDM2 were marked by red, the
nodes downstream of p53 were marked by light blue and the output nodes were marked by orange.
doi:10.1371/journal.pone.0072303.g002
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DNA damage and towards apoptosis and senescence were curated

using Gene Ontology terms (Tables S3–S5 in File S1) as well as

additional manual curation. The resulting model, named

PKT206, comprised 203 gene/protein nodes, an input node

(DNA damage), two output nodes (apoptosis and senescence) and

738 interactions. Complete lists of genes/proteins and interactions

with references to literature based evidence are provided in

Tables S1 and S3–S5 in File S1.

Structure of the p53 logical model
The p53 node is connected to 202 genes or proteins in the

network and participates in 225 interactions (Figure 2). Five layers

can be distinguished in the network according to the relationship

of nodes to p53: the input signal, DNA damage; upstream nodes of

p53; p53 itself and MDM2; downstream nodes of p53; and the

outputs, apoptosis and senescence. It was found that 67 nodes

functioned as upstream nodes of p53. For example, ATM

functions as a DNA damage inducible node upstream of p53

[19]; it activates p53 directly as well as through CHEK2

(checkpoint kinase 2) up-regulation [20–22]. 146 nodes functioned

as p53 target genes, including well studied pro apoptotic genes

such as BAX [9] and CDKN1A that controls cell cycle arrest [23].

11 genes functioned both as upstream and downstream nodes of

p53 and were involved in two step feedback loops.

We calculated the connectivity degree of the 206 nodes in the

network (Figure 3). The connectivity degree of a gene indicates the

number of interactions for this gene. The most connected gene

was p53, which participated in 225 interactions in the PKT206

model. There were 30 genes with connectivity degree between 10

and 100 and the remaining genes were involved in less than 10

interactions.

The network contains 30 two-step feedback loops in total, with

14 involving p53. Some of them play a significant role in p53

regulation; for example, the feedback loops involving p53, MDM2

and MDM4 (Mdm4 p53 binding protein homolog (mouse)), which

include five interactions: p53 activates MDM2; MDM2 inhibits

p53; MDM2 inhibits MDM4; MDM4 activates MDM2 and

MDM4 inhibits MDM2 [24]. Feedback loops play a crucial role in

p53 regulation and are thought to increase the robustness of the

system in response to perturbations [25].

P53 has been implicated in numerous cellular responses to stress

including IR (ionizing radiation), UV, oncogene activation, and

hypoxia. For this model to be able to predict cellular fate in

response to stress, we linked 20 nodes to the input signal DNA

damage (Table S3 in File S1). Most of the links from DNA

damage are activations and only 3 are inhibitions (DNA damage

inhibits PTTG1 (pituitary tumour-transforming 1), MYC (v-myc,

myelocytomatosis viral oncogene homolog (avian)) and AURKA

(aurora kinase A). Similarly, p53 controls numerous cellular

responses to stress such as cell cycle arrest, DNA damage repair,

senescence and apoptosis. We found 95 links between downstream

gene nodes and apoptosis and 77 nodes interact with the apoptosis

node. Among them, 18 nodes both promoted and prevented

apoptosis, 38 nodes only induced apoptosis and 21 nodes only had

anti-apoptotic function. We found 52 genes connected to

senescence by 61 links, among which 28 promote and 33 prevent

senescence.

Analysis of dependencies in the p53 model
Logical dependencies between genes/proteins are represented

by the dependency matrix [14], which represents the effects

between all pairs of nodes in the model. Six types of effects are

defined by CellNetAnalyzer based on the existence (or not) of

positive and negative paths between two nodes: no effect,

ambivalent factor, weak inhibitor, weak activator, strong inhibitor,

and strong activator (see Methods for details). There are 42,436

(2066206) elements in the dependency matrix, of which 23,468

correspond to interactions having no effect; 16,540 are ambivalent

factors; 1100 are weak inhibitors; 1240 are weak activators; 33 are

strong inhibitors and 55 are strong activators (Table S6 in File S1).

The majority of dependency matrix elements are no effect or

ambivalent factors. The large number of ambivalent factors is due

Figure 3. Connectivity degree distribution of 206 nodes. The degree distribution of 206 nodes in the model was obtained by the
NetworkAnalyzer plugin for Cytoscape; both axes in the figure are in logarithmic scale.
doi:10.1371/journal.pone.0072303.g003
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to the complexity of regulatory effects between nodes, which are

affected by both positive and negative feedback loops and

pathways. For example, there are both positive and negative

paths from ATM to CHEK2: the positive path is a direct

activation of CHEK2 by ATM, while the negative path is an

indirect inhibition, as ATM activates p53, p53 inhibits MYC,

MYC activates E2F1 (E2F transcription factor 1), and E2F1

activates CHEK2. As a result, the interaction between these two

nodes is determined by opposing activating and inhibiting effects,

resulting in it being classified as ambivalent (Figure S5 in File S1).

In silico simulation of mutation effects
In order to evaluate the capacity of the PKT206 model to

predict perturbation effects, we performed in silico knock-out tests,

in which a particular node was removed from the network thus

mimicking in vivo mutation effects. As 85% of genes or proteins in

the PKT206 model were poorly connected, p53 and those 30

genes with more than 10 interactions were selected to perform in

silico knock-out tests. For instance, we simulated a p53 knock-out

by removing the p53 node from the network and analyzed the

effects of this perturbation. By comparing the dependency matrix

after the p53 node was removed with the wild-type case, changes

in matrix elements revealed how relationships between nodes were

affected by the deletion. 11,785 out of the 42,025 (2056205)

elements in the matrix changed as a result of p53 removal

(Figure 4A). Major changes are listed in Table S7 in File S1. The

most significant changes were from ambivalent factors to

activators or inhibitors, reflecting the fact that p53 plays a major

role in modulating the system’s effects. 11 out of 31 in silico knock-

out tests had major changes in the new dependency matrix when a

certain node was removed (Table S6 in File S1). 63 potential

predictions of major changes in dependency cells were obtained

from those 11 in silico knock-out tests (Table 1). There were no

major effect changes found in the other 20 in silico knock-out tests.

We confirmed 4 out of these 63 predictions through literature

searches, focusing on major changes caused by the p53 deletion

which were expected to have stronger experimental effects. For

example, the effect of DNA damage onto FAS (Fas (TNF receptor

superfamily, member 6)) changed from an ambivalent factor in the

p53 wild-type model to a strong activator when p53 was removed.

The effect of DNA damage onto FAS was classified as ambivalent

in the wild-type cells because there are potential negative paths

from DNA damage to FAS through MYC and PTTG1, in

addition to a direct positive path from DNA damage to FAS.

