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Abstract
Genetic variants on the X-chromosome could potentially play an important role in some complex
traits. However, development of methods for detecting association with X-linked markers has
lagged behind that for autosomal markers. We propose methods for case-control association
testing with X-chromosome markers in samples with related individuals. Our method, XM,
appropriately adjusts for both correlation among relatives and male-female allele copy number
differences. Features of XM include: (1) it is applicable to and computationally feasible for
completely general combinations of family and case-control designs; (2) it allows for both
unaffected controls and controls of unknown phenotype to be included in the same analysis; (3) it
can incorporate phenotype information on relatives with missing genotype data; and (4) it adjusts
for sex-specific trait prevalence values. We propose two other tests, Xχ and XW, which can also
be useful in certain contexts. We derive the best linear unbiased estimator of allele frequency, and
its variance, for X-linked markers. In simulation studies with related individuals, we demonstrate
the power and validity of the proposed methods. We apply the methods to X-chromosome
association analysis of (1) asthma in a Hutterite sample and (2) alcohol dependence in the GAW
14 COGA data. In analysis (1), we demonstrate computational feasibility of XM and the
applicability of our robust variance estimator. In analysis (2), we detect significant association,
after Bonferroni correction, between alcohol dependence and SNP rs979606 in the MAOA gene,
where this gene has previously been found to be associated with substance abuse and antisocial
behavior.
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Introduction
Genomewide association studies are routinely conducted to identify genetic variants that
influence complex disorders. Despite the potential for identifying X-linked genes that
influence complex traits, association methods have primarily been developed for markers on
the autosomal chromosomes and significantly less attention has been given to the analysis of
markers on the X-chromosome.

For case-control association testing with autosomal markers, a number of approaches have
been proposed for various types of samples including unrelated samples from a single
population [Sasieni, 1997], samples with related individuals from a single population [Slager
and Schaid, 2001; Bourgain et al., 2004; Thornton and McPeek, 2007], unrelated samples
from structured populations [Devlin and Roeder, 1999; Pritchard et al., 2000; Price et al.,
2006], and samples with both pedigree and population substructure [Thornton and McPeek,
2010; Kang et al., 2010]. However, case-control association methods for autosomal markers
will typically not be valid for X-chromosome analysis. Some available methods [Zheng et
al., 2007; Clayton, 2008] consider X-chromosome case-control association analysis in
samples of unrelated individuals from a single population. (See Loley et al. [2011] and
Hickey and Bahlo [2011] for comparisons of these methods.) An earlier method [Browning
et al., 2005] proposes case-control association tests with both single markers and haplotypes,
with extension to the X-chromosome, where this method allows related individuals from a
single population, provided that controls are not related to cases. The X-chromosome
version of this method is closely connected to the XW test, one of the tests described in
Methods. For certain types of study designs, family-based association tests, such as the
TDT [Spielman et al., 1993] and FBAT [Rabinowitz and Laird, 2000], can be used for the
analysis of both autosomal and X-chromosome markers. Family-based tests, however, are
generally less powerful than case-control association methods [Risch and Teng, 1998;
Bacanu and Roeder, 2000; Thornton and McPeek, 2010] and are more restrictive because
they typically require genotype data for family members of an affected individual. In
contrast, case-control designs can allow, but do not require, genotype data for relatives of
affected individuals.

We address the general problem of case-control association testing with markers on the X-
chromosome in samples with related individuals from a single population, with the
pedigrees assumed known. We focus on the analysis of markers from the non-
pseudoautosomal regions of the X-chromosome, where there is not homology between the X
and Y chromosomes. (For analysis of markers in the pseudoautosomal regions of the X and
Y chromosomes, autosomal association methods can be used.)

We propose a new method, the XM test, for association testing of X-linked markers in
samples with related individuals. The XM test can be viewed as an extension, to X-linked
markers, of the MQLS test [Thornton and McPeek, 2007], for association with autosomal
markers. The XM test takes into account genetic correlations among same and different sex
relatives for a valid test, and also improves power by capitalizing on the property that there
is enrichment for predisposing variants in affecteds with affected relatives. Some of the
properties of the XM test are that (1) it is applicable to and computationally feasible for
essentially arbitrary combinations of related and unrelated individuals, including small
outbred pedigrees and unrelated individuals, as well as large complex, inbred pedigrees; (2)
it distinguishes between unaffected controls and controls of unknown phenotype (i.e. general
population controls) and allows for both to be included in the same analysis; (3) it
incorporates phenotype information on relatives who have missing genotype data at the
marker being tested; and (4) it can incorporate different trait prevalence values for males and
females.
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For comparison, we also propose the Xχ and XW tests, which are extensions, to X-
chromosome markers, of the corrected-χ2 and WQLS tests [Bourgain et al., 2004],
respectively, for autosomal markers. Furthermore, we extend the best linear unbiased
estimator (BLUE) of allele frequency for autosomes [McPeek et al., 2004] to a BLUE of
allele frequency for X-chromosome markers, and we give its estimated variance.

We simulate case-control samples containing both related and unrelated individuals for
various multi-locus X-linked disease models, in order to assess the type I error and compare
the power of the XM, XW, and Xχ tests. We apply XM to identification of X-chromosome
SNPs associated with alcohol dependence (MIM 103780) in a sample of moderate-size
Caucasian pedigrees from the Collaborative Study of the Genetics of Alcoholism (COGA)
data [Edenberg et al., 2005] of GAW 14, and we apply it to a complex Hutterite pedigree for
the identification of X-chromosome SNPs associated with asthma (MIM 600807).

Methods
Some basic assumptions about the structure of the data

Suppose the case-control study consists of genotype and phenotype data on n + m sampled
individuals, where we allow missing data. For a given marker, assume, without loss of
generality, that n of the n + m individuals have non-missing genotype data at the marker,
and that these individuals are indexed by i = 1, …, n, while m individuals have missing
genotype data at the marker, and they are indexed by i = n + 1, …, n + m. Let D denote the
phenotype data on the n + m individuals, with each individual categorized as “affected”,
“unaffected” or “unknown phenotype.” Here, the designation “unknown phenotype” could
be used to refer to, for example, an unphenotyped individual taken from a generic control
panel. Alternatively, it could refer to an individual whose phenotype has not yet become
apparent. For example, if the trait under study were Alzheimer’s disease, then unaffected
individuals under a certain age might be coded as “unknown phenotype.” The n + m
individuals can be arbitrarily related, with the pedigree(s) that specify the relationships
assumed to be known. For example, the COGA data set we analyze consists of 3 and 4-
generation outbred families, while the Hutterite data set we analyze consists of a single,
large, inbred pedigree. Unrelated individuals can also be included in the sample, or the entire
sample could consist of unrelated individuals. We analyze the data retrospectively, i.e., we
condition on D and treat the genotype data on the n individuals as random in the analysis.
The retrospective approach is appropriate, for example, with either random or phenotype-
based ascertainment. In what follows, we first give a brief overview of the MQLS method for
case-control association testing for autosomal markers. We then describe our model for X-
chromosome data and derive the BLUE of allele frequency for an X-chromosome marker.
We describe the XM test, which is our extension of the MQLS method to X-chromosome
markers, and we also describe the XW and Xχ tests, which are extensions, to X-chromosome
markers, of the WQLS and corrected-χ2 tests, respectively.

