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Abstract
Cutaneous leishmaniasis (CL) and its associated complications, including mucocutaneous
leishmaniasis (MCL) and diffuse CL (DCL) have emerged as important neglected tropical
diseases in Latin America, especially in areas associated with human migration, conflict, and
recent deforestation. Because of the limitations of current chemotherapeutic approaches to CL,
MCL, and DCL, several prototype vaccines are in different states of product and clinical
development. We constructed and utilized a Markov decision analytic computer model to evaluate
the potential economic value of a preventative CL vaccine in seven countries in Latin America:
Bolivia, Brazil, Colombia, Ecuador, Mexico, Peru, and Venezuela. The results indicated that even
a vaccine with a relative short duration of protection and modest efficacy could be recommended
for use in targeted locations, as it could prevent a substantial number of cases at low-cost and
potentially even result in cost savings. If the population in the seven countries were vaccinated
using a vaccine that provides at least 10 years of protection, an estimated 41,000-144,784 CL
cases could be averted, each at a cost less than the cost of current recommended treatments.
Further, even a vaccine providing as little as five years duration of protection with as little as 50%
efficacy remains cost-effective compared with chemotherapy; additional scenarios resembling
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epidemic settings such as the one that occurred in Chaparral, Colombia in 2004 demonstrates
important economic benefits.
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1. Introduction
An estimated 1-1.5 million new cases of cutaneous leishmaniasis (CL), a parasitic infection
transmitted to humans by the phlebotomine sand fly, occur each year worldwide[1].
Approximately 62,000 of these cases occur in South and Central America and the
Caribbean[2]. In recent decades, the incidence of human infection has increased, largely due
to human migration, deforestation, urbanization, and adaptation of the Leishmania parasite
to additional vectors and mammalian hosts[3]. Movement of populations due conflict and
narcotics trafficking has also emerged as risk factors for CL in Latin America[4]. CL
infection usually leads to the appearance of skin lesions within several weeks, which
typically self heal in months to years[5]. Approximately a dozen Leishmania species causing
cutaneous disease are present in South and Central America. CL is sometimes associated
with severe chronic outcomes[6]. While cutaneous lesions may heal spontaneously without
treatment, infection with some Leishmania species may spread to the nasal mucosa or
disseminate to multiple locations on the body many years after initial infection.
Mucocutaneous leishmaniasis (MCL) rarely heals if untreated, often resulting in severe
scarring and death[7]. Ninety percent of MCL cases globally occur in Bolivia, Brazil, and
Peru[8], making the disease of significant public health importance regionally. Selected
Leishmania species can also cause diffuse CL (DCL), where non-ulcerative parasite-positive
nodules disseminate throughout the body[5]. DCL is usually resistant to treatment and does
not self-cure.

Although several drugs are available for CL treatment, many have limitations. The World
Health Organization (WHO) recommends pentavalent antimonials as the first line treatment
for CL[9]. More recently, liposomal amphotericin B, miltefosine, and other agents have
emerged as attractive alternative chemotherapies[10-11]. Despite the high efficacy against
CL associated with these drugs, lengthy treatment regimens and toxic drug side-effects may
prevent completion of a full treatment regimen. Furthermore, the effectiveness of these
treatments against MCL and DCL is less clear.

As an alternative to new chemotherapies, several preventative and therapeutic vaccines for
CL are now in different stages of product and clinical development[12-14]. For CL, this
alternative appears feasible, as most recovered CL cases are resistant or do not present
clinical manifestations of CL to subsequent infections[13]. Subunit vaccines encoding
Leishmania antigens and epitopes[14] are of particular interest; several vaccines comprised
of sand fly salivary proteins alone or in combination with Leishmania antigens are under
development[15]. For leishmaniasis, there is strong evidence that immunity to a salivary
protein from the vector adversely impacts parasite survival and growth contributing to
control of the disease [16-17]. Our group is pursuing a prototype vaccine against CL caused
by L. mexicana infections in Mesoamerica (i.e., southern Mexico and Central America),
which is comprised of a recombinant parasite-derived nucleoside hydrolase (NH 36, Chale
Balboa et al, 2009[18]), together with one or more antigens from the sand fly of the genus
Lutzomyia [19].
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Evaluating the potential economic value of a vaccine early in development can help shape
the vaccine's characteristics and prepare for successful and timely market release. While
some living in CL-endemic countries could undoubtedly benefit from a vaccine, the most
appropriate price and target population for the vaccine is less clear. We constructed an
economic model of CL infection to delineate the vaccine cost and infection risk required for
a preventative vaccine to be beneficial under a range of possible vaccine profiles (i.e.,
vaccine efficacy, duration of protection, etc).