When p53 is deleted, only the positive path subsists. Manna et al.

have determined that in p53 minus cells, Fas protein levels are

elevated under DNA damage compared to p53 wild-type cells,

which is in agreement with our prediction [26]. Similarly to FAS,

the effect of LATS2 (LATS, large tumour suppressor, homolog 2

(Drosophila)) onto apoptosis was changed from an ambivalent

factor in the p53 wild-type model to a strong activator when p53

was removed. It was found that in both p53 wild-type (A549) and

p53 minus cells (H1299), LATS2 was able to induce apoptosis and

that apoptosis is slightly increased in H1299 as measured by PARP

and caspase 9 cleavage [27]. We observed that the effect of DNA

damage onto CHEK1 (checkpoint kinase 1) changed from an

ambivalent factor in the p53 wild-type to a strong activator when

p53 was removed. CHEK1 protein levels were found to be higher

in p53 2/2 cells than in p53 +/+ HCT116 colorectal cancer cells

treated by daunorubicin [28], which also matches our predictions

(Table 1). It was reported that KLF4 (Kruppel-like factor 4(gut))

caused more reduction of CCNB1 (cyclin B1) expression in p53

2/2 HCT116 than in p53 +/+ HCT116 cells [29] and it

matched our model prediction. However, one prediction out of

those 63 predictions was found opposite to the literature evidence.

The prediction pointed out that IFNA1 (interferon, alpha 1)

enhanced TLR3 (toll-like receptor 3) in p53 mutant cells

compared to p53 wild type cells. But this was opposite to the

fact reported by Taura et al. that IFNA1 exposed to the DNA

damaging drug 5-fluoro-uracil(5-FU) reduced the expression of

TLR3 in p53 2/2 HCT116 cell compared to p53 +/+ HCT116

cells [30].

Figure 4. Validation of the PKT206 model. (A) Distribution of changes in the dependency matrix of the p53 in silico knock-out compared to the
wild-type. The gray cycle represents no effect elements, the orange circle represents ambivalent factors, the light green circle represents weak
activators, the pink circle represent weak inhibitors, the dark red circle represents strong inhibitors, and the dark green circle represents strong
activators; the direction of the arrow represents the direction of changes in the knock-out. (B) Chk1 (CHEK1) activation is increased in p53 negative
background. U2OS cells that have functional p53 and SAOS2 cells that lack functional p53 were treated with 10 mM etoposide for 16 hours. Cell
extracts were analyzed by SDS PAGE and western blot analysis using antibodies against total Chk1, ATR and ATM. ATM and ATR phosphorylated Chk1
at Ser 345.
doi:10.1371/journal.pone.0072303.g004
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Table 1. Validations of model predictions in the in silico knock-out tests.

Gene deleted Activated node
Reported effects
from literature References Predictions Verified status

p53 DNA damage Expression level of Fas enhanced [26] DNA damage promoted
upregulation of FAS

Verified by literature

p53 LATS2 Cell death enhanced [27] LATS2 induced apoptosis Verified by literature

p53 DNA damage Expression level of
CHEK1 enhanced

[28] DNA damage promoted
upregulation of CHEK1

Verified by literature

P53 KLF4 CCNB1 reduced [29] KLF4 reduced expression
of CCNB1

Verified by literature

P53 ATM ATM enhanced CHEK1 Verified in this publication

P53 ATR ATR enhanced CHEK1 Verified in this publication

P53 MAPK14 Stimulation of BAX [59] BAX enhanced Consistent with prediction

VEGFA SERPINB5 Apoptosis enhanced in
the presence of MMP3 and MMP9
inhibition

[60] Apoptosis enhanced Consistent with prediction

MDM2 ATM DYRK2 induced in the presence
and absence of DNA damage

[61] DYRK2 enhanced Consistent with prediction

MDM2 ATR DYRK2 induced in the presence and
absence of DNA damage

[61] DYRK2 enhanced Consistent with prediction

CDK2 CDKN1A Apoptosis decreased but not
confirmed directly

[62,63] Apoptosis reduced Consistent with prediction

CDK2 CDKN1A CDK2 regulates senescence
suppression by MYC

[55] Cellular senescence increased Consistent with prediction

P53 SGK Cellular senescence decreased PNP

P53 MAPK14 Cellular senescence decreased PNP

P53 LATS2 Cellular senescence decreased PNP

VEGFA FOXM1 Cellular senescence decreased PNP

P53 IFNA1 CDK4 reduced PNP

P53 IFNA1 FGF2 reduced PNP

P53 PPM1D CHEK1 reduced PNP

P53 SFN CCNB1 reduced PNP

P53 DNA damage CDK4 reduced PNP

P53 DNA damage FGF2 reduced PNP

P53 FGF2 CDK4 enhanced PNP

P53 FOXM1 CCNB1 enhanced PNP

P53 FAS Apoptosis enhanced PNP

P53 PTTG1 CDK4 enhanced PNP

P53 PTTG1 FGF2 enhanced PNP

P53 IFNA1 FAS enhanced PNP

P53 DYRK2 P53AIP1 enhanced PNP

P53 DYRK2 Apoptosis enhanced PNP

P53 MAPK14 MMP2 enhanced PNP

P53 MAPK14 SGK enhanced PNP

MYC TCF7L2 Apoptosis reduced PNP

VEGFA TLR3 CXCR4 reduced PNP

VEGFA TLR3 TNFRSF10B reduced PNP

VEGFA CXCR4 TNFRSF10B enhanced PNP

VEGFA CXCR4 Apoptosis enhanced PNP

VEGFA FOXM1 MMP2 enhanced PNP

VEGFA FOXM1 BAX enhanced PNP

VEGFA FOXM1 CCNB1 enhanced PNP

VEGFA FOXM1 Apoptosis enhanced PNP

CCND1 PDGFRB Apoptosis reduced PNP

DNA Damage Pathways to Cancer
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In addition to literature based validation, we obtained in vitro

based experimental evidence to support novel predictions of the

model. The model predicted that in the absence of functional p53,

the effects of ATM and ATR (ataxia telangiectasia and Rad3

related) onto CHEK1 would both change from ambivalent factors

to strong activators. A western blot analysis of U2OS human

osteosarcoma cells that have wild-type p53, and of SAOS2 cells

that have mutant non-functional p53, demonstrated that CHEK1

is activated to a higher extent in the p53 mutant background than

in the p53 wild-type background (Figure 4B) validating this

prediction. Furthermore, higher levels and potential activation of

ATM and ATR kinases was observed in p53 minus cells than in

p53 positive cells. According to the model, there are both positive

and negative paths between ATM, ATR, CHEK1, and p53 in the

wild type cells, and therefore in p53 mutant cells this balance is

disturbed (Figure 5). This confirms the predictive capability of our

modelling approach and has consequences for treatment of p53

negative tumours.