Overview of the MQLS method for case-control association testing of autosomal markers
For simplicity of presentation, we assume that the marker to be tested is an autosomal SNP
with alleles labeled “0” and “1.” The extension to multi-allelic markers is given in Appendix
C of a previous work [Thornton and McPeek, 2007]. Let Y = (Y1, …, Yn)T be the vector of
available genotypes at the marker to be tested, where Yi = 0, .5, or 1, according to whether
individual i has, respectively, 0, 1 or 2 copies of allele 1 at the marker. Let p represent the
frequency of allele 1 in the population from which the pedigree founders are assumed to be
drawn, where 0 < p < 1. Under the null hypothesis of no association and no linkage between
marker and trait, E0(Y|D) = p1, where 1 is a column vector of length n with every entry = 1.
If we further assume Hardy-Weinberg equilibrium (HWE) in the population from which the
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pedigree founders are drawn, then Var0(Y|D) = ξ2Φ, where  and Φ is the kinship
matrix with (i, j)th element equal to 2φij, where φij is the kinship coefficient between
individuals i and j, and 2φii = 1 + hi, where hi is the inbreeding coefficient of individual i.

Assuming HWE, ξ2 can be estimated by , where

(1)

is the BLUE [McPeek et al., 2004] of p, where the “a” in p̂a is to indicate that the estimator
is for autosomes. To make the approach more robust to deviations from HWE, we can

remove the assumption that  and simply define ξ2 to be the null variance of the
marker genotype, Var0(Yi|D), for an outbred individual i, which can be estimated directly

[Thornton and McPeek, 2010] by . The test
statistic for the MQLS method is then given by

(2)

where the estimator ξ̂2 in the denominator can be taken to be either  or  (we typically

prefer the robust form, ). Furthermore,

(3)

where Ri = 1 − k if individual i is affected, −k if individual i is unaffected, and 0 if
individual i is of unknown phenotype, where k is an estimate of the population prevalence of
the trait. (For association studies with phenotype-based ascertainment, k should ideally be an
externally obtained estimate, rather than the case frequency in the sample, because the case
frequency in the sample will reflect ascertainment, not population prevalence.) We define N
to be the set of study individuals with non-missing genotypes at the marker being tested, and
M to be the set of study individuals with missing genotypes at the marker being tested. Then
RN is the vector of R values for individuals in N, while RM is the vector of R values for
individuals in M. We define ΦN,M to be the cross-kinship matrix between groups N and M,
with ΦN,M having (i, j)th entry equal to twice the kinship coefficient between the ith
individual in group N and the jth individual in group M.

There are several possible interpretations of the MQLS statistic of equation (2). First, MQLS
can be derived [Thornton and McPeek, 2007] as the quasi-likelihood score test of the null
hypothesis H0: γ = 0 in the retrospective model

(4)

where γ represents the association parameter. This model includes an enrichment effect, i.e.,
individuals with multiple affected relatives are assumed to have a higher chance of carrying
a causal allele than individuals without affected relatives. For outbred individuals, it can be
shown [Thornton and McPeek, 2007] that this retrospective model holds, up to terms of
order o(γ), assuming any prospective, two-allele, disease model, when the effect size γ is
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close to 0. Second, the MQLS is closely connected [Wang and McPeek, 2009] with a
retrospective likelihood score test based on the following prospective model: P(D|Y) =
P0(D)c(Y, γ) ΠieγYiDi. Here, Di = 1 if i is affected and 0 if i is unaffected, P0(D) is the
(unspecified) null model for the joint distribution of trait values in the absence of association
with the marker being tested, where arbitrary dependence among phenotypes of related
individuals is allowed, and c(Y, γ) is the normalizing constant. See Wang and McPeek
[2009] for more details. A third interpretation [McPeek, in press] follows from noting that

the expression  in the numerator of the MQLS test statistic in equation (2) can be
rewritten as

(5)

where L is the set of phenotyped individuals, p̂a is the BLUE given in equation (1), and, for
individuals with missing genotype, Ŷj is the best linear unbiased predictor (BLUP) of Yj
under the null hypothesis, given by Ŷj = p̂a + [ΦM,N Φ−1(Y − p̂a1)]j−n. (Here, the last
subscript is j − n because j is the individual’s index in the full set of n + m individuals, while
j − n is the individual’s index among the m individuals with missing genotype.) Thus, we
can interpret the MQLS as involving a form of imputation of missing genotypes by their
BLUPs based on genotyped relatives. The main advantage of this form of imputation is that
the uncertainty in imputation and dependence in imputation across individuals is exactly
taken into account in the variance that appears in the denominator of equation (2).

Association Testing with a Bi-allelic X-linked Marker
In considering how to extend the MQLS method from autosomal markers to (non-
pseudoautosomal) X-chromosome markers, the most obvious difference we must deal with
is that for an X-chromosome marker, a male has only one allele, inherited from his mother,
while a female has two, one inherited from each parent. This difference must be taken into
account in our choice of alternative mean model, which will determine the form of our
quasi-likelihood score test for association. This difference will also change the correlation
structure among related individuals’ genotypes. One effect of the change in correlation
structure is that the BLUE of allele frequency takes a different form for X-chromosome
markers than for autosomes. The change in correlation structure will also affect the
association test statistic. These ideas are laid out in detail in the current and following
subsections.

Suppose that the marker to be tested is an X-chromosome SNP with alleles labeled “0” and
“1” (the extension to multi-allelic markers is given in the Appendix). Recall that we have
assumed, without loss of generality, that the first n of the n + m listed individuals in the
study have non-missing genotype data at the marker, while the last m individuals have

missing genotype data at the marker. Let  be the vector of available

genotypes at the marker to be tested, where, for i female, , according to whether
individual i has, respectively, 0, 1 or 2 copies of allele 1 at the marker, while for i male,

 or 1, according to whether individual i has, respectively, 0 or 1 copies of allele 1 at the
marker. Let p represent the frequency of allele 1 in the population from which the pedigree
founders are assumed to be drawn, where 0 < p < 1. Under the null hypothesis of no
association and no linkage between marker and trait, E0(YX|D) = p1. Note that for X-

chromosome markers, we have constructed  in such a way that, under the null hypothesis,

we retain the property  both for i male and for i female, as in the autosomal-
marker case.
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Variance of YX under the null hypothesis
We set ΣX = Var0(YX|D), the n × n covariance matrix of YX under the null hypothesis of no
association and no linkage between the given marker and the trait. We have two approaches
for estimating ΣX. The first approach assumes HWE in the founders at the marker under the

null hypothesis. Under this assumption, ΣX = σ2ΦX, where , and ΦX is the X-

kinship matrix with (i, j)th element equal to , where  is the X-Chromosome kinship
coefficient between individuals i and j, which is defined in the next subsection, X-Kinship

Coefficients. Note that σ2 can be interpreted as the null genotypic variance, , at
the marker for an outbred female or as one-half the null genotypic variance at the marker for
a male.