2. Methods
2.1. Model Structure

We constructed a Markov decision analytic computer simulation model in TreeAge Pro
2009 (TreeAge Software, Williamstown, MA) to evaluate the potential economic value of a
cutaneous leishmaniasis vaccine from the societal perspective in seven endemic countries in
Latin America: Bolivia, Brazil, Colombia, Ecuador, Mexico, Peru, and Venezuela.
Individuals entered the model before they reach one year of age; those vaccinated were
offered all doses of the vaccine within the first year, with no attenuated CL risk until
completion of the full vaccine regimen. All individuals continued to cycle in the model until
death unrelated to leishmaniasis. Each year, individuals had probabilities of transitioning
away from or remaining in one of five mutually exclusive Markov states:

! ! Uninfected: Individual was healthy and uninfected.

! ! Cutaneous Leishmaniasis (CL): Individual was currently infected with CL,
develops one or more skin lesions, and only stayed in this state for one year.

! ! Mucocutaneous Leishmaniasis (MCL): Individual contracted a more severe
disease manifestation usually secondary to CL infection, affecting the oral and
nasal mucosa. Scarring is common and disease rarely resolves without
treatment. Those affected remain in this state until cured with no relapse or
death.

! ! Diffuse Cutaneous Leishmaniasis (DCL): Individual contracted a more severe
disease manifestation usually secondary to the CL infection, where skin lesions
are widely distributed a cross the body. Those affected remain in this state until
cured with no relapse or death.

! ! Prior Infection: Individual had recently recovered from CL, MCL, or DCL and
is at risk for MCL and DCL[20-21]. Individuals remained in this state for 10
years (or until they died or developed CL, DCL, or MCL), before returning to be
uninfected.

! ! Death: Individual died of causes unrelated to leishmaniasis and ceased to cycle
through the model.

Figures 1a-e show all transition possibilities between states as well as state-specific events,
such as treatment, treatment cure, and reinfection. For instance, a CL case could seek
treatment and be cured, in which case the duration of their disease was shorter than those not
cured by treatment; CL episodes were assumed to last one year or less[22]. Those recovering
from CL had a risk of developing Leishmania strain-specific outcomes such as MCL
(approx. 2%) or DCL (approx. 5%) shown in Table 1. Individuals had a possibility of
multiple CL episodes, assuming any subsequent infection was a different Leishmania strain.

Vaccination occurred at month 0 and 1 for the 2-dose presentation (baseline scenarios) and
month 0, 1, and 6 for the 3-dose presentation in the model, where everyone received the first
dose of vaccine. Receipt of subsequent doses depended on compliance; no protection was
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granted until completion of full vaccine regimen. CL risk in the model depended upon a
person's vaccination status. A 3% discount rate[23] converted all costs to 2012 US$ and
future costs to their 2012 value.

2.2. Model Parameters
We conducted a literature review on cutaneous leishmaniasis in the Americas using
MEDLINE and the following terms: [cutaneous leishmaniasis], [tegumentary leishmaniasis],
[leishmaniasis treatment], [mucocutaneous leishmaniasis], [diffuse cutaneous leishmaniasis],
and [cutaneous leishmaniasis vaccine]. Countries selected were chosen based on the
completeness of available data. Data from the year 2000 on was used if available. Table 1
contains a list of model parameters and their sources. Country-specific breakdowns of
Leishmania by species[24] were used to estimate the likelihood of clinical outcomes such as
MCL, DCL, spontaneous cure, and illness duration. Although recent reports suggest little
change in Leishmania species distribution has occurred over the past 20 years [25-26] in
some regions, changes in species distribution over time may cause the risk of species-
dependent outcomes (i.e., MCL and DCL) to deviate from our estimates.