Logical steady state analysis
The p53 protein is known to maintain genomic stability and the

absence of p53 leads to cellular proliferation in response to DNA

damage [31]. The absence of genetic stability triggers the

accumulation of mutations in normal cells and causes cancer

[32]. In order to investigate how such loss of stability could be

captured by our model, we carried out a comparative logical

steady state analysis in the p53 wild-type model and in silico p53

knock-out.

In a logical steady state (LSS), the state of each node remains the

same over time [33]. Each node can have three different states:

inactivated (‘‘0’’), activated (‘‘1’’) or undetermined (‘‘NaN’’). We

investigated four scenarios for logical steady state analysis: (1)

DNA damage is activated in p53 wild-type background; (2) DNA

damage is not activated in p53 wild-type background; (3) DNA

damage is activated in p53 knock-out background; (4) DNA

damage is not activated in p53 knock-out background (Figure 6,

Table 2 and Table S8 in File S1). The comparison of logical

steady states in different scenarios revealed that a large number of

node states did not change with the change of input signal. This

result is explained by the large number of ambivalent effects

between nodes and feedback loops in the network, which make the

Figure 5. Positive and negative pathways from ATM/ATR to
CHEK1. (A) Positive and negative pathways from ATM/ATR to CHEK1 in
p53 wild type cells as known from literature survey; (B) Positive and
negative pathways from ATM/ATR to CHEK1 in p53 minus cells. ARF is
cyclin-dependent kinase inhibitor 2A. PPM1D is protein phosphatase
1D. pRB is retinoblastoma 1.
doi:10.1371/journal.pone.0072303.g005

Table 1. Cont.

Gene deleted Activated node
Reported effects
from literature References Predictions Verified status

TGFB1 DKK1 Apoptosis reduced PNP

TGFB1 DNA damage MAPK8 enhanced PNP

E2F1 AATF CDK5 enhanced PNP

E2F1 CHEK2 AATF enhanced PNP

E2F1 CHEK2 CDK5 enhanced PNP

E2F1 CSNK2 MYCN enhanced PNP

E2F1 ATM AATF enhanced PNP

E2F1 ATM CHEK2 enhanced PNP

E2F1 ATM CDK5 enhanced PNP

E2F1 ATR AATF enhanced PNP

E2F1 ATR CDK5 enhanced PNP

E2F1 DNA damage AATF enhanced PNP

E2F1 DNA damage CHEK2 enhanced PNP

E2F1 DNA damage CDK5 enhanced PNP

EGFR BCL3 Apoptosis reduced PNP

HIF1A GAPDH SIAH1 enhanced PNP

HIF1A GAPDH Apoptosis enhanced PNP

HIF1A SIAH1 Apoptosis enhanced PNP

CXCR4 TLR3 Apoptosis enhanced PNP

P53 IFNA1 TLR3 reduced [30] TLR3 enhanced Opposite to prediction

This table lists 63 predictions in the selected gene deletion background. Some predictions were verified by existing literature survey or experimental approaches.
Potential novel predictions (PNP) indicate that we were unable to identify literature based evidence relevant to the prediction.
doi:10.1371/journal.pone.0072303.t001
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model robust to input signal perturbations. The proportion of

determined states was 181 out of 206 nodes (87.9%) in scenario (1),

182 out of 206 nodes (88.3%) in scenario (2), 94 out of 205 nodes

(45.9%) in scenario (3) and 95 out of 205 nodes (46.3%) in scenario

(4) (Table 2). These numbers show that almost half of the nodes

whose state is determined in the wild-type, become undetermined

in the in silico p53 knock-out.

Comparing the state of 202 genes which interact with p53 in

p53 wild type cells in the presence of DNA damage and those in

p53 mutant cells in the presence of DNA damage, we found that

only 29 genes were up-regulated, 113 genes did not change and 60

genes were down regulated (Table 3). The change of FEN1 (flap

structure-specific endonuclease 1) state was moreover experimen-

tally verified by Christmann et al, through finding that FEN1 was

repressed in p53 null cells under DNA damage [34]. TLR3 was

found to be down-regulated in p53 mutant cells under DNA

damage [35].

Comparing the state of these 202 genes in p53 wild type cells in

the absence of DNA damage and those in p53 mutant cells in the

absence of DNA damage (Table 3), we found that 30 genes were

up-regulated, 112 genes remained the same and 60 genes were

down-regulated in p53 wild type cells in the absence of DNA

damage. The change of 6 nodes were verified by O’Prey et al.

[36]. 4 nodes were demonstrated as correct predictions: the

expression levels of FAS (TNF receptor superfamily, member 6),

TNFRSF10B (tumour necrosis factor receptor superfamily,

member 10b), PERP (PERP, TP53 apoptosis effector) and

Figure 6. Logical steady state analysis of in silico p53 knock-out test. The nodes with state ‘‘1’’ were represented in green, the nodes with
state ’’NaN’’ (un determined) were represented in orange, and the nodes with state ‘‘0’’ were represented in red. (A) P53 wild type when DNA damage
was ’’ON’’; (B) P53 wild type when DNA damage was ’’OFF’’; (C) P53 mutant when DNA damage was ’’ON’’; (D) P53 mutant when DNA damage was
’’OFF’’.
doi:10.1371/journal.pone.0072303.g006

Table 2. List of scenarios for the logical steady state analysis.

Scenario name Input signal Model type

Percentage of
determined
nodes

Scenario 1 DNA damage ON P53 wild-type 87.9%

Scenario 2 DNA damage OFF P53 wild-type 88.3%

Scenario 3 DNA damage ON P53 knock-out 45.9%

Scenario 4 DNA damage OFF P53 knock-out 46.3%

Four scenarios of logical steady state analysis with different input signals are
defined with their input signal, model type and percentage of nodes having a
determined state.
doi:10.1371/journal.pone.0072303.t002
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p53AIP1 (tumour protein p53 regulated apoptosis inducing

protein 1), were down-regulated from p53 wild type cells without

DNA damage to p53 mutant cells without DNA damage, whereas

the other 2 nodes MDM2 and CDKN1A were predicted as

unchanged by model simulation. However, O’Prey et al. observed

their down-regulation from p53 wild type cells without DNA

damage to p53 mutant cells without DNA damage [36].

According to the criteria defined in the methods section, four

predictions were correct and the other two were small error

predictions.

Comparing the state of these 202 nodes in p53 wild type cells in

the presence of DNA damage and those nodes in p53 wild type

cells in the absence of DNA damage (Table 3), we found that only

5 genes were up-regulated, 185 genes were not changed and 12

genes were down-regulated in p53 wild type cell induced by DNA

damage.

