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Abstract
Background—Schizophrenia and bipolar disorder may share common neurobiological
mechanisms, but few studies have directly compared gray and white matter structure in these
disorders. We used diffusion-weighted magnetic resonance imaging and a region-of-interest based
analysis to identify overlapping and distinct gray and white matter abnormalities in 35 patients
with schizophrenia and 20 patients with bipolar I disorder in comparison to 56 healthy volunteers.

Methods—We examined fractional anisotropy within the white matter and mean diffusivity
within the gray matter in 42 regions-of-interest defined on a probabilistic atlas following non-
linear registration of the images to atlas space.

Results—Patients with schizophrenia had significantly lower fractional anisotropy in temporal
(superior temporal and parahippocampal) and occipital (superior and middle occipital) white
matter compared to patients with bipolar disorder and healthy volunteers. In contrast, both patient
groups demonstrated significantly higher mean diffusivity in frontal (inferior frontal and lateral
orbitofrontal) and temporal (superior temporal and parahippocampal) gray matter compared to
healthy volunteers, but did not differ from each other.

Discussion—Our study implicates overlapping gray matter frontal and temporal lobe structural
alterations in the neurobiology of schizophrenia and bipolar I disorder, but suggests that temporal
and occipital lobe white matter deficits may be an additional risk factor for schizophrenia. Our
findings may have relevance for future diagnostic classification systems and the identification of
susceptibility genes for these disorders.

INTRODUCTION
A dichotomy between schizophrenia and bipolar disorder was originally described by
Kraepelin (1) and continues today in the nosological classes of schizophrenia and bipolar
disorder as defined operationally in the DSM-IV (2). It is increasingly recognized, however,
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that schizophrenia and bipolar disorder share certain epidemiological features such as age at
onset (3), genetic risk (4), incidence (5) and influence of sex (6, 7). Moreover, the estimated
lifetime risk of bipolar disorder in first-degree relatives of bipolar patients is 40–70% in
monozygotic twins (8), which is similar compared to the 50% risk estimate for monozygotic
twins for schizophrenia (9). Along these lines there is converging evidence from genetics
studies supporting the hypothesis that bipolar disorder and schizophrenia may share
common endophenotypes (10) and genes including Disrupted in Schizophrenia 1 (11, 12),
dystrobrevin binding protein 1 (DTNBP1) (13), neuregulin 1 (14–15), catechol-o-methyl
transferase (16), and G72 [D-amino acid oxidase activator, (DAOA)]/G30 loci (17, 18). In
addition, recent genome-wide association data have confirmed several convincing risk loci
for schizophrenia (19) and bipolar disorder (20). Consistent with the family-based evidence
of considerable genetic overlap (4), many of the variants initially identified as predisposing
to SZ have subsequently been associated with BPD, and vice versa. A recent cross-
phenotype study reported that 6 of the 8 SNPs most robustly associated with either SZ or
BPD show trans-disorder effects (21), including CACNA1C (alpha-1C subunit of the L-type
voltage-gated calcium channel) (22–25).

Magnetic resonance (MR) imaging has provided important information regarding the
potential overlap of structural abnormalities in patients with bipolar disorder and
schizophrenia. Several studies reported less gray matter in the thalamic region (26–27), and
medial frontal gyrus (28) in both disorders compared to healthy volunteers. Other studies,
however, indicated that compared to patients with bipolar disorder, schizophrenia is
characterized by widely distributed gray matter deficits predominantly involving the fronto-
temporal neocortex (29; 30), hippocampus (31,32; 33), cerebellum (34), thalamus (34),
Heschl’s gyrus (35) and left planum temporale (35). In contrast, compared to schizophrenia,
patients with bipolar disorder reportedly have gray matter deficits in regions that have been
strongly implicated in emotional processing including the anterior cingulate gyrus (36), and
the amygdala (31, 32).