CL cases had a 20-60% likelihood of seeking treatment; those with MCL or DCL had a
40-100% (∼2 times greater) chance of receiving treatment. CL cases were initially given
20mg/kg of pentavalent antimonials for 20 days, as recommended by the WHO[9], and were
retreated with either pentamidine or pentavalent antimonials upon treatment failure[27].
Cases were not retreated after experiencing two treatment failures. Pentavalent antimonials
(30 day regimen) were used to treat those with DCL and MCL initially, while pentamidine
and amphotericin B were administered if disease persisted[10] (i.e., relapse); individuals
sought a maximum of four rounds of treatment per DCL or MCL episode.

2.3. Cost-Effectiveness Analysis
Each simulation run sent 1,000 individuals through the model 1,000 times for a total of
1,000,000 outcomes. The cost per CL case averted is defined as:

Equation 1

The benefit of vaccination was evaluated based on whether the cost per case averted was <
$180, the cost of the recommended CL treatment with pentavalent antimonials. Negative
values indicated that vaccination averted CL cases as well as costs (i.e., cost saving).

2.4. Sensitivity Analyses
At baseline, a 2-dose cutaneous leishmaniasis vaccine cost $0.5/dose, with an efficacy of
70%, which lasted for 5 years. CL infection risk was varied from 0.005-5%, as reported in
endemic and epidemic settings in the countries of interest [28-31]. Sensitivity analyses were
conducted for cost per vaccine dose (range: $0.5-10), vaccine efficacy (range: 50-90%),
compliance with subsequent doses in the vaccine regimen (range: 50-100%), vaccine
protection duration (range: 5-20 years), and the likelihood of revaccination after protection
from prior vaccination has expired (range: 50-100%). These scenarios were also evaluated
using a 3-dose vaccine.
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3. Results
3.1. Overview

A vaccine with our baseline vaccine profile (2-dose, $0.5/dose, 70% vaccine efficacy, 5 year
protection duration) required ≥ 0.1% infection risk to cost less to avert a case than the cost
of treatment with pentavalent antimonials ($180), shown in Figure 2. At this risk level and
vaccine profile, vaccination could avert 14-52 CL cases per 1,000 individuals vaccinated,
and 50-93% of MCL cases and 40-91% of DCL cases, depending on revaccination and
compliance (Table 3). Infection risk needed to be 0.5% for a vaccine with these
characteristics to save costs compared to if no vaccine was used, and if vaccination provided
protection for 10 years or longer, CL risk was able to be 0.03% in order for averting a case
to cost less than treatment (Figure 2).

3.2. Costs and Cases with and without Vaccination
Table 2 shows the costs accrued per 1,000 people in the model using no vaccine and a two
dose vaccine assuming a 70% vaccine efficacy for each vaccine cost and protection
duration. Ranges represent the variation that occurred across compliance and revaccination
rates. As expected, vaccine efficacy had little to no impact on vaccination costs. A two dose
vaccine costing $1/dose costs approximately $5,736-12,879 per 1,000 people vaccinated if
the risk was 0.01% and duration of protection was 5 years; this cost was reduced by 40% if
the protection duration was 10 years and by 60% if vaccine protected against infection for
20 years. Not vaccinating became more costly than vaccinating at 0.5% infection risk, also
shown in Figure 2. At this infection risk, a vaccine could cost up to $0.5/dose, $1/dose, and
$2/dose and still save costs if protection duration were 5, 10, and 20 years, respectively.

Table 3 presents the number of resultant CL, MCL, and DCL cases with and without
vaccination. Changing vaccine protection duration had little to no effect on resulting CL
cases. Lower (50%) revaccination and compliance probabilities frequently caused little to no
cases of CL being averted in addition to more costs being accrued. As can be seen in the
table, vaccination not only averted CL cases (21-57%), but also led to a 21-58% reduction in
MCL and 59-74% decrease in DCL cases regardless of vaccine efficacy.

3.3. Cost per CL Case Averted
Figure 2 depicts the cost per CL case averted by CL risk and vaccine efficacy, assuming a 2-
dose vaccine provided 5 years of protection and cost $0.5/dose. Perfect compliance and
revaccination were assumed for these scenarios to determine the CL risk at which
revaccination could be recommended, due to the cost of averting a case by vaccination being
less than the cost of recommended CL treatment (i.e., $180 for systemic pentavalent
antimonials). As the graph indicates, infection risk needed to be ≥0.1% for averting a case
with vaccination to cost less than treatment ($66-140/case averted depending on vaccine
efficacy) assuming this vaccine profile. At this risk, a 3-dose vaccine with the same cost and
protection duration required a 70% efficacy to be below this cost threshold ($155 and $114/
case averted for 70% and 90% efficacy, respectively).