Comparing the state of these 202 nodes in p53 mutant cells in

the presence of DNA damage and those nodes in p53 mutant cells

in the absence of DNA damage (Table 3), we found that 7 genes

were up-regulated, 181 genes remained the same and 14 genes

were down-regulated in p53 mutant cells induced by DNA

damage. Together these above results reflect the fact that p53

helps to stabilize the system.

The changes in the state of anti-apoptotic and anti-senescence

genes are shown in Table S9 in File S1 and those of pro-apoptotic

and pro-senescence genes are listed in Table S10 in File S1. This

distribution illustrates the reason why the apoptosis output was

also activated in p53 mutant cells. The majority of those 56 pro-

apoptotic genes and 39 anti-apoptotic genes were not changed in

the same type of cells treated by DNA damage. The absence of

p53 caused obvious changes of both pro-apoptotic and anti-

apoptotic genes once the cells were treated with DNA damage.

The number of pro-apoptotic and anti-apoptotic genes which were

up-regulated or down-regulated increased with the depletion of

p53. Among those 56 pro-apoptotic genes, FAS and p53AIP1

were up-regulated in p53 mutant cells when treated by DNA

damage. FGF2 (fibroblast growth factor 2(basic)) had both pro-

apoptotic and anti-apoptotic function in the PKT206 model and it

was down-regulated in p53 wild type cells or p53 mutant cells in

the presence of DNA damage. Notably, IGF1R (insulin-like

growth factor 1 receptor) and PDGFRB (platelet-derived growth

factor receptor, beta polypeptide) were upregulated in p53 minus

scenarios, which together with FGF2 changes highlighted growth

factor mediated signalling pathways as important factor contrib-

uting to survival of these tumours. Approaches that will decrease

expression of antiapoptotic genes and increase expression of

proapoptotic genes would improve cancer therapy and therefore

these genes represent potential therapeutic targets. Two anti-

senescence genes were upregulated in the absence of p53, in the

presence or absence of DNA damage (CDK4 and FGF2). If DNA

damage was applied to either wild type or p53 minus cells, seven

anti-senescence genes were increased (Table S9 in File S1). Only

three pro-senescence genes increased when DNA damage was

applied to wild type or p53 minus cells, and 12 pro-senescence

genes decreased in the same conditions (Table S10 in File S1).

Genome-wide experimental validation
In order to evaluate the predictive capability of our logical

model on a genome-wide level, predictions of logical steady state

analysis in the in silico p53 knock-out were compared with gene

expression profiles from microarray analysis. The simulation

results of our model were compared with microarray data from 4

different cell types. For this purpose U2OS human osteosarcoma

cells that are p53 wild-type and SAOS2 cells that lack functional

p53 were treated with the clinically used drug etoposide that

causes DNA damage and activates p53. Moreover, we utilized

microarray experimental data sets obtained from HCT116 cell

lines that have wild type and mutant p53 not treated by DNA

damage from GSE10795 [37].

In order to compare both sets of values and evaluate the

performance of our model, we used the approach presented by

Christensen et al [38]. The predicted change of gene state between

p53 wild-type and in silico knockout was quantified by a variable

Emod which could take one of three values: 21, 0 or 1 (see

Materials and Methods for details). The experimentally observed

change of gene state was represented by a variable Eexp which

could take the same three values. For both Emod and Eexp, a value of

21 meant significantly decreased expression, 0 meant no

significant change, and 1 meant significantly increased expression.

Using the results of logical steady state analysis, we calculated

the value Emod of those 3 types of different cell lines. We extracted

relevant genes in the microarray data whose gene names matched

those in our logical model. A threshold h was considered to

determine whether a gene was significantly up-regulated, down-

regulated or unchanged. In a similar way, we calculated the value

Eexp of each gene and listed the number of genes with different

changes in Table S11 in File S1.

We then defined the difference between model predictions and

experimental results as |Emod – Eexp|. This difference can take

three possible values: 0, 1 or 2. Here, a value of 0 meant that the

simulation prediction matched the experimental result; 1 meant

that there was a small error between the prediction and the

experimental result; 2 meant that there was a large error between

the prediction and the experimental result. The distribution of

Table 3. Distribution of gene state alterations caused by p53 removal and DNA damage from in silico logical steady state analysis.

Source
scenario

Target
scenario

Number of
up-regulated genes

Number of
unchanged genes

Number of
down-regulated genes

P53 wild type with
DNA damage

P53 mutant with
DNA damage

29(14%) 113(56%) 60(30%)

P53 wild type without
DNA damage

P53 mutant with
DNA damage

30(15%) 112(55%) 60(30%)

P53 wild type with
DNA damage

P53 wild type without
DNA damage

5(2%) 185(92%) 12(6%)

P53 mutant with
DNA damage

P53 mutant without
DNA damage

7(3%) 181(90%) 14(7%)

The distribution of 202 p53-interacting genes with different changes between four scenarios was calculated using logical steady state analysis.
doi:10.1371/journal.pone.0072303.t003
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values was calculated and listed in Table 4. Comparing the

changes of gene states between different scenarios with experi-

mental microarray data, 5 scenarios were analyzed. The correct

prediction rate ranged from 52% to 71% depending on the cell

type, with highly significant p-values compared to random

predictions. The percentage of small error predictions ranged

from 28% to 42%, and large error predictions were obtained for

less than 6% of the genes depending on the cell type. Remarkably,

growth factors and receptors FGF2 and IGF1R were identified as

common, and PDGFR and TGFA as specific factors contributing

to U2OS human osteosarcoma and HCT116 colon cancer cells

growth, respectively (Table S11 in File S1). For example, IGF1R

is an anti-apoptotic gene upregulated in SAOS2 cells when

compared to U2OS cells, whereas FGF2 that can be both pro and

antiapoptotic gene is upregulated in SAOS2 cells. In HCT116

cells, with the mutant p53 similarly to SAOS2, there is

upregulation of antiapoptotic IGF1R, but PDGFRB and TGFA

(transforming growth factor, alpha) are also upregulated, and

FGF2 does not change in these cells (Table S11 in File S1),

indicating that both general (IGF1R) and cell type specific

(PDGFRB and TGFA) pathways were uncovered by the model.

Two anti-senescence genes (DDIT4 and DKK1) were upregulated

and three (RRM2B, FGF2, FHL2) were down-regulated in

SAOS2 cells in the presence of DNA damage, whereas in the

absence of DNA damage S100A6 and DKK1 were upregulated

and only FGF2 was downregulated. Interestingly, DDIT4 was

downregulated in U2OS cells exposed to DNA damage, but

upregulated in SAOS2 exposed to DNA damage. There were

more changes among pro-senescence genes, where CDKN1A

(p21) featured as a major regulator of cell senescence, amongst

growth factors and DNA repair genes (Table S11 in File S1).