Diffusion tensor imaging (DTI) is an in-vivo MR imaging approach that can be used to
examine white matter and gray matter integrity in humans. Mean diffusivity (MD) and
fractional anisotropy (FA) are scalar-valued measures that can be computed from the
estimated diffusion tensor (DT) and reflect the magnitude and anisotropy of the self-
diffusion of water molecules in the brain, respectively. FA is a non-linear function of the 3
eigenvalues of the DT that varies between 0 and 1. It provides information regarding the
shape of the DT and is typically used as an index of white matter integrity (37, 38). Little
work has directly compared FA in patients with schizophrenia to those with bipolar disorder.
In two prior studies, however, lower FA was observed in both patient groups compared to
healthy volunteers in the white matter comprising the uncinate fasciculus and anterior
thalamic radiation (39, 40).

MD is the average of the three diagonal elements of the DT or equivalently the average of its
three eigenvalues. In contrast to FA, MD quantifies the magnitude of water diffusion within
tissues (41) as opposed to the directional preference of diffusion. Unlike diffusion
anisotropy measures, which are higher in coherent white matter, MD is greater in cerebral
spinal fluid (CSF) where water diffusion is not restricted by cellular fibers and structure
(42). In gray matter, increased MD is likely due to the effect of increased unoccupied
intercellular space and not due to a change in neuronal cell density, thus, it may be the result
of lower cortical neuropil, which includes axonal, dendritic, and glial braches (43). MD has
been utilized to assess gray matter integrity in patients with schizophrenia compared to
healthy controls (e.g., 43–46) and may be a sensitive marker for the detection of early
structural abnormalities in first-episode schizophrenia (46). Notably, MD has also been used
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to assess gray matter integrity in other disorders including multiple sclerosis (47), dementia
(48, 49), Parkinson’s disease (50) and major depression (51).

Few studies have examined overlapping and distinct patterns of both gray and white matter
in patients with schizophrenia or bipolar disorder compared to each other and healthy
volunteers. Moreover, unlike prior studies that used diffusion tensor imaging to investigate
white matter structure, we used segmented regions-of-interest to investigate FA within the
white matter and MD within the gray matter, respectively as defined on a probabilistic atlas
following non-linear registration of the diffusion tensor imaging data to atlas space. We
hypothesized that gray and white matter abnormalities would be evident in frontal and
temporal lobe regions among patients with schizophrenia and bipolar disorder compared to
healthy volunteers consistent with previously published structural and diffusion tensor
imaging studies (e.g., 36, 52).

METHODS
Subjects

Fifty-five patients with a diagnosis of schizophrenia or bipolar I disorder were recruited
from the Zucker Hillside Hospital in Glen Oaks, NY. Diagnoses were based on clinical
interview using the SCID for DSM-IV Disorders (53) and supplemented by medical records
and information provided by clinicians and family members, when available. Subtypes for
the 35 patients with schizophrenia included disorganized (N=1), paranoid (N=18) and
undifferentiated (N=16). Twenty patients with a diagnosis of bipolar disorder I disorder
were included and all but 2 had a history of psychosis during acute episodes. Patients were
being treated with antipsychotic medications (n=32), mood stabilizers (N=6) or both
antipsychotics and mood stabilizers (N=12). Two patients were not receiving psychotropic
medications and medication data were unavailable for 3 patients. Fifty-six healthy
volunteers were recruited from the community to match the patient groups in distributions of
age and sex. Exclusion criteria for healthy subjects included any history of Axis I psychiatric
illness as assessed by clinical interview (SCID-NP) (54). In addition, exclusion criteria for
all study participants included any serious medical or neurological condition known to affect
the brain and MR imaging contraindications. This study was approved by the North Shore-
Long Island Jewish Medical Center Institutional Review Board and written informed
consent was obtained from all study participants.

Handedness
Handedness was assessed for subjects using a modified 20-item version of the Edinburgh
Inventory. A laterality quotient was computed for all individuals using the following
formula: (Total R − Total L)/(Total R + Total L), where “Total R” and “Total L” refer to the
total number of right and left hand items scored, respectively. Scores thus ranged from 1.0
(totally dextral) to −1.0 (totally non-dextral). Individuals with laterality scores greater than .
7 were classified as dextral and the remaining subjects were classified as non-dextral.
Handedness for 9 individuals was based on preference for handwriting alone.