Across the vaccine profiles examined, CL risk needed to be at least 0.03% for the vaccine to
cost less to avert a case than the cost of treatment. At this risk, a 2-dose vaccine costing
$0.5/dose providing 10 years of protection cost $142 to avert a case of CL if vaccine
efficacy was 90%. Similarly, a 2-dose vaccine providing 20 years of protection could cost as
much as $1/dose if vaccine efficacy was ≥90% and only cost $171/case averted. Averting a
case of CL costs ∼1.5-3 times more with a 3-dose vaccine compared to a 2-dose vaccine;
costs became less comparable as compliance and revaccination neared 50%.
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Vaccinating with a two or three-dose vaccine actually saved costs ($1-34) at infection risks
of ≥0.5%, a protection duration as low as 5 years, and a vaccine cost of $0.5/dose. Cost
savings continued at vaccination costs of up to $2/dose for a two and three dose vaccine as
long as at least 10 and 20 years of protection were provided, respectively. If the
revaccination likelihood were 50%, vaccination often remained cost saving; decreasing
compliance to 50% frequently caused vaccination to no longer save costs. For example, a 2-
dose vaccine costing $0.5/dose with 70% efficacy that provides 5 years' protection saves $6/
case averted if an individual is fully revaccinated every 5 years. This savings doubles if
protection duration was 10 years and would only cost $19/case averted if the cost per dose
increased from $0.5 to $1. Use of a $5/dose vaccine was not below this threshold unless CL
risk resembles a highly endemic or epidemic setting (i.e., 1-5% risk) and does not save costs
unless risk resembled an epidemic (i.e., 5%).

4. Discussion
Our results indicate that even a vaccine with a relatively short duration of protection and
modest efficacy could be recommended for use in targeted locations, as it could prevent a
substantial number of cases at little cost and potentially even result in cost savings. In recent
years, country-wide incidence estimates from Brazil, Bolivia, Colombia, Ecuador, Peru, and
Venezuela have been approximately 0.03% or higher[32-37] equating to a target population
of approximately 308 million people within these countries alone[38-43]. If the population
in these countries were vaccinated using a vaccine with our baseline profile that provided
protection for 10 years or more, 41,000-144,784 CL cases could be averted, each at a cost
less than the cost of the recommended treatment.

If countries with similar rates of CL globally were targeted, this target population increases
to 703 million. Even a vaccine providing 5 years of protection and requiring a 0.1%
infection risk to cost less to avert a case than treatment would have a target population of
191 million. These are likely conservative estimates, as infection risk in certain regions
within an endemic country may be higher than the risk in the country overall. In fact,
although the estimated overall CL risk in Bolivia is around 0.03%, some regions have
reported risks as high as 1%[28]; therefore, vaccinating in these regions may even result in
cost savings.

Additionally, vaccination against CL could be highly beneficial in the event of an epidemic.
The Leishmania outbreak seen in Chaparral, Colombia in 2004 reported attack rates of up to
8,444 CL cases per 100,000 residents[44]. If this population had been previously vaccinated
with a vaccine containing our baseline characteristics, 478-1,827 out of the 2,810 resulting
cases and $13,384-58,464 could have been averted, depending on the level of compliance
and revaccination achieved.

Although vaccinating before age one would allow for utilization of existing delivery systems
(thus saving start-up costs), evaluation of regional CL case demographics may aid in
identifying and targeting other high risk groups for vaccination and may be a practical
alternative approach in some locations. For example, men (ages 10 – 45 years) working in
wooded areas have been identified as a group at high risk for Leishmania infection in areas
of Colombia and Mexico[45-47]. In contrast, comparable gender-specific attack rates
reported in a Peruvian study, where 79% of CL risk was attributable to factors associated
with indoor living quarters (e.g., lamps, fireplaces, etc), suggest domestic transmission was
more predominant in this location[24]. Vaccinating certain occupational groups in the
former example during the years when they are most at risk for infection may also be a cost-
effective strategy.
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Other target populations for vaccination could include military personnel and those at risk
for visceral leishmaniasis (VL). Genetic analyses have shown that the genomes of disease-
causing Leishmania species are highly conserved[48]. This information along with
additional studies demonstrating cross-protection between species[49-50] show promise for
a CL vaccine to additionally provide partial protection against VL.