A reasonable estimator for ΣX under the HWE assumption is , where

(6)

with p̂ equal to the best linear unbiased estimator (BLUE) of p given below in the subsection
BLUE for Estimation of Allele Frequency for X-linked Markers. Alternatively, for a

more robust estimator that relaxes the HWE assumption at the marker, we propose  as
an estimator for ΣX, where

(7)

which is RSS/(n − 1) for generalized regression of YX on 1, where RSS is the residual sum
of squares.

X-kinship Coefficients

The X-kinship coefficient, , between individuals i and j is defined to be the probability
that, for an X-chromosome marker, an allele drawn at random from individual i and an allele
drawn at random from individual j are identical by descent. If i and j are the same individual,
then the two alleles are drawn with replacement. Unlike the autosomal kinship coefficient,
the X-kinship coefficient for individuals i and j depends on the sexes of i and j. Table I gives
the X-kinship coefficients and autosomal kinship coefficients for a few outbred relative
pairs.

For i female, we define the X-inbreeding coefficient, , to be equal to the X-kinship

coefficient of i’s parents. Then, for i female, we have . For i male, we have .

We choose to define  for i male, so that the formula  holds for males as well

as females. If i is an outbred female, then , while for i male, , regardless of
whether or not i is outbred. The following recursive formulas [Lange et al., 1976] can be
used to calculate X-chromosome kinship coefficients for individuals i and j:

1. for j male, ,

2. for j female, ,

3. for i male, , and
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4. for i female, ,

where the subscripts mi, fi, mj, and fj denote, respectively, the mother of i, father of i,

mother of j and father of j. The boundary conditions are  if i is a female founder, 

if i is a male founder, and  if i and j are two different founders. The KinInbcoefX
Software [Zhang et al., 2009] can be used to obtain X-kinship and X-inbreeding coefficients
for arbitrary pedigrees, including large, complex pedigrees with loops.

BLUE for Estimation of Allele Frequency for X-linked Markers
It is useful to have a method for fast, precise, allele frequency estimation for X-chromosome
markers from data that include relatives. Previous work [McPeek et al., 2004] developed the
BLUE for autosomal marker allele frequency estimation in samples with related individuals.
We extend this work to derive the BLUE for allele frequencies of X-linked markers in
samples with related individuals. Intuitively, the BLUE is the weighted average, of the
elements of the genotype vector YX, that is optimal for estimating the allele frequency p.
This optimal weighted average is obtained using the fact that, under the null hypothesis of
no association and no linkage between the X-chromosome marker and trait value, our model
specifies E0(YX|D) = p1 and Var0(YX|D) = σ2ΦX, where σ2 > 0 is arbitrary (i.e., not
necessarily ). In that case, the BLUE for p is

(8)

and the variance of p̂ is

(9)

If HWE holds at the marker, then , which is the variance for an outbred female,

and  can be used to estimate σ2. For a more robust estimator of σ2,  of
equation (7) can be used.

The matrix ΦX will be invertible except in the case when there are mono-zygotic (MZ) twins
in the sample. See Supplementary Materials for the extension of all the methods of this
paper to samples containing MZ twins.

General Form of Our X-chromosome Association Test Statistics
For testing association between an X-chromosome marker and a complex trait, we consider
statistics of the form

(10)

where V ≠ 0 is a vector that includes phenotype and pedigree information, which we
condition on in the analysis. We constrain VT1 = 0, because this will imply E0(VTYX|D) =
0. Under our assumptions and the usual regularity conditions, a statistic of this form will be

-distributed under the null hypothesis of no association and no linkage. Notice that
equation (10) for X-linked markers has a similar form to that of the MQLS test statistic for
autosomal markers given in equation (2). In what follows, we specify 3 different choices of
V, leading to the XM, XW and Xχ tests. In each case, we could add a subscript 1 or 2 to the
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test statistic, to denote use of estimator  of equation (6) or  of equation (7), respectively,

for σ̂2 in equation (10). We typically prefer the robust form, .

Direction of Deviation
One of the most common statistical methods for testing for genotype-phenotype association
in a sample of unrelated cases and controls is the Armitage trend test [Sasieni, 1997], which

results in a statistic that is -distributed under the null hypothesis of no association. One
interpretation of the Armitage trend test in this context is that it specifies a direction of
deviation (for the log-likelihood) from the null hypothesis of no association and then tests
for deviation in the specified direction. The direction of deviation specified by the Armitage
trend test is the optimal one for detecting a causal locus whose marginal effect is either
additive or multiplicative, on either the penetrance or logit-penetrance scale, with effect size
tending to zero, in an outbred, unrelated, case-control sample with only one type of control
(either unaffected controls or controls of unknown phenotype, but not both types in the same
sample). The Armitage trend test will be asymptotically optimal in that case. For most other
genetic models, the test will not be optimal, but it can still have reasonably good power to
the extent that the true alternative model has a strong component of deviation in the
direction specified by the test. The MQLS test has similar properties to the Armitage trend
test in that it is asymptotically optimal for detecting a causal locus whose marginal effect is
either additive or multiplicative, on either the penetrance or logit-penetrance scale, with
effect size tending to zero. In addition, the MQLS test extends that optimality to a wider class
of samples than that covered by the Armitage trend test. Whereas the asymptotic optimality
of the Armitage trend test holds for outbred, unrelated case-control samples with only one
type of control, the asymptotic optimality of the MQLS test holds also for case-control
samples containing related individuals, with both unaffected controls and controls of
unknown phenotype allowed in the sample, as well as individuals with missing genotype. As
is the case for the Armitage trend test, the MQLS test will not be optimal for most other
models, but it can still have reasonably good power to the extent that the true alternative
model has a strong component of deviation in the direction specified by the test.

The Dosage Compensation Model
In order to extend the MQLS test to X-linked markers, we choose a direction of deviation for
our 1-df XM test. We would like to choose the direction of deviation of XM to correspond to
a marginal model that is additive or multiplicative on the logit-penetrance scale, with
marginal effect size tending to zero, as in the Armitage trend and MQLS tests. Moreover, we
are required to make additional modeling choices because of the fact that the marginal
model for an X-linked causal variant now involves not only a population allele frequency p
and 3 possible marginal effects for the 3 female genotypes, but now also two possible
marginal effects for the two male genotypes. The additional assumption that we choose to
make in order to specify a direction of deviation for the XM test is the assumption of dosage
compensation. Under an assumption of dosage compensation, the genotypic effect for a
male with a particular allele is equivalent to the genotypic effect for a female who is
homozygous for that allele. (Other choices are possible. For instance, one could assume that
males who have the type 1 allele and females who are heterozygous have the same
genotypic effect, but such a model treats the alleles in an asymmetric way, which would
imply some prior knowledge about how the alleles influence the trait.)

