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Abstract
Objective—Since many of the world’s vaccine supply chains contain multiple levels, the
question remains of whether removing a level could bring efficiencies.

Methods—We utilized HERMES to generate a detailed discrete-event simulation model of
Niger’s vaccine supply chain and compare the current four-tier (central, regional, district and
integrated health center levels) with a modified three-tier structure (removing the regional level).
Different scenarios explored various accompanying shipping policies and frequencies.

Findings—Removing the regional level and implementing a collection-based shipping policy
from the district stores increases vaccine availability from a mean of 70% to 100% when districts
could collect vaccines at least weekly. Alternatively, implementing a delivery-based shipping
policy from the central store monthly in three-route and eight-route scenarios only increases
vaccine availability to 87%. Restricting central-to district vaccine shipments to a quarterly
schedule for three-route and eight-route scenarios reduces vaccine availability to 49%. The
collection-based shipping policy from district stores reduces supply chain logistics cost per dose
administered from US$0.14 at baseline to US$0.13 after removing the regional level.

Conclusion—Removing the regional level from Niger’s vaccine supply chain can substantially
improve vaccine availability as long as certain concomitant adjustments to shipping policies and
frequencies are implemented.
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INTRODUCTION
Since many of the world’s vaccine supply chains contain multiple levels which can lead to
logistical bottlenecks, can removing a level bring efficiencies? A vaccine supply chain is the
series of steps required to get vaccines from their manufacturers to their target populations
for administration. An efficient vaccine supply chain is essential to making the necessary
vaccines available at the immunization locations to the population.

Our previous studies showed that the Niger supply chain, which consists of four levels, faces
some challenges in getting vaccines to the immunization locations(1–3). Vaccines are
delivered to the central store bi-annually and subsequently flow through seven functioning
regional stores, forty-two district stores, and over six-hundred health clinics for
administration. The question remains: are all of these levels necessary, or can simplification
through removing a level improve operational efficiency? Therefore, in collaboration with
our World Health Organization (WHO) and Niger partners, our vaccine logistics modeling
team constructed a detailed, discrete-event simulation model of Niger’s national vaccine
supply chain to test the effects of removal of the regional level from the national vaccine
supply chain and evaluate the impacts of various shipping policies on vaccine delivery.

METHODS
Model Description

Our team constructed a model utilizing the HERMES (Highly Extensible Resource for
Modeling Supply Chains) program to represent the vaccine supply chain in Niger. HERMES
is a software program developed in the programming language Python, using resources
provided by the SimPy package(1–5). HERMES can rapidly create detailed discrete event
simulation models of any vaccine supply chain. The resulting model simulates the
operational policies, storage and administering facilities, transport procedures and
equipment in a vaccine supply chain, while also accounting for stochastic variations in the
system (e.g., the child arrival rate at a given administration facility). The model for Niger
included all World Health Organization (WHO) Expanded Program on Immunization (EPI)
vaccines (Table 1)(6)

Niger Vaccine Supply Chain
The supply chain consists of four levels, as illustrated in Figure 1. Vaccines are delivered to
regional stores every six months. They are then delivered to eight regional stores quarterly.
District stores will then collect vaccines from regional stores monthly, and Integrated Health
Centers (IHC’s) will collect vaccines from districts monthly. Vaccine administration occurs
at IHC’s every weekday. Most facilities are located in the south of Niger, close to population
settlements. Transport distances and hours traveled between each origin and destination are
also specified in the model. Descriptions of the data sources, population distribution, and
model structure are detailed in previous publications(1, 3, 5).Child arrival is modeled using
a combination of the target population density within a catchment area, and frequency
specified by the WHO EPI vaccination calendar(1, 3, 5).

Supply Chain Performance and Cost Measures
HERMES generates a number of performance and cost measures. For this study, we focused
on three key measures. The following formula calculated the vaccine availability (the
percentage of children arriving at an IHC who are able to receive their recommended
vaccine because there is sufficient vaccine on-hand) for each simulation for each vaccine
type at each IHC:
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[1]

The following formulae calculated the capacity utilization (i.e., the percentage of net space
available for transport or storage that is used) for each device:

[2]

[3]

Data used to compute storage, transport, and personnel costs came from the 2005 Niger
Comprehensive Multi-Year Plan (cMYP) and the Cold Chain Equipment Inventory(7–10).
All storage and transport costs account for operating and maintenance fees, and utilities. A
rate of 3% adjusted costs to 2011 United States dollars (US$) (11).