Magnetic Resonance (MR) Imaging Procedures
All MR imaging scans were acquired at the Long Island Jewish Medical Center using a 1.5T
GE system and were reviewed clinically by a radiologist with none demonstrating gross
pathology. We acquired 26 DTI volumes from each subject, which included 25 volumes
with diffusion gradients applied along 25 non-parallel directions with b = 1000 s/mm2 and
NEX = 2, and one volume without diffusion weighting (b = 0; NEX = 2). Each volume
consisted of 23 contiguous 5-mm axial slices acquired parallel to the anterior-posterior (AC-
PC) commissural line using a ramp sampled, spin-echo, single shot echo-planar imaging
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(EPI) method (TR = 10 s, TE = min, FOV = 22 cm, matrix size = 128 x 128). For each
subject, the FA and MD maps were computed from the 26 DTI volumes following
estimation of a DT matrix at each voxel using a log-linear least squares estimation method.
An oblique axial fast spin echo scan (TR = 4 s, TE = 20/100 ms, FOV = 22 cm, matrix size
= 256 x 256) was also acquired using the same slice prescription as the DTI and provided
contiguous 5-mm thick proton density (PD; TE = 20 ms) and T2-weighted (T2; TE = 100
ms) images. In addition, 124 contiguous coronal images (slice thickness = 1.5 mm) were
acquired through the whole head using a 3D Fast SPGR sequence with IR Prep (TR = 10.1
ms, TE = 4.3 ms, TI = 600 ms, FOV = 22 cm, matrix size = 256 x 256).

Probabilistic Atlas
We created a probabilistic atlas in the same space as the Montreal Neurologic Institute’s
‘Colin27’ MR imaging volume (55). The probabilistic atlas was created using the LPBA40
dataset (56) that consists of 40 high-resolution T1-weighted structural brain scans from 40
volunteers, on each of which 56 anatomical structures have been manually labeled (Figure
1). We used ‘3dwarper’, the non-linear registration module of the Automatic Registration
Toolbox (ART) (57), to register all 40 MR imaging scans of the LPBA40 dataset to the
Colin27 image. We then applied the resulting non-linear transformations to each of the 56
structure label maps of each subject to transform them into the same space as the Colin27
image. Thus, for each of the 56 structures, we obtained 40 label maps in standard space.
These label maps were averaged to create the probabilistic atlas that we refer to as the
LPBA40/ART atlas (Figure 1). Using the LPBA40/ART atlas, it is possible to automatically
determine a given structure on any test image after co-registration of the test image with the
Colin27 brain. By inverting the transformation and applying it to the LPBA40/ART atlas, it
is possible to project the atlas labels on the space of the test image, thus automatically
delineating the 56 structures onto the test image. The LPBA40 data set also includes
automatically segmented gray matter (GM), white matter (WM), and cerebrospinal fluid
(CSF) labels for each of the 40 cases. These were also transformed to the Colin27 space and
averaged to yield tissue-type probabilistic labels. Thus, the probabilistic atlas that was
created included label maps for the 56 structures as well as GM, WM, and CSF in the
reference space of the Colin27 brain.

Image Registration
The purpose of image registration was to find a non-linear transformation that registers the
FA and MD maps derived from the DTI data to the Colin27 brain. When such a
transformation is found, it can then be inverted and applied to the LPBA40/ART atlas,
which then automatically propagates the structure and tissue-type labels of the atlas onto the
space of the FA or MD map. This permits ROI analysis of the average FA and MD values
on the 56 structures as a whole, or on specific tissue types (e.g., GM, WM, or CSF) within
each structure. Image registration was conducted using methods published previously (58,
59) and are described briefly. Non-brain regions were initially removed from the SPGR
image using the Brain Extraction Tool (BET) (60) with any remaining tissue removed
manually using MEDx (Sensor Systems, Inc., MD, USA). We next normalized the skull-
stripped SPGR (SS-SPGR) image to the Colin27 MR imaging volume using 3dwarper in
ART. In addition, we employed a rigid-body 6-parameter linear transformation (61) to
register the SS-SPGR image to the fast spin echo T2 volume. Using this transformation, the
SS-SPGR was re-sliced to match the T2 volume and subsequently used to skull-strip the T2
volume. To correct for spatial distortion in the DTI EPI images, the b=0 DTI volume was
non-linearly registered to the skull-stripped T2 (SS-T2) volume using ART. Lastly, we
combined the transformations obtained from each of the three registration steps (i.e., DTI-to-
T2; T2-to-SPGR; SPGR-to-Colin27) to obtain a single transformation (DTI-to-Colin27) that
would register the FA or MD images to the stereotactic space of the Colin27 template.
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Region-of-Interest Analyses
The aim of the region-of-interest (ROI) analysis was to determine average FA and MD
values in apriori defined brain regions on the LPBA40/ART atlas. For each subject, we
registered the FA and MD maps to the LPBA40/ART atlas space (Colin27 brain template
space) using the methods described above. We then applied the inverse of the resulting non-
linear transformation to the LPBA40/ART atlas to propagate the regional and tissue-type
atlas labels onto the FA and MD maps in the native space. Average FA and MD values in
these ROIs were then computed as follows. We let mj represent the FA (or MD) value at
voxel j, and pij represent the probabilistic ROI information obtained from the LPBA40/ART
atlas at voxel j for regions i=1, 2, …, n. In particular, pij represented the probability that
voxel j belongs to region i. The average FA or MD in a given region i was thus computed as
follows:

In this study, we analyzed average FA and MD values for 21 ROIs in the right and left
hemispheres: superior frontal gyrus, middle frontal gyrus, inferior frontal gyrus, precentral
gyrus, middle orbitofrontal gyrus, lateral orbitofrontal gyrus, superior temporal gyrus,
middle temporal gyrus, inferior temporal gyrus, parahippocampal gyrus, postcentral gyrus,
superior parietal gyrus, supramarginal gyrus, angular gyrus, precuneus, superior occipital
gyrus, middle occipital gyrus, inferior occipital gyrus, fusiform gyrus, cingulate gyrus and
hippocampus.

As noted, the LPBA40/ART atlas also includes probabilistic tissue type information.
Projected in native space, this information may be represented by three probabilistic maps:
{pwmj}, {pgmj}, and {pcsfj}, where, for example, pgmj, represents the probability that voxel j
belongs to tissue-type: gm (gray matter). The tissue probability maps were combined with
the 42 aforementioned region probability maps to obtain 3x42 maps {pwmij}, {pgmij}, and
{pcsfij} where each of the regions were divided into GM, WM and CSF. Combining the
tissue-type probability maps and the region probability maps was accomplished by using a
threshold T to define: pgmij= pij if pgmij > T; and pgmij=0 otherwise. We used the threshold
level of 30% for gray matter and 70% for white matter to obtain tissue-type specific
averages for each of the regions. Thus, we were able to obtain tissue-specific average FA (or
MD) values. For example, the average gray matter MD in region i was computed as follows:

Statistical Analyses
Categorical variables were compared among groups by chi-square tests and continuous
measures were analyzed using one way ANOVA. Outlying values for FA and MD (defined
as 3 standard deviations from the mean) were replaced with values 3 SD below or above the
sample mean. Given the lack of robust group-by-hemisphere interactions both right and left
hemisphere regions were averaged for analyses to increase power and limit Type-I error. To
further limit Type-I error we averaged individual brain structures from the LPBA40 Atlas to
form 5 brain lobules. These included: (1) “frontal” consisting of superior frontal gyrus,
middle frontal gyrus, inferior frontal gyrus, precentral gyrus, middle orbitofrontal gyrus, and
lateral orbitofrontal gyrus; (2) “temporal” consisting of superior temporal gyrus, middle
temporal gyrus, inferior temporal gyrus, parahippocampal gyrus and fusiform gyrus; (3)
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“parietal” consisting of postcentral gyrus, superior parietal gyrus, supramarginal gyrus,
angular gyrus, and precuneus; (4) “occipital” consisting of superior occipital gyrus, middle
occipital gyrus and inferior occipital gyrus and (5) “limbic” consisting of cingulate gyrus
and hippocampus.