By considering test statistics of the form in equation (10), where YX is encoded in such a
way that males with a particular allele have the same values as do females who are
homozygous for that allele, we are implicitly assuming dosage compensation in the Xχ and
XW tests defined below, as well as in the XM test.
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It should be noted that the association tests proposed in this paper are valid regardless of the
actual direction of the association. The choice of direction affects only the power, not the
validity of the tests. In subsection Power Comparison of XM, XW, and Xχ of Results, we
investigate power for settings in which the trait models follow dosage compensation as well
as settings in which the dosage compensation assumption does not hold.

Sex-Specific Prevalences
In order to improve power, the MQLS test makes use of information on the prevalence of a
trait in the study population, when this information is available. In our new X-chromosome
test, XM, we extend this idea to improve power further by incorporating information on sex-
specific prevalences, when available.

Recall that the expression for the MQLS test statistic given in equation (2) is a function of the
phenotypic residual vector R, where Ri = 0 if i is of unknown phenotype. If i is of known
phenotype, we can re-express Ri as Ri = 1{i case} − k, where 1{i case} is the indicator function
for the event that i is a case, and k is an estimate of the population prevalence. If
ascertainment is population-based, then R can be viewed as a mean-corrected phenotype
indicator. If ascertainment is phenotype-based, then R is also adjusted for retrospective
sampling by use of a value of k estimated from external, population-based data, not from the
case frequency in the sample (because case frequency in the sample would reflect
ascertainment). In the XM test, we replace R by A, where Ai = 0 for individuals of unknown
phenotype, Ai = 1{i case} − kf for i female with known phenotype and Ai = 1{i case} − km for i
male with known phenotype, where kf and km are estimates of the population prevalence of
the trait in, respectively, females and males, with 0 < kf, km < 1. When ascertainment is
phenotype-based, kf and km should ideally be obtained from external, population-based data,
rather than from the sex-specific sample case frequencies in the data set.

The test will be valid regardless of the values chosen for kf and km, though accurate values
can improve the power of the test. We recommend setting kf and km equal to sex-specific
prevalence estimates from previous studies or registry data from the population, when
available. For studies with random ascertainment, kf and km could be estimated from the
sample. Alternatively, kf and km can be set equal, if sex-specific prevalence information is
not available or if there is no evidence of a sex difference in prevalence. Robustness of
power of the test to the misspecification of kf and km is investigated in subsection
Robustness of power of XM to choice of kf and km.

The XM Test
Let A be the phenotype vector centered by sex-specific prevalence, as defined in the

previous subsection. Without loss of generality, we can write , where AN is the
centered phenotype vector for the n individuals with non-missing genotype data at the
marker being tested, and AM is the centered phenotype vector for the m individuals with
missing genotype data at the marker being tested. The XM test statistic is given by equation
(10) with V set equal to VXM, which is defined to be

(11)

Here,  is the n × m X-kinship matrix between individuals in groups N and M, with 
having (i, j)th entry equal to twice the X-kinship coefficient between the ith individual in
group N and the jth individual in group M. Note that equation (11) has a similar form to

equation (3), with RN, RM, Φ, and ΦN,M replaced by AN, AM, ΦX, and , respectively.
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We could add subscripts 1 and 2 to the name of the test, i.e., XM1 and XM2, to distinguish

the use of estimators  and  given in equations (6) and (7), respectively. (We recommend

use of .) XM is asymptotically  distributed under the null hypothesis.

As we did for the MQLS, we have several justifications or interpretations for the choice of
VXM in the definition of XM. First, the XM statistic can be derived as the quasi-likelihood
score test of the null hypothesis H0: γ = 0 in the retrospective model

(12)

where we constrain γ to be sufficiently small that  lies between 0 and 1 for all i.
This model captures the important feature that individuals with affected relatives are likely
to be enriched for the predisposing allele relative to individuals without affected relatives.
The main difference between the interpretations of the XM statistic and the interpretations of
the MQLS statistic given in a previous subsection is that the retrospective mean model given
in equation (4) holds, up to terms of order o(γ), for all 2-allele disease models, while the X-
chromosome version given in equation (12) holds, up to terms of order o(γ), for models that
are additive or multiplicative on the logit-penetrance scale, but not for all 2-allelle disease
models in general. There is also a close connection between the XM test and the
retrospective likelihood score test based on the prospective model

, which is described in more detail in the subsection
Overview of the MQLS method for case-control association testing of autosomal
markers. A key feature of this model is that it allows for dependence among individuals’
phenotypes under the null hypothesis.

Finally, we can interpret the XM test as involving the imputation of missing genotypes by
their BLUP based on relatives’ genotypes, under the null hypothesis. In other words, we can
write

(13)

where p̂ is the BLUE of p and  is the BLUP of the unobserved

genotype .

The XW test
We also extend the WQLS association test [Bourgain et al., 2004] for autosomal markers to
the XW test for X-linked markers. In contrast to the MQLS test, the WQLS assumes that every
individual in the sample can be classified as either case or control. In that context, let 1c be
the case indicator, i.e. the vector of length n whose ith entry is 1{i case}, which is equal to 1
if individual i is a case and 0 if individual i is a control. We define the XW test to be the
quasi-likelihood score test for H0: γ = 0 based on the mean model E(YX|D) = p1 + γ1c,
where this mean model can be rewritten as
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(14)

with 0 < p + γ < 1. We call this statistic XW and it has the form of equation (10) with V
chosen to be

(15)

XW is asymptotically  distributed under the null hypothesis.

When cases are unrelated to controls, the XW is asymptotically equivalent to the X-
chromosome version of a previously-proposed, single-marker, allelic test [Browning et al.,
2005]. For a sample of outbred, unrelated individuals, XW1, the version of the XW test that

uses variance estimator , would reduce to the  test of Zheng et al. [2007]. However, in
order to obtain robustness to deviation from HWE, we generally recommend that variance

estimator  be used instead of  in all the statistics we propose. Previous work [Thornton
and McPeek, 2007] for autosomal markers has shown that the WQLS is generally less
powerful for mapping a genetic trait than is the MQLS. For X-chromosome markers, this
phenomenon is demonstrated in our simulations results (see Results). Despite the fact that
they are not powerful for mapping, the WQLS and its X-chromosome version, XW, may still
be of interest because they have the potential to be useful for testing for association of
genotype with a non-genetic binary trait. For example, if two samples that were genotyped
under different conditions are combined in a single analysis, the WQLS or XW could be used
to test for heterogenity of allele frequency between the two samples, as a quality control
measure. For X-chromosome markers, this would be done by replacing the phenotype
indicator, 1c, in equation (15) by an indicator of which sample each individual was in.
Further exploration of this application is beyond the scope of the present work.