The total logistics operating costs for the vaccine supply chain can be given by the following
formula:

[4]

where:

Costlabor=Σpersonnel Costeach employee

Coststorage=Σstorage unitCostper storage unit

Costtransport=Σtransport routes Costper transport route

Costbuilding=Σbuildings Costper building

The following expressions define the unit cost for each of the categories:

Unit Labor Costs

Costeach employee=Costemployee’s annual salary and benefits* % of time dedicated to
vaccine logistics

Unit Storage Costs

Costper storage device unit=Coststorage unit energy usage + Coststorage unit maintenance +
Coststorage depreciation

Unit Transport Costs

Costper km=Costvehicle maintenance per km + Costvehicle depreciation per km +
Costfuel per km

Costfuel per km=Costfuel per liter / fuel efficiency of vehiclekm per liter

Unit Building Costs

Costper building=(Costdepreciation + Costannual utilities) * % of building utilized for
logistics

Changes in delivery frequency affect per diem (included in transport) but it did not affect
personnel costs as it was assumed that current storage location-based employees could
handle the increased shipments without having to hire more personnel.

The geographic locations and distances of central, regional, district, and IHC supply chain
facilities were initially established using geographic coordinates from the WHO Cold Chain
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Equipment Inventory, United Nations Food and Agriculture Organization (FAO)(12), and
supplemented with data points found by utilizing GeoNames Geographical Database(13)
and Google Earth(14). Unknown locations were assigned a point based on reasonable
approximation travel distance between two locations was based on the straight-line distance
and multiplied by a factor to convert it to an approximate road travel distance.

Simulated Scenarios
Each scenario was simulated over a one-year time horizon. We compared the performance
and cost measures for different configurations of the Niger supply chain (Figure 1) to those
for the baseline structure of Niger’s current supply chain. Corresponding to the four
configurations shown, we examined the following different types of shipping policies,
respectively:

• Baseline: central store delivers vaccines in three shipping loops to seven regional
stores quarterly using a combination of cold trucks and 4×4 trucks, from which
each district procures its own vaccines using 4×4 trucks.

• Shipping policy 2: district stores collect vaccines directly from the central store
using a 4×4 truck as needed and when vaccines at the central store are available on
monthly, bi-biweekly or weekly frequencies.

• Shipping policy 3: the central store distributes vaccines directly to the district stores
in three cold trucks along three shipping loops on a monthly or quarterly shipping
frequency.

• Shipping policy 4: the central store distributes vaccines directly to the district stores
in eight cold trucks along eight shipping loops on a monthly or quarterly shipping
frequency.

Vaccine shipments between the district and IHC stores in all scenarios occurred as necessary
with a maximum shipping frequency of once per week, utilizing two vaccine carriers per
trip. The shipping loops in policies 3 and 4 mimicked the original routing network in the
baseline scenario, which are defined based on existing administrative boundaries and local
knowledge of road conditions and accessibility. Table 3 details the storage and transport
capacities for each scenario, by level and device.

RESULTS
Vaccine Availability

Table 1 shows vaccine availabilities by vaccine type at the IHC level, for each simulated
scenario. The differences seen among antigens are due to different dosing regimens,
schedules, and open vial wastes. At baseline, the average vaccine availability for all EPI
vaccines was 70%. Implementing policy 2, in which the district stores bypass the regional
level to collect vaccines directly from the central store increased vaccine availability from an
average of 70% at baseline to 84% when vaccines were collected monthly, 97% when
vaccines were collected bi-weekly, and 100% when vaccines were collected weekly.
Bypassing the regional stores, in turn avoiding the bottlenecks and inefficiencies at those
locations, can increase vaccine availability by 14% without additional storage capacity or
increased vaccine collection frequency, amounting to 1,388,353 more doses of vaccine
available for immunization. And by increasing the frequency of trips vaccine availability can
increase up to 30%. This suggests the there is a large bottleneck in transport and creative
alterations of transport could be very beneficial to supply chains.

Similarly, implementing either shipping policy 3 or 4 in which the central store delivered
vaccines in 3 or 8 shipping loops directly to district stores monthly increased vaccine
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availability from 70% at baseline to 87%. Both collection-based and delivery-based shipping
policies outperformed the current shipping policy if vaccines could be shipped at least
monthly.

However, irrespective of the number of shipping loops from the central store, restricting the
shipping frequency from the central store to the next level in the supply chain to the present
quarterly schedule decreased vaccine availability from 70% (baseline configuration) to 50%
for both the 3-loop and 8-loop shipping frameworks. This suggests that while vaccine
availability can be improved by removing the regional level, this also requires a shipping
frequency from the Central Store to the Districts of at least once a month.