Repeated measures ANCOVA (SPSS for Windows, version 11.5; SPSS, Chicago, IL) was
used to compare brain structure volumes among the patient groups and healthy volunteers
with alpha set to .05 (two-tailed). FA was examined within the white matter and MD within
the gray matter in separate analyses. In each analysis the between subjects factors included
group (patients with schizophrenia versus patients with bipolar disorder versus healthy
volunteers) and sex and the within subjects factor included lobule (frontal, temporal,
parietal, occipital and limbic). Greenhouse-Geisser correction was used in each analysis
given that Mauchly’s test of Sphericity was significant. Age was included as a statistical
covariate given that it correlated with FA and MD. We specifically were interested in testing
group-by-region interactions in analyses of FA and MD, which, if significant, were followed
by univariate ANCOVAs for each of the 5 brain lobules to test for group main effects. Any
significant group main effect was subsequently followed by ANCOVAs examining group
differences within each individual brain region comprising the lobule. In addition to these
primary analyses we conducted univariate ANCOVAs among groups for every individual
brain region (with age as a covariate) for descriptive purposes (Tables 2 and 3) where effect
size measures are presented as partial eta-squared.

Results
The groups did not differ significantly from one another in distributions of race, sex, age,
handedness, years of education, and age at onset (Table 1). Mean FA and MD values along
with the adjusted 95% confidence intervals for the difference between group means are
provided for all of the individual brain regions in Tables 2 and 3, respectively, for
descriptive purposes only.

In FA analyses the main finding that distinguished the groups was a significant group-by-
region interaction (F = 3.87, df = 6.77, p = .001). Followup unvariate ANCOVAs revealed
significant main effects of group for the temporal (F = 4.36, df = 2,104, p = 0.015) and
occipital (F = 8.70, df = 2,104, p < .001) lobes. Posthoc analyses of individual regions
indicated that patients with schizophrenia had significantly lower FA compared to patients
with bipolar disorder and healthy volunteers in the superior temporal (F = 5.85, df = 2,104, p
= 0.004), parahippocampal (F = 5.28, df = 2,104, p = 0.007), superior occipital (F = 5.78, df
= 2,104, p = 0.004) and middle occipital (F = 10.02, df = 2,104, p < 0.001) white matter.

In the MD analyses there also was a significant group-by-region interaction (F = 2.31, df =
6.39, p = .03); significant main effects of group were evident in the frontal (F = 5.07, df = 2,
104, p =.008), parietal (F = 3.99, df = 2, 104, p = .021), limbic (F = 5.71, df = 2, 104, p = .
004), and temporal (F = 8.26, df = 2, 104, p < 0.001) lobe regions. Posthoc analyses of
individual regions indicated that both patient groups had significantly higher MD in the
superior temporal (F = 7.39, df = 2, 104, p = 0.001), parahippocampal (F = 7.08, df = 2, 104,
p = 0.001), fusiform (F = 4.30, df = 2, 104, p = .016), angular (F = 4.90, df = 2, 104, p = .
009), supramarginal (F = 5.26, df = 2, 104, p = .007), lateral orbital frontal (F = 5.62, df = 2,
104, p = .005) and inferior frontal (F = 6.85, df = 2, 104, p = .002) regions compared to
healthy controls, but that the patient groups did not differ from each other. In addition,
patients with bipolar disorder had significantly higher MD in the postcentral (F = 5.55, df =
2, 104, p = .005) region compared to healthy controls and higher MD in the precentral (F =
5.52, df = 2, 104, p = .005) and middle frontal (F = 3.95, df = 2, 104, p = .022) regions
compared both to healthy volunteers and patients with schizophrenia. Moreover, patients
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with schizophrenia had higher MD in the middle temporal (F = 4.26, df = 2, 104, p = .017)
and hippocampal (F = 6.76, df = 2, 104, p = .002) regions compared to healthy volunteers
and higher MD in the inferior temporal (F = 6.68, df = 2, 104, p = .002) region compared
both to healthy volunteers and patients with bipolar disorder.

Age and Sex Effects
There was a significant (F = 16.86, df = 1, 104, p < .001) main effect of sex for FA with
males having higher FA compared to females across all brain regions. The region-by-age
interaction was statistically significant (F = 3.11, df = 3.39, p = .022) for FA with posthoc
analyses indicating that age correlated inversely with FA across groups in the frontal lobes
(F = 8.74, df = 2,104, p = .004). The region-by-age interaction was statistically significant
for MD (F = 7.02, df = 3.19, p < .001) with posthoc analyses indicating that age correlated
positively with MD across groups in the frontal (F = 20.05, df = 2, 104, p < 0.001), limbic (F
= 5.71, df = 2, 104, p = .016), parietal (F = 18.60, df = 2, 104, p < 0.001), temporal (F =
5.54, df = 2, 104, p = .02) and occipital (F = 10.65, df = 2, 104, p = 0.001) lobes. No
significant main effect of sex was evident in the analysis of MD. The region-by-sex and
region-by-group-by-sex interactions were not statistically significant in either the FA or MD
analyses.