The Xχ test
We extend the corrected-χ2 association test [Bourgain et al., 2004] for autosomal markers to
the Xχ test for X-chromosome markers. The Xχ is given by equation (10) with V chosen to
be

(16)

where nc is the number of cases with available genotype data at the marker being tested for

association. If  is used for σ̂2 in the denominator of (10), the resulting statistic could be
considered an extension of the 1-df Pearson χ2 test to the X chromosome with related

individuals, while if  is used for σ̂2 in the denominator of (10), the resulting statistic could
be considered an extension of the Armitage χ2 test to the X chromosome with related

individuals. In either case, Xχ is asymptotically  distributed under the null hypothesis.

For a sample of outbred, unrelated individuals, the Xχ test would be rather similar to the test
based on UA described in Clayton [2008], except that the genotypic variance would be
estimated differently. See Supplementary Materials for details.
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GAW 14 COGA data
We apply XM to identify SNPs on the X-chromosome that are associated with alcohol
dependence in data provided by the Collaborative Study of the Genetics of Alcoholism
(COGA) for Genetic Analysis Workshop 14 [Edenberg et al., 2005]. There are a total of
1,614 individuals from 143 pedigrees, with each pedigree containing at least 3 affected
individuals. We include in our analysis only those individuals who are coded as “white, non-
Hispanic.” We designate as cases those individuals who are affected with ALDX2 or who
have symptoms of ALDX2, where ALDX2 is defined to be DSM-IV alcohol dependence.
By these criteria, there are 447 male cases and 366 female cases with available SNP data.
We designate as “unaffected controls” those individuals who are labeled as “pure
unaffected,” and we designate as “controls of unknown phenotype” those individuals who
are labeled as “never drank alcohol.” Among individuals with available SNP data, these
criteria result in 35 unaffected male and 147 unaffected female controls, and 4 males and 9
females with unknown phenotype. The resulting set of 1008 individuals we analyze are from
116 pedigrees. The data set includes 310 SNPs on the X-chromosome from the Affymetrix
GeneChip 10K Mapping Array.

The Hutterite Data
We analyze data from a sample of 1,415 individuals, of whom 648 are males and 767 are
females, from the Hutterite population. The Hutterites are a North American religious isolate
originating from Tyrol whose entire population can be traced back to 90 ancestors. The
sample population has complex relatedness, with many of the individuals being related
through multiple lines of descent. A more detailed description of the Hutterite population
can be found in Abney et al. [2002]. The complete genealogy of the 1,415 sampled
individuals was constructed from a ≥12,000-person Hutterite pedigree. This yielded a 3,673-
person pedigree with 64 founders that included all known ancestors of the individuals in the
sample. The sampled individuals were phenotyped for asthma. An individual was designated
as a case for asthma if he or she met all 3 of the following conditions: (1) bronchial
hyperresponsiveness (BHR) (≥20% drop in baseline FEV1 at ≤25 mg/ml methacholine) or
reversibility (≥15% increase in baseline FEV1 after albuterol treatment; (2) at least two out
of the following three symptoms: coughing, wheezing, shortness of breath; and 3) a doctor’s
diagnosis of asthma at any evaluation. Individuals who met 0 out of the above 3 conditions
were designated as unaffected controls, and individuals who met 1 or 2 of the above 3
conditions were designated as controls of unknown phenotype. This phenotype definition
resulted in 177 cases (83 males and 94 females), 543 unaffected controls (260 males and 283
females), and 695 controls of unknown phenotype (305 males and 390 females). Of the
1,415 individuals, 587 were genotyped on the Affymetrix GeneChip Human Mapping 500K
array, 163 on the Affymetrix GeneChip Human Mapping 5.0 array, 647 on the Affymetrix
GeneChip Human Mapping 6.0 array, and an additional 18 on both the 500K and 6.0 arrays.
We analyze 5,826 X-chromosome SNPs that pass quality control and are present on all 3
arrays.

Results
Simulation Studies

We perform simulation studies to (1) assess the type I error of XM, XW, and Xχ, (2)
compare the power of XM, XW, and Xχ, (3) assess the robustness of power of XM to the
choice of the parameters kf and km, and (4) compare power for different male-female ratios
among the sampled individuals. We consider two different sample configurations, each of
which contains both unrelated and related cases and controls. Both sample configurations
include affected and unaffected individuals from 120 outbred, three-generation pedigrees,
where each pedigree has a total of 16 individuals, of whom 8 are female and 8 are male. The
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pattern of affected and unaffected individuals in each pedigree varies randomly according to
one of the trait models described in the next subsection. Pedigrees are sampled conditional
on obtaining exactly 40 pedigrees with 4 affected individuals, 40 with 5, and 40 with 6. The
phenotypes of all individuals in the sampled pedigrees are observed and genotypes are
observed for only a subset of individuals in each pedigree. For each individual in a sampled
pedigree, the individual’s genotypes are observed if and only if at least half of the
individual’s siblings, parents, and offspring in the sampled pedigree are affected. Sample
configurations 1 and 2 both contain unrelated individuals in addition to pedigree data. The
difference between sample configurations 1 and 2 lies only in the male-female ratio among
the unrelated individuals in the sample. The set of unrelated individuals in sample
configuration 1 comprises 50 affected females, 50 affected males, 200 unaffected females,
and 200 unaffected males. The set of unrelated individuals in sample configuration 2
consists of 100 affected males and 400 unaffected males. All phenotypes and genotypes are
assumed to be observed for the unrelated individuals in each sample.

Trait Models
We consider two different classes of multigene X-chromosome trait models. Model I has
two unlinked causal X-chromosome SNPs with epistasis between them and both of them
acting dominantly. In Model I, the frequencies of allele 1 at SNPs 1 and 2 are p1 and p2,
respectively. Females with at least one copy of allele 1 at SNP 1 and at least one copy of
allele 1 at SNP 2 have penetrance f1. All other females have penetrance f2 < f1. Males with
allele 1 at SNP 1 and allele 1 at SNP 2 have penetrance f3. All other males have penetrance
f4 < f3. We consider two different parameter settings for model I, which are listed as models
I-a and I-b in Table II. Model II has two unlinked causal X-chromosome SNPs with epistasis
between them, with SNP 1 acting recessively and SNP 2 acting dominantly. Females with
two copies of allele 1 at SNP 1 and at least one copy of allele 1 at SNP 2 have penetrance f1.
All other females have penetrance f2 < f1. Males with allele 1 at SNP 1 and allele 1 at SNP 2
have penetrance f3. All other males have penetrance f4 < f3. We consider two different
parameter settings for model II, which are listed as models II-a and II-b in Table II. The
parameter settings for each model are given in Table II. The female and male population

prevelances, which we denote as  and , respectively, can also be found in Table II for
each model. (Here, the * is used to denote that these are the true prevalence values, while we
use kf and km to denote the (estimated or assumed) prevalence values used in calculating
XM.) Table II also gives, for each model, the expected frequencies of allele 1 at SNP 1
among female and male cases. These values can be compared to each other as well as to p1,
the population frequency of allele 1 at SNP 1, which is in the second column of Table II.