Vaccine Transport and Storage Utilization
Table 2 shows transport capacity utilizations by level and device for the baseline four-tier
structure and the three-tier structure with different shipping policies. When the simulation
model indicates transport utilization in excess of 100%, it means that the transport routes
required more space than was available to deliver the necessary vaccines (e.g., a value of
200% would imply that the space required is twice what is currently available). Therefore,
portions of vaccine orders would go unfulfilled until subsequent deliveries could deliver the
remainder of the order resulting in delays and decreased vaccine availability at IHCs. This in
turn, would mean more missed vaccination opportunities. Table 2 shows that in many cases,
there are instances where multiple transport vehicles or multiple trips per vehicle would be
required.

Table 2 also shows how removing the regional level and changing shipping policies affected
average storage capacity utilization at the central, regional, district and IHC levels. The
central level storage capacity utilization remains at 100% throughout all scenarios. While the
IHC storage capacity is largely sufficient across scenarios, the capacities at central, regional
and district stores are insufficient, particularly when vaccines are delivered or collected from
the central store quarterly. These policies require significant additional capacity at some
district locations to accommodate larger shipments that supply vaccines over longer periods.
Moreover, quarterly shipments from the central store result in larger shipment volumes and
therefore, greater numbers of overfilled vehicles, which reduce the number of required
vaccines actually delivered to IHC stores. Increasing the transport frequency means that a
greater number of smaller volume shipments will be collected by districts. Because the
shipments are smaller at each delivery, they can more easily be stored in the district level
transport and storage devices. This also means that there are fewer shipments requested that
would need to be overfilled or bottlenecks at higher levels, and that there is a greater supply
of vaccine to districts over a quarter. When the same transport device is used to collect a
quarter’s worth of vaccine at one time, the vaccine availability is much lower because the
transport device cannot accommodate that many vaccines. While increasing the transport
frequency removes these shipping bottlenecks between the central and district levels,
vaccine availability remains limited, though to a lesser degree, by storage constraints at the
district level. While increasing the transport frequency removes these shipping bottlenecks
between the central and district levels, vaccine availability remains limited, though to a
lesser degree, by storage constraints at the district level.

Vaccine Supply Chain Costs
Table 3 shows the resulting costs from each of the experimental scenario. At baseline, the
total costs, including vaccine transport (US$446,538), storage (US$403,671), building
facility (US$700,375) and personnel (US$46,865) costs, amounted to US$1,597,449 per
year, which translated to US$0.14 per dose delivered to IHCs over a year. Removing the
regional level eliminated an entire level of personnel, storage, and building costs, which
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more than compensated for the increased Central to District transport costs due to longer
travel distances. The lowest total costs scenarios were those in which the central store
delivered vaccines quarterly on either 3 or 8 loop frameworks. However, scenarios in which
the central store delivered vaccines to districts monthly on 3 or 8 loop shipping frameworks
produced the lowest logistics cost per dose administered but significantly fewer overall
doses reached the IHC level and resulted in significantly lower vaccine availabilities.

DISCUSSION
Results from HERMES suggest that removing the regional level from Niger’s vaccine
supply chain can improve vaccine availability if either districts collect vaccines directly
from the central store or if cold trucks deliver vaccines from the central store to districts
monthly. Policies in which vaccines are shipped quarterly from the central store negatively
impact vaccine availability because vaccines do not flow through the supply chain rapidly
enough. The resulting shipping delays and constraints cause stock to collect at higher levels.
Without also increasing capacity downstream, vaccine delivery is continually limited by
storage and transportation bottlenecks. Additionally, without vehicles regularly depleting
stock from the central store, the sizes of bi-annual shipments into 11 Niamey may exceed
cold room capacity, thereby constraining overall vaccine availability from the very top of
the supply chain.

Removing the regional level may also reduce supply chain logistics costs. While removing
the regional level resulted in lower costs per dose administered, relative cost savings
depended on the total number of doses delivered, implemented routing network (i.e.,
collection-based versus delivery-based from the central store) and shipping frequencies.
While shipping policy 2 did not provide significant cost savings compared to shipping
policies 3 and 4, it provided higher vaccine availability if the shipments could be made at
least monthly. Our experiment showed that removing the regional level needs to be paired
with delivery frequencies enough to supply adequate vaccine supply. This may require more
meticulous planning and organization.