Discussion

p53 acts as a tumour suppressor and plays a crucial role in

protecting cells against cancer and genetic instability caused by

DNA damage [32]. The loss of p53 function is common in many

cancer cells, highlighting its importance for medicine. Since there

are thousands of reported gene interactions with p53, we

automatically extracted all genes interacting with p53 from the

STRING database. This led to a model with more than 2000

nodes that included several layers of direct and indirect p53

interactants. This model was simplified by eliminating indirect

interactants, and further manual curation resulted in the

generation of the present PKT206 model. The distinction between

direct and indirect interactions is important for this type of model.

Databases such as STRING contain both direct (physical) and

indirect (functional) interactions, which is why manual curation

was essential. It is worth noting that the meaning of ‘‘direct’’ in this

context can be broader than a direct physical contact between

proteins; for example a transcription factor binding to a promoter

and inducing the transcription of another gene can be treated as a

direct activation, since the processes of transcription/translation

are not explicitly represented in the logical model. Finally, the

effect of environmental signals such as DNA damage and the

outputs, apoptosis and senescence, were added.

The use of Boolean networks in cancer research has been

reported in a few other studies. For example, Ghaffari et al.

designed a Boolean model of gastrointestinal cancer comprising 17

genes [39]. Chaves et al. constructed a Boolean network with 20

nodes to investigate the dynamics role of the NF-kB (nuclear factor

kappa-light-chain-enhancer of activated B cells) pathway in

controlling apoptosis [40]. Calzolari et al. designed a Boolean

network with 47 genes that regulate apoptosis and investigated the

relationship between genes and selective control of cell populations

[41]. Zhang et al. constructed a Boolean network for T cell large

granular lymphocyte (T-LGL) survival [42], which consisted of 58

nodes and 123 edges and provided an insight into the long-term

survival of cytotoxic T lymphocyte (CTL) in T-LGL leukaemia.

Mai et al. constructed a Boolean network including 40 nodes

involved in apoptotic pathways and demonstrated that apoptosis is

an irreversible process [43]. Ge and Qian constructed Boolean

Table 4. Model evaluation by logical steady state and microarray analysis.

Experiment source
scenario

Experiment
target scenario

Model LSSA
simulation

Total
number
of genes

Number of true
predictions

p-value of true
predictions

Number
of small error
predictions

Number of
large error
predictions

U2OS cells under
DNA damage

SAOS2 cells under
DNA damage

P53 wt with DNA
damage ON vs p53 null
with DNA damage ON

200 109(54.5%) 2.6610210 80(40%) 11(5.5%)

U2OS cells without
DNA damage

SAOS2 cells without
DNA damage

P53 wt with DNA
damage OFF vs p53
null with DNA
damage OFF

200 111(55.5%) 4.1610211 77(38.5%) 12(6%)

U2OS cells without
DNA damage

U2OS cells under
DNA damage

P53 wt with DNA
damage ON vs p53
wtwith DNA
damage OFF

200 142(71%) ,,10215 56(28%) 2(1%)

SAOS2 cells without
DNA damage

SAOS2 cells under
DNA damage

P53 null with DNA
damage ON vs p53
null with DNA
damage OFF

200 131(65.5%) ,,10215 65(32.5%) 4(2%)

HCT116 cells p53+/+
without DNA
damage

HCT116 cells
p532/2without
DNA damage

P53 null with DNA
damage OFF vs
p53 wt with
DNA damage OFF

169 88(52.1%) 1.861027 72(42.6%) 9(5.3%)

The changes of gene expression in experimental microarray data were compared with model simulation results. The number of true predictions, small errors, large
errors and their percentage were calculated and listed.
doi:10.1371/journal.pone.0072303.t004
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networks to investigate the dynamics of negative feedback loops of

p53 pathways. They focused on the p53-MDM2 feedback loop

and the cyclin G-MDM2 feedback loop [44]. They compared the

stochastic Boolean dynamics using a Markov chain model with the

synchronized deterministic Boolean dynamics and showed that the

deterministic model was able to predict the dominant process in

the system. Oscillations and stationary states in these feedback

loops were found to be robust to noise. This report focused on two

small-scale feedback loops, but these models were not integrated

with other p53-interacting proteins or incoming biological signals.

The majority of above described models only cover parts of

apoptotic pathways and p53 feedback loops, whereas our model

has more extensive coverage of p53 pathways and includes the

most complete p53 interactome to date. In addition, we provide

evidence of its potential use in individualized cancer therapy

through assessment of apoptotic potential of chemotherapy in

osteosarcoma and colon cancer. Other authors reported pathways

that interact with p53 at the cellular level. A p53-like protein in

Drosophila melanogaster (Dmp53) was utilized by Lunardi et al. to

identify potential interactors which may link to p53 family

members in human [45]. cDNAs were screened from the

Drosophila Gene Collection (DGC), among which 91 that were

not previously reported were found to interact with Dmp53 by a

genome-scale in vitro expression cloning approach. 41 mammalian

orthologs were tested, 37 were found to interact with p53 family

members and 24 interacted with p53 directly. However, further

validation of these targets only confirmed five relevant interac-

tions. The GTPBP4 protein was found to regulate p53 negatively

and the accumulation of GTPBP4 correlated with reduced breast

cancer patients survival. Results of this study revealed new

interactions with p53 family members and important differences

between Dmp53 and human p53 interactors.

The interactome of p53 and its family member p63 in cisplatin

chemoresistant cells was investigated by Huang et al. by protein

array chip analysis [46]. They found that p53 and one isoform of

p63, DNp63a, were involved in various protein-protein interac-

tions in tumour cells upon cisplatin exposure: p53 was found to

bind 383 proteins and p63 was involved in interactions with 301

proteins. Candidate interactors which bound to p53 and p63 were

also assessed by iTRAQ in squamous cell carcinoma (SCC) cells:

444 proteins were found to bind to p53 and 310 to DNp63a.

Those proteins were classified into p53 specific, DNp63aspecific,

and p53/DNp63a common groups and clustered by Gene

Ontology annotations. Phosphorylated and non-phosphorylated

DNp63a were found to interact with different target proteins and

have differential functions in RNA splicing and cell death upon

cisplatin exposure. Numerous proteins involved in cell cycle arrest,

apoptosis and autophagy were identified in the p53 and p63

interactome in tumour cells exposed to cisplatin treatment.

Comparing specific p53 interactors with our PKT206 model, 21

proteins were found in our model, whereas 25 proteins were found

in the group of common p53/p63 interacting proteins. Those

proteins may be considered for incorporation into our PKT206

model in the future; nevertheless, evidence of binding is not

sufficient in itself to justify inclusion into a logical model, since

evidence is needed that the interaction results in a measurable

effect on the activity of the target protein.