None of the four models we consider fit the assumption of a marginal effect, for the SNP
being tested, that is additive or multiplicative on the logit scale. Two models (I-a and II-a)
satisfy the dosage compensation assumption and the other two do not, as indicated in Table
II. The male and female prevalences range from being very similar (model II-a) to being
different by a factor of more than 5 (model II-b). The frequencies of the predisposing allele
in male and female cases can be equal (model I-a), the frequency in female cases can be
higher (I-b), or the frequency in male cases can be higher (II-b).

Assessment of Type I Error of XM, XW, and Xχ

We perform simulation studies under the null hypothesis of no association and no linkageto

verify that the use of the  approximations to the null distributions of XM2, XW2, and Xχ2
give the appropriate type I error for the tests, where the subscript “2” denotes use of the

estimator  of equation (7). The phenotype is simulated from model I-a with sample
configuration 1. We test at an unlinked, unassociated, X-chromosome SNP, with three
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different allele-frequency settings, which are given in Table III. For each allele-frequency
setting, 100,000 simulated replicates are generated and each of them is tested for association
at the .0001 level, using each of the three test statistics. In Table III, for each test statistic,
we report the empirical type 1 error, which we calculate as the proportion of simulations in

which the test statistic exceeds the  quantile corresponding to nominal type 1 error level .
0001. Using an exact binomial calculation, we find that the empirical type 1 error rate does
not differ significantly from the nominal for any of the three statistics. Thus, the use of the

 approximation results in an accurate assessment of significance for XM2, XW2, and Xχ2.
In these same simulations, we also performed the XM1, XW1, and Xχ1 tests, which use

variance estimator  of equation (6) instead of , and we obtained nearly identical
empirical type 1 error rates (results not shown).

Power Comparison of XM, XW, and Xχ

We perform simulation studies to compare the power of XM, XW, and Xχ. Five thousand
replicates from each of models I-a, I-b, II-a, and II-b are simulated for sample configurations
1 and 2. The test is performed at SNP 1 for each model, with the significance threshold set
to .0001. Estimated power for XM2, XW2, and Xχ2, with standard error, is given in Table IV.
In these simulations, the XM2 statistic is calculated with kf and km set equal to the true

female and male prevalences,  and , respectively, given in Table II.

As shown in Table IV, XM is more powerful than both XW, and Xχ for all but one setting.
The increase in power for the XM is substantial (a difference in power of at least .15) for
model I-b and sample configuration 2, model II-a for both sample configurations, and model
II-b for sample configuration 1. Xχ is slightly more powerful than XM for model II-b with
sample configuration 2. In that setting, all individuals in the unrelated set are male and the
effect size of the tested variant is much larger in males than in females, representing an
extreme deviation from the dosage compensation assumption. Nonetheless, XM is nearly as
powerful as Xχ in that setting. Our simulation studies indicate that XM performs
approximately as well as, or much better than, XW and Xχ for a range of complex disease
models. As in the type-I error simulation study, we also performed the XM1, XW1, and Xχ1
tests and obtained nearly identical power (results not shown).

Robustness of power of XM to choice of kf and km

The XM test is valid for any choice of the parameters kf and km. When kf and km are equal to
the population prevalences of the disease for females and males, respectively, the XM test is
asymptotically optimal for detecting association with an X-chromosome variant, under a
trait model that is additive or multiplicative on the logit-penetrance scale, with dosage
compensation, as the effect size tends to zero. In reality, the trait model will usually be
complex, dosage compensation may not hold, and the prevalence values will be estimated.
To see how the power of the XM test is affected by different choices of kf and km when
dosage compensation and additivity/multiplicativity do not hold, we perform a simulation
study based on the phenotype simulated from model II-b with sample configuration 1. In

model II-b, the true population prevalences for females and males are  and ,
respectively.

Table V gives power results for the XM2 test when different values of kf and km are used in
the analysis, where these values are chosen to be multiples of the true values. In this case,
choosing kf and km to be within a factor of 3 of the true population prevalences appears to
give high power, suggesting that the procedure is quite robust to the choice of kf and km. It
is interesting that the power for XM2 when kf and km are set to the true prevalence values
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(  and ) is slightly lower than the power when  and  is used. That
the use of the true prevalences does not give optimal power under model II-b is reasonable.
While we expect the correct prevalences to give optimal power when the causal marker has
a marginal model that has dosage compensation with a small additive/multiplicative effect
on the logit-penetrance scale, model II-b violates these assumptions. Even so, the power
seems not too far from optimal when the true prevalences are used in model II-b.

GAW 14 COGA data
We apply XM2 to test for association with alcohol dependence and 310 SNPs on the X-
chromosome in the GAW 14 COGA data. The prevalences for DSM-IV alcohol dependence
and abuse for White American males and White American females have been estimated
[Grant et al., 2004] from the 2001–2002 National Epidemiologic Survey on Alcohol and
Related Condition to be 7.5% and 2.9%, respectively. For the XM2, we accordingly set km
= .075 and kf = .029 in the analysis. After applying a Bonferroni correction for association
testing at 310 SNPs, XM2 is significant at the 5% level for SNP rs979606 (P = 3.8 · 10−6

uncorrected, .0012 corrected). SNP rs979606 is in an intron of the Monoamine oxidases A
(MAOA) gene. The MAOA gene, located at Xp11.23, is a candidate gene for alcoholism.
The MAOA gene is involved with the production of the enzyme monoamine oxidase. This
enzyme breaks down neurotransmitters that control mood, aggression, and pleasure.
Previous studies have found the MAOA gene to be associated with alcoholism [Devor et al.,
1994; Nilsson et al., 2007; Nilsson et al., 2008; Ducci et al., 2008], and other substance
abuse [Gade et al., 1998], as well as anti-social behavior [Manuck et al., 2000; Caspi et al.,
2001; Beitchman et al., 2004].

A previous analyses of these data [Wang et al., 2011] also used the ALDX2 alcoholism
phenotype and performed family-based association tests using FBAT [Rabinowitz and
Laird, 2000] for individuals who self-reported as White, non-Hispanic. For SNP rs979606 in
the candidate MAOA gene, the uncorrected p-value using FBAT was reported as 4.1 · 10−4.
The corresponding uncorrected p-value using XM for this SNP is 3.8 · 10−6, illustrating the
potential improvement in power of XM over FBAT for X-chromosome SNPs in samples
with related individuals, similar to the improvement observed [Thornton and McPeek, 2007;
Thornton and McPeek, 2010] for the MQLS over FBAT for association testing of autosomal
markers.

There were 4 additional SNPs on the X-chromosome with uncorrected p-values less than .
001 using FBAT. These SNPs and their p-values were reported as rs751871 (P = 2.3 · 10−4

uncorrected), rs1591620 (P = 4.8 · 10−4 uncorrected), rs1590366 (P = 4.1 · 10−4

uncorrected), and rs742997 (P = 9.1 · 10−5 uncorrected). However, all four of these SNPs
fail our quality control check because they each have a significant sex difference in allele
frequency, beyond that explained by phenotype. This is apparent from performing a
generalized regression of YX on S and ΦXAN with intercept, where S is an indicator vector
for sex with ith entry 0 if i is male and 1 if i is female. If we ignore the fact that they failed
our quality control check, the corresponding uncorrected p-values for these SNPs by the
XM2 are 6.1 · 10−10, 1.4 · 10−4, 1.1 · 10−3, and 2.1 · 10−15 respectively. None of these SNPs
are in genes. In contrast, SNP rs979606, in the MAOA gene, does not have a significant sex
effect in the generalized regression model, and so passes our quality control check.