As each delivery, collection, shelving and un-shelving procedure carries a risk of vaccine
breakage, mishandling, or temperature exposure, fewer supply chain levels can result in
reduced risks of vaccine wastage. Moreover, while having fewer levels may increase travel
distance and time between sites and ultimately transportation costs (i.e., fuel costs, vehicle
maintenance and depreciation), it can also result in cost savings from reductions in total
annual expenditures on storage facilities, human resources and cold chain equipment, which
may outweigh the cost increases of longer transportation distances.

Streamlining vaccine supply chains can also simplify requisition and distribution logistics.
Delivery-based supply chain policies (i.e., fixed volume of vaccines delivered on a
predetermined schedule) depend on accurate vaccine demand forecasts at the IHC level.
Without knowing how many children will arrive at an IHC, delivery-based policies risk
under-supplying or over-supplying locations that experience unexpectedly high or low
arrival rates. Vaccine shipments distributed through collection-based shipping policies (i.e.,
variable volume of vaccines collected if and when vaccines are needed) can be more closely
matched to actual consumption. Streamlining the vaccine supply chain can also simplify
distribution logistics in emergency situations, by reducing the number of steps required in
delivering vaccines from the central store to administering sites in a shortened timeframe.

Nevertheless, important considerations remain in determining whether streamlining vaccine
supply chains is both programmatically-effective and cost-effective. For instance, depending
on the implemented shipping policy, removing the regional level can lead to increases in
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recurring or capital costs of transportation or to increases in storage or transport utilization
in some locations which may reduce the supply chain’s ability to handle unanticipated
surges in vaccine demand (e.g., due to truck breakdown, or in response to disease outbreak)
or future vaccine introductions. These may require increased investments in capital
resources (i.e., additional cold storage equipment or transport vehicles) and human resources
(i.e., EPI logisticians, managers, nurses, drivers, etc.). Longer shipping distances may also
increase risks of vaccine wastage during transportation.

Our study illustrates the usefulness of models in determining effects of decisions not
immediately apparent. Modeling major supply chain structures changes prior to
implementation can determine potential impact, benefits, challenges and needed
modifications. Such an approach can save substantial time, effort, and resources involved
with trial and error. Once a modeling study has helped establish and define a plan the next
step could be progressive testing and implementation in the field. Our near future plan is to
provide HERMES to in-country decision-makers so that they may construct and run
simulation models of their own supply chains.

Models have widely been used by decision-makers in other industries including
meteorology(17), manufacturing(18), transportation(19), aerospace(20), and finance(21),
and sports and rehabilitation(22). Their use to date in public health, however, has not been
as extensive(23–25). While models have assisted responses to health-care associated
infections and infectious disease transmission such as the 2009 H1N1 influenza pandemic,
much of their potential remains untapped(26–30).

Limitations
Models are simplified representations of real life and cannot account for every potential
factor, event or outcome(31–33). The model is based on data collected up until 2011 and
may not represent changes that may occur in the future. Our experiments assumed current
vaccine procurement, production and forecasting policies. Future studies can explore effects
of varying these parameters in HERMES. Actual demand may vary from our estimated
demand, which was drawn from cross sectional census data, although sensitivity analyses
have demonstrated the effects of altering demand and indicated that the results are not
sensitive to minor variations in demand. No new cold storage equipment was introduced into
the system across scenarios, and our analysis did not include all EPI cost components such
as costs for disease surveillance and supplementary vaccination campaigns. Constructing our
model involved substantial data collection from a wide variety of sources including records
and interviews at different locations. As a result, parameter values may vary in accuracy and
reliability, although sensitivity analyses demonstrated that model outcomes are robust under
a wide variety of circumstances.

CONCLUSIONS
Removing the regional level from the Niger vaccine supply chain may improve supply chain
performance and cost if there are accompanying appropriate changes in shipping policies
(i.e., collection-based shipments from the district to central level or monthly shipments from
the central to district stores). This exploration suggests that efficiencies can be gained from
reducing the number of levels in a supply chain. Future explorations may want to determine
if similar findings apply to other countries’ vaccine supply chains.
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HIGHLIGHTS

• Simulation model of Niger vaccine supply chain logistics.

• Removing a level can improve functions and reduce missed vaccination
opportunities.

• The impact of removing a level depends heavily on the shipping policy
implemented.

• Single changes in the supply chain can have complex dynamic effects.

• Modeling can help elucidate dynamic interactions and effects, and guide policy.
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Figure 1.
Schematic of existing and alternative vaccine supply chain frameworks in Niger
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