DISCUSSION
Understanding the unique contributions of gray and white matter abnormalities in
schizophrenia and bipolar disorder as well as their potential overlap can inform
neurobiological models of these disorders and diagnostic classification systems. In contrast
to prior work that used diffusion tensor imaging to only investigate the white matter, we
employed segmented gyri as regions-of-interest defined a priori to investigate FA within the
white matter and MD within the gray matter. A potential advantage of using MD as a
surrogate marker of gray matter volume deficits compared to voxel-based approaches is that
it may be more sensitive to volume changes. The main findings of our study indicate that
schizophrenia is characterized by white matter abnormalities in temporal and occipital
regions compared both to patients with bipolar disorder and healthy volunteers. In contrast
to the pattern of white matter findings, gray matter structural alterations appeared generally
comparable in frontal and temporal lobe regions between patients with bipolar disorder and
schizophrenia, but abnormal in these two patient groups compared to healthy volunteers.
Our data are consistent with the hypothesis that these disorders share overlapping gray
matter structural deficits, but that schizophrenia may additionally involve aberrant white
matter integrity in temporal and occipital regions.

Few studies have assessed white matter integrity in both schizophrenia and bipolar disorder
and thus, it is difficult to directly compare our results to prior findings. Two studies reported
comparable white matter abnormalities between patients with bipolar disorder and those
with schizophrenia in the anterior limb of the internal capsule, uncinate fasciculus, and
anterior thalamic radiations, which in turn were abnormal compared to controls (39, 40).
Our data suggest, however, that white matter abnormalities in temporal and occipital lobe
regions may be important in differentiating between patients with schizophrenia and those
with bipolar disorder. Abnormal white matter has been hypothesized to may play a critical
role in the pathophysiology of schizophrenia (62) and several studies have implicated white
matter disruptions in the earliest phase of illness (59,63). Abnormal FA observed within the
white matter of patients with schizophrenia is consistent with prior work implicating deficits
in oligodendrocytes and myelin-related abnormalities in protein and gene expression (64–
67) as well as in-vivo neuroimaging studies (68, 69).
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It is particularly noteworthy that white matter abnormalities were evident within the superior
temporal gyrus in patients with schizophrenia compared to patients with bipolar disorder and
healthy volunteers. Our data thus converge with several prior neuroimaging studies
implicating white matter abnormalities in this region in patients with schizophrenia
compared to healthy volunteers (59, 63, 70, 71) as well as deficits in regions adjacent to the
superior temporal gyrus (71–73). Moreover, magnetization transfer imaging (74),
cytoarchitectural (75) and voxel-based morphometry (76–78) studies have also demonstrated
superior temporal gyrus white matter abnormalities in patients with schizophrenia. In terms
of diagnostic specificity our findings also converge with Beasley et al. (75) who reported
that glial cell density was decreased in the superior temporal white matter in schizophrenia
compared to controls, but was unchanged in bipolar disorder or the major depressive
disorder groups. Moreover, a defect in temporal lobe white matter may play a role in
abnormal neuropsychological functioning and positive symptom severity in schizophrenia
(59).

Our data also highlight a role for occipital white matter abnormalities in the pathogenesis of
schizophrenia compared to patients with bipolar disorder and healthy volunteers. Thus, our
results are consistent with prior work implicating white matter abnormalities in the uncinate
fasciculus/inferior fronto-occipital fasciculus (79–81), inferior longitudinal fasciculus (79),
superior longitudinal fasciculus (80), and occipital lobe (82–84) in patients with
schizophrenia compared to healthy volunteers. In addition, in a combined MR imaging and
DTI study, patients with first-episode schizophrenia had lower white matter volume in the
temporal-occipital region, decreased planar anisotropy and higher linear anisotropy in the
right temporal-occipital region compared to healthy volunteers (85). In a study of early-
onset schizophrenia patients lower fractional anisotropy was reported in the occipital white
matter (86). Although several DTI studies noted occipital lobe white matter abnormalities in
bipolar patients compared to healthy volunteers (87–91), little research has compared the
magnitude and location of occipital lobe white matter impairment directly between these
two disorders. For example, the lack of robust occipital lobe white matter abnormalities
among bipolar patients may be related to the fact that several prior findings were observed in
the deep and periventricular white matter (58, 93, 94), which were not reflected in our
regions-of-interest.