Knock-out simulations allowed us to mimic p53 mutants

potentially found in cancer and generate predictions of the effects

of DNA damage on cellular fate. The percentage of change for

genes that control apoptosis and senescence is shown in Tables S9

and S10 in File S1. These distributions illustrate the probability of

cell death and senescence as important mechanisms to be

considered for cancer treatment. For instance, in cells with mutant

p53 not treated with chemotherapy inducing DNA damage, 29

out of 58 pro-apoptotic genes were down-regulated, 22 pro-

apoptotic genes do not change and only 5 pro-apoptotic genes

were up-regulated. In addition, 38 out of 39 anti-apoptotic genes

remained the same and only FGF2 was down-regulated. This

finding illustrated that in tumour cells with p53 mutant, the

probability of apoptosis was decreased and cells survived. When

cells with the mutant p53 were treated by DNA damage, 2 pro-

apoptotic genes, FAS and p53AIP1 became up-regulated, and lead

to an increase in apoptosis probability to promote tumour cell

death.

Interactions for mutant p53-specific interacting proteins were

also explored by Coffill et al. with the use of stable isotope labelling

by amino acids in cell culture, mass spectrometry and immuno-

precipitation techniques [47]. The authors identified 15 proteins

that were bound to mutant p53 specifically but not to p53 wild

type. A specific interaction between p53R273H and NRD1

(nardilysin) was reported and validated to play an important role

in cellular invasion. Results showed that there are specific protein

interactions with mutated p53 in tumour cells that do not occur

with wild-type p53. This finding indicates that changes in the p53

interactome resulting from mutations should be incorporated into

future models to achieve better clinical predictions.

Analysis of the expression changes of genes that control

apoptosis using steady state comparisons between different

scenarios, in silico and in two different types of cancer cell types,

produced several important predictions that may have direct

therapeutic implications. First, FGF2 that can both inhibit and

activate apoptosis is the only factor altered in DNA damage

treated cells that do not have p53 status altered, indicating its

important role in p53 mediated apoptosis and highlighting its

therapeutic potential. Furthermore, this type of analysis identified

seven anti-apoptotic genes that are upregulated in the p53 mutant

scenario and potentially contribute to the proliferative and

resistant phenotype of p53 minus tumours (Table S9 in File S1).

Therefore these genes should be targeted with inhibitors to

successfully treat cancer carrying p53 mutations. On the other

hand, a large number of pro-apoptotic genes are downregulated in

p53 mutant cells according to the model, identifying them as

potential therapeutic targets for activation (Table S10 in File S1).

Further analysis of the subset of genes relevant to the model that

we found changed in microarray data identified that the loss of

p53 upregulates the IGFR1 gene in both osteosarcoma and colon

cancer cell lines. Remarkably, our data identify growth factors as

major level of control of antiapoptotic activities in p53 negative

cells irrespectively of DNA damage. IGF1R is upregulated in silico

and in both SAOS2 and HCT116 p53 minus cells. In addition,

PDGFRB, IGFR1R and TGFA are all upregulated in HCT116

p532/2 cell lines when compared to the HCT116 p53+/+ plus

cell lines. Our analysis highlighted one factor (IGF1R) that is

found upregulated in p53 negative cells in the model and at least

two different cancer cell lines, and in addition indicated that

different cell lines may have additional growth factor combinations

and dependencies, as colon cancer cells not exposed to DNA

damage had upregulated PDGFR whereas SAOS2 cell did not,

when compared to their p53 positive counterparts. This, together

with the mentioned role of FGF2 highlights the crucial role of

growth factors and their receptors as therapeutic targets in p53

negative cancer.

The DDIT4 and DKK1 anti-senescence genes were upregu-

lated in SAOS2 cells in the presence of DNA damage when

compared to p53 positive U2OS cells (Table S11 in File S1),

marking them as potential drug development targets for chemo-

therapy of p53 negative tumours. Interestingly, DDIT4 was
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downregulated in U2OS cells exposed to DNA damage, but

upregulated in SAOS2 cells exposed to DNA damage, suggesting a

crucial role of p53 in regulation of this gene and senescence

control. Comparison of colon cancer cells to osteosarcoma cells

showed differential regulation of anti-senescence genes (Table S11

in File S1), indicating a certain degree of cell specificity of

senescence control. CDKN1A (p21), which is a major regulator of

cell senescence among pro-senescence genes and was altered in

most cases in addition to growth factors and DNA repair genes,

was downregulated in both p53 negative colon cancer and

osteosarcoma cells, suggesting that this regulator may be involved

in control of senescence in multiple cell types. Several other pro-

senescence proteins are altered including CDKN2A and

CDKN1B, emphasising the control of cell cycle progression as a

major mechanism of senescence control. In addition, IL6 was also

detected as a gene with altered expression, providing a link

between senescence and inflammation.

The extent of the knock-out effect depends on the connectivity

and position of the protein in the network. For example, ATM is

upstream of p53 with a connectivity of ten, and it does not involve

feedback loops. Therefore, the knock-out of ATM resulted in few

changes in the dependency matrix. However, predictions of p53

knock-out tests identified genes which have a significant effect on

the whole p53 network. Some of them have been used as cancer

drug targets, for example, ERBB2 (v-erb-b2, erythroblastic

leukemia viral oncogene homolog 2, neuro/glioblastoma derived

oncogene homolog (avian)), and EGFR (epidermal growth factor

receptor) are targets in breast cancer treatment [48]; other affected

nodes may be potential drug target for cancer treatment.

Logical steady state analysis in the p53 knock-out indicated that

negative feedback loops are crucial for the robustness of the p53

system to external perturbations. It is worth noting that there are a

large number of possible steady states under a given input

condition: these multiple states are represented by ‘‘undeter-

mined’’ values in the logical steady state analysis, which means

that these nodes can take different values in different steady states.

The results of logical steady state analysis indicated that state

changes between different DNA damage input conditions and

different p53 status could be predicted with significantly better

precision than random. The correct prediction percentage ranged

between 52% and 71% depending on the cancer type which

substantially exceeds the expected probability of 33.3% (Table 4).

Given the qualitative nature of our model, these are very

promising values. Some negative errors are unavoidable due to

the fact that a Boolean network is an approximation of the real

system. It does not take into account continuous changes in gene

expression levels and time delays caused by feedback loops.