The Hutterite Data
We apply XM to identify SNPs on the X-chromosome that are associated with asthma in the
Hutterite data. We estimated the male and female prevalences of asthma in the Hutterites to
be nearly identical (.161 for females and .166 for males), so we set both kf and km in the XM
test to .16. There were no significant SNPs identified by XM after applying a Bonferonni
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correction to the p-values. We analyzed the Hutterite data using both XM1, in which the
variance estimator assumes HWE in the pedigree founders, and XM2, which uses the robust

variance estimator, . Figure 1 gives Q-Q plots for the resulting p-values from the two
statistics. In these plots, the XM1 test appears to be much less well-calibrated than the XM2

test, implying that the assumptions leading to variance estimator  do not appear to hold for
a large number of markers. If the assumptions held, the two statistics should perform nearly
identically. In general, possible explanations for this phenomenon could include (1)
genotyping error, (2) additional inbreeding not accounted for by the pedigree (or just
additional relatedness), (3) cryptic population structure, (4) assortative mating related to the
X-chromosome, and (5) selection related to the X-chromosome. Cryptic population structure
seems implausible, given the extensive, well-documented pedigree information available for
the Hutterites. It is plausible that some Hutterite founders may have been related, so
explanation (2) above is a possibility. Whatever the reason for the apparent deviation from
assumptions, it is interesting that XM2, which involves a robust variance estimator, performs
well in this sample, even when XM1 does not.

Comparison of Allele Frequency Estimators
Our estimator of allele frequency for X-chromosome markers, p̂, is the BLUE, meaning that
it is the weighted average, of the elements of the genotype vector YX, that is optimal for
estimating the allele frequency p. To assess the performance of our estimator, we make two
types of comparisons. First, for X-chromosome markers, we compare our BLUE, p̂, to the
estimator, ȲX, which we call the “naive” estimator, which is the unweighted average of the
elements of the genotype vector YX. This comparison gives us an idea of how much
efficiency is gained for X-chromosome allele frequency estimation by using the optimal
weighting of the genotypes instead of equal weighting. Second, we compare our X-
chromosome allele frequency estimator to autosomal allele frequency estimators, to gauge
the amount of increase in uncertainty about allele frequency estimation for X-chromosomes
relative to autosomes. We consider two autosomal allele frequency estimators, the BLUE for
autosomes, p̂a given in equation (1), and the naive estimator, Ȳ, which is the mean of the
observed autosomal genotypes. To compare the estimators, we use the pedigree information
on the 1008 individuals we analyzed for alcoholism in the GAW 14 COGA data. For each of
the 4 estimators we consider, we can directly calculate the mean square error (MSE) as a
function of allele frequency, for the given set of pedigrees. Because all 4 of these estimators
are unbiased, the MSE is equal to the variance in each case. Thus, for example, the MSE of
the X-chromosome BLUE, p̂, is obtained from equation (9), and the MSE of the autosomal
BLUE, p̂a, is similar but with ΦX replaced by Φ.

Figure 2 shows MSE, as a function of allele frequency, for each of the 4 estimators. Smaller
MSE corresponds to better accuracy of estimation. The most striking feature of Figure 2 is
how much more efficient our BLUE estimator, p̂, is compared to the naive estimator, ȲX.
This shows that optimal weighting leads to much better allele frequency estimation than
equal weighting. We can also see that the X-chromosome allele frequencies are estimated
less precisely than autosomal allele frequencies based on the same set of individuals. This is
expected because the fact that a male has only one allele generally means that the effective
sample size is smaller for X-chromosome alleles than for autosomal alleles. It is interesting
that in this sample, the optimal weighting seems to make a larger difference in the MSE than
does the difference between X-chromosome and autosomal markers.

Assessment of Computation Time
Using a single machine with Intel Xeon quad-core 2.66 GHz processors with 16 GB RAM
and calculating all three test statistics (XW, Xχ, and XM ), analysis of 310 X-chromosome
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SNPs from the COGA data took approximately 1 second, while analysis of 5,826 X-
chromosome SNPs from the Hutterite data took approximately 894 minutes (14 hours and
54 minutes). For a given data set, the computation scales linearly with the number of SNPs.
The large difference in per-SNP computation time between the Hutterite and COGA data
sets (9.2 seconds vs. .003 seconds) is due to the large pedigree size for the Hutterite data
(approximately 1,400 individuals in a single pedigree) in contrast to the much smaller
pedigree sizes in COGA. This is because for each SNP we compute a matrix decomposition
for each family in the data, where the dimension of the matrix is the number of sampled
individuals in the pedigree for the family. This is done to allow the pattern of missing
genotype data to vary across SNPs. Thus, a sample consisting of a single large pedigree is
much more time-consuming to analyze than an equal-size sample consisting of many
smaller pedigrees. For comparison, we also performed a similar analysis using a subset of
609 individuals from the Hutterite data, and the analysis took approximately 19 minutes, or
around .2 seconds per SNP. The speed could presumably be improved, as we have not made
extensive attempts to optimize the code.

Discussion
Thanks to technological advances in genome scans, genetic association studies routinely
have high-density data across the genome. Despite these advances, the mapping of many
complex traits has proven to be difficult, illustrating the need for new and more powerful
methods to detect susceptibility loci. Association methods have primarily been developed
for the analysis of markers on the autosomal chromosomes, and significantly less attention
has been given to the analysis of markers on the X-chromosome, despite the potential for
identifying X-linked variants that influence complex traits. We develop methods for case-
control association testing of X-linked markers when some individuals in the sample are
related with known kinship. Our XM method is applicable to, and computationally feasible
for, association studies with completely general combinations of family and case-control
designs. The XM appropriately adjusts for correlated alleles and genotypes among same- and
different-sex relatives and also accounts for the allele copy number difference between the
sexes. The method distinguishes between unaffected controls and controls of unknown
phenotype and can incorporate both into the same analysis. It can also incorporate
phenotype information on relatives who have missing genotype data at the marker being
tested, and it uses sex-specific prevalences to improve power. The XM can be viewed as an
extension, to X-chromosome analysis, of the MQLS method for autosomal analysis. We
develop two other association tests for X-linked markers, the XW and Xχ tests, which are
extensions, to X-chromosome markers, of the WQLS and corrected-χ2 tests, respectively.
Our simulations indicate that, while all 3 methods control type 1 error, the XM test tends to
be the most powerful of the 3 methods, over a range of multigene trait models.