Our study provides evidence for comparable temporal lobe gray matter structural alterations
in schizophrenia and bipolar I disorder. Specifically, both groups demonstrated greater MD
in superior temporal and parahippocampal gray matter compared to healthy volunteers, but
did not differ from each other. Our findings generally converge with a meta-analysis by
Ellison-Wright and Bullmore (36) who reported that gray matter abnormalities in
schizophrenia overlapped substantially with those in bipolar disorder. More specifically,
however, several studies implicated gray matter structural alterations in the parahippocampal
gyrus in schizophrenia (95, 96) and bipolar disorder (97, 98). Moreover, although gray
matter deficits in the superior temporal gyrus have been well-replicated in schizophrenia
compared to healthy controls (e.g., 99, 100), they have also been reported in bipolar disorder
(101,102). Given that the majority of bipolar patients in our study had a history of psychotic
features it is conceivable that gray matter structural deficits in the superior temporal gyrus
and parahippocampal gyrus might reflect a common neurobiological substrate related to
psychosis. For example, compared to healthy controls, recent-onset (103) and first-episode
(104) psychotic patients demonstrated temporal gray matter deficits. Similarly, both
schizophrenia and bipolar patients with mood-incongruent psychotic symptoms in the form
of persecutory delusions had temporal lobe gray matter deficits (105).

Recent literature reviews indicate robust evidence for frontal lobe structural alterations both
in schizophrenia (106) and bipolar disorder (107), but few studies have directly compared
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the magnitude of these deficits in both disorders. In a recent meta-analysis Yu et al (108)
reported substantial overlap in prefrontal gray matter regions in schizophrenia and bipolar
disorder with several reports implicating gray matter deficits in the orbital frontal gyri and
inferior frontal gyri in schizophrenia (109–112) and bipolar disorder (113, 114) compared to
healthy volunteers. Our findings thus converge with prior studies implicating comparable
frontal gray matter structural alterations in both patient groups compared to healthy
volunteers. Abnormalities in the orbital frontal and inferior frontal regions may contribute to
neuropsychological deficits in olfaction (115) and go no/go performance (116, 117)
observed in both patients with schizophrenia and bipolar disorder.

There were several study limitations that should be acknowledged. The sample sizes were
modest, although the patient groups were well-characterized diagnostically, which may have
decreased subject variability and increased our ability to detect group differences. On the
other hand, it is conceivable that structural alterations in these disorders might be evident in
other regions if larger subject groups were investigated. Patients were also receiving
antipsychotic medications and/or mood stabilizers and thus, the potential influence of these
medications on the dependent measures may limit study interpretation. It should be
acknowledged that clinical and neuropsychological measures were unavailable for patients,
and thus we did not clarify the functional sequelae of these patient differences. Also, a
potential downside of using diffusion weighted imaging for assessing gray matter integrity is
that the results are not easily quantifiable. Moreover, given that we did not perform
tractography we did not have information available regarding the specific tracts affected in
the FA analysis of the white matter. Our use of an atlas (118), however, suggested that the
superior temporal white matter likely included the inferior longitudinal fasciculus and
uncinate fasciculus whereas the parahippocampal region included part of the cingulum
bundle. In addition, the superior and middle occipital white matter regions likely
encompassed the inferior fronto-occipital fasciculus and corona radiata.

In summary, the results of the present study support the hypothesis that schizophrenia and
bipolar disorder are characterized by comparable gray matter structural alterations, but that
white matter disruptions in temporal and occipital regions may pose an additional risk factor
for schizophrenia. Additional neuroimaging studies with larger sample sizes and the use of
combined genetic/neuroimaging paradigms may further elucidate both the shared and
distinct gray and white matter differences that play a role in the etiology of these disorders.
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Figure 1.
Illustration of the regions-of-interest from the LPBA40/ART Atlas
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