Nevertheless the advantage of the Boolean network approach is its

completeness, since it would be unrealistic to model the exact

dynamics of so many proteins using differential equations. The

limitations of microarray technology may affect the results as well;

for example, discrepancies between model predictions and

microarray data may be caused by the fact that only one probe

is available for CKM (creatine kinase, muscle) when the

microarray platform indicated in material and methods was used,

thus suggesting the need for a more reliable estimate of the

expression of this gene. Finally, our model uses an interaction

graph where only two genes are involved in each interaction, but

some interactions may require the action of more than two genes.

In future, these factors should be considered to refine and develop

enhanced versions of the PKT206 model that are based on

hypergraphs and are specific for p53 post translational modifica-

tion isoforms, different cell or cancer types, and other types of

input and output signals.

A technique to extend Boolean network analysis was presented

by Choi et al., who constructed a Boolean model of the p53

network comprising 16 nodes and 50 links. 160 negative and 218

positive feedback loops were included in this model [49]. The

attractor landscape of this network was analyzed in the presence or

absence of DNA damage, whereby five interactions were found to

play a critical role determining the cellular response. This model

was also analyzed using a probabilistic Boolean method and

applied to the MCF7 breast cancer cell line to identify potential

drug targets that enhance p53-mediated apoptosis. These results

indicate that the applications of logical models can be further

enhanced through the use of landscape analysis and the

incorporation of state transition probabilities. However such

approaches may be limited by sharp increases in computational

time when applied to large interactome networks.

Several important predictions were obtained from our model,

which will help us to get deeper insight into the mechanisms of p53

pathways. Our findings highlighted the possibility of using

CHEK1 modulators as a novel cancer therapy. Since there are

defects in p53 pathways of most tumour cells, the CHEK1 kinase

plays an important role to mediate cell cycle arrest in those tumour

cells that lost p53 function. It was found that tumour cells are

deficient in G1 checkpoint, and arrest in S and G2 check points to

repair DNA damage. The S and G2 checkpoint is mediated by

CDC25A (cell division cycle 25 homolog A (S. pombe)), which is a

target of CHEK1; siRNA (small interfering RNA) targeting

CHEK1 was able to prevent the degradation of CDC25A and

led to abrogation of the checkpoint [50]. Our model suggested that

upon DNA damage, ATM, ATR and CHEK1 were all up-

regulated in the absence of p53, and that CHEK1 inhibits

CDC25A. Those predictions from our model can better explain

why CHEK1 is regarded as a potential chemotherapeutics target

for cancer treatments [51]. Furthermore, these predictions indicate

that any potential treatment should take into account whether the

tumour is p53 positive or negative.

An alternative form of validation for this model could consist in

collecting random statements from the literature about indirect

effects of some genes on others, then determine what fraction of

these effects are predicted by the model. However, due to the large

number of genes, the number of possible pairings is substantial and

the probability that an effect between two random genes would

have been experimentally observed is low. We searched for

literature evidence about 100 random pairs of genes but could

only find one exploitable example, indicating that ‘‘Induction of

DUSP5 is dependent on activation of MAPK1’’ [52]. Our

prediction for this pair is that MAPK1 is an ambivalent factor

for DUSP5, which is compatible with the reported effect, but not

conclusive. To carry out this sort of assessment in a systematic way

and detect a statistically viable number of effects in the literature, a

different approach would be required using automated text

mining. Text mining tools are currently able to detect gene and

protein names in scientific articles with good precision, however

the automated detection of effects remains an unsolved problem.

The construction and validation of the PKT206 model provides

a proof of principle that better understanding of the p53 system

can be achieved through a systematic compilation of biological

knowledge into large-scale logical models. Predictions from knock-

out tests and logical steady state analysis can facilitate the future

design of new drug targets and strategies for cancer treatments.

This versatile and powerful technology could be adapted for

different drug dosage by extending the range of protein activation

values. Different models could be created for different p53

isoforms using antibodies specific for p53 isoforms in ChIP-seq

(Chromatin Immunoprecipitation sequencing) analysis and super-
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imposing data onto existing model. Furthermore, the model could

be improved by testing more predictions in vitro and expanding it

to include more interactions. For example, recent findings have

suggested that p53 interacts with microRNAs at multiple levels

[53]. The p53 protein is also involved in controlling processing

and maturation of several miR families through Drosha and p68

modulation. On the other side, numerous miRs have been shown

to modulate p53 function both positively and negatively, directly

and indirectly. This approach can be used in the future to study

other proteins and, in conjunction with individual genomic

profiling, could be applied to predict how individual patients’

pathways compare to standard ones and how they are affected

during treatment, providing a step towards personalized medicine.

Materials and Methods

Extraction of data from STRING
We selected STRING as the main source of data for model

construction. STRING is a protein-protein interaction database

which encompasses protein interactions from four sources:

genomic context, high throughput experiments, conserved co-

expression and previous knowledge by natural language processing

[54]. STRING established a confidence score scheme to measure

the quality of interaction predictions. The confidence score is a

value between 0 and 1; a confidence score of more than 0.7 is

regarded as a high confidence level. Using these criteria, we

extracted all high confidence human protein interactions using a

custom designed Java interface. All interaction records were

subsequently manually curated by surveying associated literature

references and searching for additional evidence wherever

necessary. There were 677 interactions included in the PKT206

model: (1) all direct interactions with p53, (2) all interactions

between genes/proteins that interact with p53. These interaction

records were listed in a text file, which was further processed into a

node transcript and a reaction transcript readable by CellNetA-

nalyzer. The node transcript includes gene names and the reaction

transcript includes interaction types (activation or inhibition) and

the names of the two genes participating in the interaction.

Analysis by CellNetAnalyzer
CellNetAnalyzer is a powerful analysis tool for signal flow

models. It uses logical interaction hypergraphs to represent

connections and define actions between nodes which can be of

two types, activation and inhibition [14]. When several arcs are

connected to a node, a Boolean function known as ‘‘sum of

products’’ is used to define their combined effects: when several

arcs end up in the same node i their actions are combined by a

logical OR function, and when a hyperarc connects several input

nodes to i their actions are combined by an AND function. We

used two techniques provided by CellNetAnalyzer (v. 9.8) to

analyze our model. The first technique is the calculation of the

dependency matrix, which represents the effects between all pairs

of nodes in the model. CellNetAnalyzer calculates positive and

negative paths between two nodes i and j and identifies six types of

effects in the dependency matrix: no effect, ambivalent factor,

weak inhibitor, weak activator, strong inhibitor, and strong

activator as defined below:

1. If there is neither a positive or negative path from node i to

node j, node i has no effect on node j;

2. If there is both a positive and negative path from node i to node

j, node i is an ambivalent factor of node j;

3. If there are only negative paths from node i to node j and

negative feedback loops are present in these negative paths,

node i is a weak inhibitor of node j;

4. If there are only positive paths from node i to node j and

negative feedback loops are present in these positive paths,

node i is a weak activator of node j;

5. If there are only negative paths from node i to node j and

negative feedback loops are absent in these negative paths,

node i is an strong inhibitor of node j;

6. If there are only positive paths from node i to node j and

negative feedback loops are absent in these positive paths, node

i is a strong activator of node j.