In an analysis of the X-chromosome SNPs in the GAW 14 COGA data, the XM detected
significant association, after Bonferonni correction, between SNP rs979606 and alcohol
dependence, in individuals who self-reported as white, non-Hispanic. SNP rs979606 is in the
MAOA gene, a candidate for alcoholism. The uncorrected XM p-value for this SNP is 3.8 ·
10−6, compared to a previously reported [Wang et al., 2011] uncorrected p-value of 4.1 ·
10−4 using FBAT.

It is useful to have a method for fast, precise, allele frequency estimation for X-chromosome
markers from data that include relatives. To solve this problem we derive the BLUE of allele
frequency for X-chromosome markers in samples with related individuals, along with its
estimated variance. The BLUE of allele frequency is unbiased and has smaller variance than
the sample allele frequency, in samples with related individuals. It is also very fast to
compute, making it a practical tool for use in genome-wide association studies.
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We developed a robust variance estimator, , for X-chromosome markers, which relaxes
the HWE assumption. We demonstrated in the Hutterite data set that use of the robust
variance estimator, instead of the variance estimator that assumes HWE, can lead to better-
calibrated statistics.

Use of the XM requires specification of the constants kf and km in the test statistic. We
emphasize that the test is valid for any values of kf and km. To optimize power, we
recommend that kf and km be set to the best available estimates of the population
prevalences of the trait for females and males, respectively. It is reasonable to set kf = km if
there is no evidence of a sex difference in prevalence or if sex-specific prevalence estimates
are not available. Our simulation studies suggest that the power of the test is very robust to
the choice of kf and km. When kf and km were misspecified within a factor of 3 of the true
female and male population prevalences, there was little or no loss of power in our
simulations.

We have implemented the XM test, as well as the XW and Xχ tests, in the XM software
package. The source code will be freely downloadable (see Web Resources).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix

Extension of XM to Multi-allelic Case
We extend the XM procedure to test for association between a trait and a multi-allelic X-

linked marker. Suppose there are a allelic types at the marker, and let  be

an [(a − 1)n] vector where  and

Let p = (p1, …, pa−1)T denote the allele frequency distribution, at the marker, in the general

population, where pi > 0 is the frequency of allelic type i, and . Define r = (r1, …,
ra−1)T to be the (a − 1) vector of expected deviations in allele frequencies for a case
randomly sampled from the population. Then the mean model for the XM in the multi-allelic

case is , where ⊗ is the Kronecker product, and 1 is a
vector of 1’s of length n, i.e.

where we constrain

for all 1 ≤ i ≤ a − 1, 1 ≤ j ≤ n.
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Under the null hypothesis of no association between the marker and the trait, we have that r
= 0, where 0 is a zero vector of length (a − 1). We denote by Var0(YX) = ΣX the [(a − 1)n] ×
[(a − 1)n] covariance matrix of YX under the null hypothesis of no association and no
linkage between the given marker and the trait. If Hardy-Weinberg equilibrium (HWE) is
assumed in the founders at the marker, then ΣX = F ⊗ ΦX where F is an (a − 1) × (a − 1)
matrix with (i, j)th entry  if i = j and  if i ≠ j. (Alternatively, we
could relax the HWE assumption, as we did for the bi-allelic case, and estimate ΣX using a
robust estimator for F.) The XM test for the multi-allelic case is

(17)

where ,

 for each i, p̂0 = (p̂01, …, p̂0a−1)T is the maximum quasi-likelihood estimate of p
when r = 0, or equivalently the BLUE of p, which can be shown to be

 for each i. If HWE is assumed in the founders, then (F−1)ik is the
(i, k) entry of F−1 evaluated at p̂0. (Alternatively, a more robust estimator for F, that relaxes
the HWE assumption, could be used.) Under the null hypothesis, the XM statistic follows a
χ2 distribution with a − 1 degrees of freedom.
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Figure 1. Q-Q plots of p-values from XM for the Hutterite asthma data
Q-Q plots of p-values from XM1 (panel A) and XM2 (panel B), for 5,826 X-chromosome
SNPs in Hutterite asthma data, plotted on −log10 scale.
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Figure 2. Mean square error (MSE) versus allele frequency in COGA pedigrees
Smaller MSE corresponds to better accuracy. Naive Estimator for X is ȲX. Naive Estimator
for Autosomes is Ȳ. BLUE for X is given by equation (8). BLUE for Autosomes is given by
equation (1).
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Table I

Examples of Autosomal and X-Kinship Coefficients for Outbred Nuclear Family Relationships

Relationship of j to i φij

Mother of i
 if i is female,  if i is male

Father of i
 if i is female, 0 if i is male

Full sister of i
 if i is female,  if i is male

Full brother of i
 if i is female,  if i is male

i (Self-kinship)
 if i is female, 1 if i is male

Note. — In the table, φij is the autosomal kinship coefficient for i and j, and  is the X-chromosome kinship coefficient for i and j.
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Table III

Empirical Type I Error at Level .0001

p

Empirical Type I Error of Tests

XM2 XW2 Xχ2

.4 .00006 .00008 .00014

.2 .00009 .00005 .00009

.05 .00010 .00016 .00015

Note. — Empirical type I error rates are calculated based on 100,000 simulated replicates. Simulation model is I-a with sample configuration 1.
Association is tested with a bi-allelic X-linked marker having minor allele frequency p. Using an exact binomial calculation, we determined that
empirical type I error rates between .00004 and .00016 are not significantly different from the nominal .0001 level. All values in the table fall
within this range, so none are significantly different from the nominal.
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Table IV

Empirical Power and SE at Level .0001

Model Sample Configuration

Estimated Power (SE)

XM2 XW2 Xχ2

I-a 1 .97 (.003) .92 (.005) .87 (.005)

I-a 2 .94 (.003) .84 (.005) .79 (.006)

I-b 1 .83 (.006) .76 (.006) .60 (.007)

I-b 2 .75 (.006) .54 (.007) .39 (.007)

II-a 1 .52 (.007) .18 (.005) .14 (.005)

II-a 2 .40 (.007) .17 (.005) .12 (.005)

II-b 1 .72 (.006) .47 (.007) .57 (.007)

II-b 2 .74 (.006) .70 (.007) .80 (.006)

Note. — Power is assessed at significance level .0001, on the basis of 5,000 simulated replicates. The highest power for each simulation setting is
in bold.
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Table V

Robustness of XM to Misspecification of kf and km

Assumed kf and km Multiple of true  and Estimated Power (s.e.)

.053 and .010 .67 (.006)

.071 and .014 .66 (.006)

.106 and .020 .69 (.006)

.212 and .041 1 .72 (.006)

.423 and .082 2 .75 (.006)

.635 and .122 3 .71 (.006)

.846 and .163 4 .43 (.006)

Note. — Simulation model is II-b, with sample configuration 1. Power is assessed at significance level .0001, on the basis of 5,000 simulated

replicates.  and  are the female and male population prevalences of the trait, while kf and km are the values used in the calculation of XM.

The  of equation (7) is used for the calculation of XM.
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