The second approach used was logical steady state (LSS)

analysis. An LSS is a distribution of values over the whole network

where the state of each node is fully consistent with the state of

incoming interactions applied to the node. Therefore, once a

Boolean network has moved into an LSS, it stops to switch and

retains this state. In general, there are multiple LSSs in networks

that contain feedback loops, and a full enumeration of LSSs can

become intractable. Given a set of initial values, in particular for

input nodes, CellNetAnalyzer identifies all nodes whose value is

uniquely defined across all possible steady states; these nodes are

labelled as inactivated (‘‘0’’) or activated (‘‘1’’). The remaining

nodes, whose value is not fully determined by the input conditions

and may differ across different LSSs, are labelled as undetermined

(‘‘NaN’’) [33].

Cell culture
The p53 wild-type human osteosarcoma cell line U2OS and the

p53 null cell line SAOS2 were cultured in Dulbecco’s Modified

Eagle’s Medium (Sigma Aldrich, UK) supplemented with 10% v/v

heat inactivated fetal calf serum (Gibco, UK) and 1% of penicillin

and streptomycin 10,000 U/ml (Lonza, USA) at 37uC in a

humidified atmosphere containing 5% CO2. Cells were treated

with 10 mM etoposide for 16 hours.

Immunoblotting and antibodies
Cells were harvested in TNN buffer (50 mM Tris-HCl pH 7.4,

240 mM NaCl, 5 mM EDTA and 0.5% NP-40) and equal

amounts of protein were loaded and resolved by SDS-PAGE and

Western blotting [55]. After incubating with primary and

secondary antibodies, the blots were developed with ECL substrate

according to manufacturer’s instructions (Pierce, Thermo Scien-

tific, USA). The following antibodies were used for western

blotting: b-Actin (Abcam, UK), Chk1 (DCS-300, sc56290, Santa

Cruz Biotechnology, Santa Cruz, CA, USA), Phospho Chk1 (Ser

345, sc17922, Santa Cruz Biotechnology, Santa Cruz, CA, USA),

ATM (ATM 11g12, Monoclonal antibody, sc53173, Santa Cruz

Biotechnology, Santa Cruz, CA, USA ), ATR( 2790 S, NEW

ENGLAND BioLabs).

Microarray preparation and processing
Total RNA was extracted from U2OS and SAOS2 cells treated

with vehicle or 10 mM etoposide for 16 hours and RNA extracted

using RNeasy plus mini columns (Qiagen, UK) according to the

manufacturer’s recommendations [56]. For each hybridization,

100 ng of total RNA was used in the Affymetrix GeneChip Two-

Cycle Target Labeling kit and in the Ambion MEGAscript T7 kit

before hybridizing to the GeneChip human genome U133 Plus 2.0

array (Affymetrix) according to manufacturer’s instructions. The

heat maps of microarray data were created using the Genesis
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software, which allows hierarchal clustering and other functional

analysis [57]. Our microarray datasets are provided in File S2.

Model evaluation from microarray data
We compared our predictions obtained by in silico deletion of

p53 to in vitro generated microarray data from p53 positive and

p53 negative cell lines treated by the DNA damaging compound

etoposide. Logical steady state analysis produces a steady state in

each scenario, and changes of gene states can be compared

between model predictions and experimental data [38]. For a

node i, the predicted state of i in the p53 wild-type was defined as

S(i)wt, which could take values of 0, 1 or NaN. In the p53 mutant,

the state of node i was defined as S(i)mu, which could take the

same values. The value of Emodwas defined to represent the

predicted change of gene state from p53 wild-type to mutant in all

9 types of possible situations as indicated below:

Emod~0, if S(i)wt~1 andS(i)mu~1;
Emod~0, if S(i)wt~0 andS(i)mu~0;
Emod~0, if S(i)wt~NaN andS(i)mu~NaN;
Emod~1, if S(i)wt~0 andS(i)mu~1;
Emod~1, if S(i)wt~0 andS(i)mu~NaN;
Emod~1, if S(i)wt~NaN andS(i)mu~1;
Emod~{1, if S(i)wt~1 andS(i)mu~0;
Emod~{1, if S(i)wt~1 andS(i)mu~NaN;
Emod~{1, if S(i)wt~NaN andS(i)mu~0:
Another parameter Eexp was defined to represent the change

trend of expression levels from experimental validation. Those

validations were from experimental results of literature survey or

microarray analysis result. For experimental results from literature

survey:

If the expression level of gene i was considered as up-regulated,

Eexp~1;
If the expression level of gene i was considered as down-

regulated, Eexp~{1;
If the expression level of gene i was considered as unchanged,

Eexp~0:
For the microarray data, the gene fold change FC(i) was

determined by the following equation:

FC(i)~
M1(i)

M2(i)

Where M1(i)is the median of expression values in the target

scenario and M2(i)is the median of expression values in the source

scenario.

In order to normalize the distributions of expression profiles for

different types of cells, the log10value of all fold changes FC(i)
were calculated and two thresholds (hmaxand hmin) were chosen to

determine whether each gene was considered up-regulated, down-

regulated or unchanged [58]. The thresholds were determined

using the mean value ( �XX ) and the standard deviation (s) of the

distribution of log10(FC(i)) as follows:

hmax~ �XXzs;

hmin~ �XX{s

Next, we determined whether the gene was considered up-

regulated, down-regulated or unchanged as follows:

If log10 (FC(i))whmax, gene i was considered as up-regulated,

Eexp~1;

If log10 (FC(i))vhmin, gene i was considered as down-

regulated, Eexp~{1;

If hminv log10 (FC(i))vhmax, gene i was considered as

unchanged, Eexp~0.

The difference between Emod and Eexp was evaluated by the

expression DEmod{EexpD. This difference can take three possible

values: 0, 1 or 2. Here, a value of 0 meant that the simulation

prediction matched the experimental result; 1 meant that there

was a small error between the simulation prediction and the

experimental result; 2 meant that there was a large error between

the simulation prediction and the experimental result, the model

predicting an opposite direction of change than experimental

results.

Supporting Information

File S1 Combined supporting information file contain-
ing Figures S1–S5 and Tables S1–S11.

(DOCX)

File S2 Gene expression data. The median values of gene

expression levels in microarray experimental data are listed: the

data for U2OS and SAOS2 cells are on Sheet 1 and the data for

HCT116 cells on Sheet 2. Fold changes for different comparisons

and their log10 are given.

(XLSX)
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