This and similar economic analyses of vaccines undergoing development are informative for
vaccine developers, funders, and other decision makers, and assist in bringing the market
closer to development[51-53]. Our analyses show that in many cases a CL vaccine could
have as low as 50% efficacy (0.03% risk if 20 year protection duration and $0.5/dose, 0.1%
risk if 5-10 year protection duration and $0.5-2/dose) or provide protection for as little as 5
years (if risk was ≥0.1%) and still cost less than treatment. While efficacy and protection
duration will ultimately be determined by the vaccine's formulation, such findings could be
helpful when determining vaccine price points and target populations.

5. Limitations
Models are simplistic representations of the real world and therefore include assumptions of
real-world events. We evaluated the benefit of vaccine introduction in seven countries;
therefore, probabilities of outcomes (MCL and DCL) were calculated accordingly. Focusing
on a single country or region would change these probabilities, and thus the benefit of
vaccination. We conservatively assume that individuals were at risk of MCL and DCL up to
10 years after CL, although some report this duration to be up to 30 years. Although
treatment costs can vary greatly by country, treatment costs that were used are comparable
to direct medical costs per patient reported during the cutaneous leishmaniasis outbreak in
Colombia[22] and reports from Brazil[54].

6. Conclusion
Vaccination with a preventive CL vaccine providing 5-10 years of protection from infection
caused by New World Leishmania species endemic to the seven most highly endemic Latin
American countries is often less costly than treatment and sometimes cost-saving (i.e.,
economically dominant) across a range of scenarios.
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Highlights

! ! We constructed and utilized a computer simulation model to evaluate the
economic value of a CL vaccine.

! ! Modest protection duration and efficacy are required for CL vaccination to
cost less than treatment.

! ! A preventative CL vaccine could save costs at moderate levels of infection
risk.
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Figure 1.
Cutaneous Leishmaniasis Model Structure, a. Health States, b. Uninfected Health State, c.
Cutaneous Leishmaniasis Health State, d. Prior Infection Health State, e. Mucocutaneous or
Diffuse Leishmaniasis Health State.
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Figure 2.
Cost per Cutaneous Leishmaniasis (CL) Case Averted. (doses=2, vaccine cost= $0.5/dose,
duration of protection = 5 years, compliance with full vaccine regimen = 100%,
revaccination = 100%).
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Table 1

Model Inputs

Parameter Value Ref

Probabilities

Strain Distribution

 Andean Countries a

  L. braziliensis 49% [24]

  L. panamensis 27% [24]

  L. guyanensis 4% [24]

  L. amazonensis 5% [24]

  Other 15% [24]

 Brazil

  L. amazonensis 20% assumption b

  L. braziliensis 60% [29]

  L. guyanensis 20% assumption b

 Mexico

  L. mexicana 100% assumption b

Lifetime Risk of MCL given infection by L. braziliensis, L. panamensis, or L. guyanensis 2% [55-57]

Lifetime Risk of DCL given infection by L. amazonensis 30% c [58]

Cure Rates

Penatvalent antimonials (CL) 77% d
[59]

(40-100%)

Pentavalent antimonials (MCL) 67% d
[10]

(28-94%)

Pentamidine (MCL) 93% [10]

Amphotericin B (MCL) 89% [10]

Any Treatment (DCL) (0-10%) e [60]

Costs f

Pentavalent antimonials, CL (intralesional) g $56.46 [61]

Pentavalent antimonials, CL (systemic)e $169.37 [61]

Pentavalent antimonials, MCL and DCL (systemic) g $254.06 [61]

Pentamidine $0 [61]

Amphotericin B (MCL and DCL) $150 [61]

Lab Materials (per visit) $0.50 [62]

a
Bolivia, Colombia, Ecuador, Peru, Venezuela

b
Based on expert opinion from Brazil

c
Overall risk of DCL following CL was 5%
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d
Triangular distribution

e
Uniform distribution

f
All costs calculated using a 50kg person

g
Calculated using the average of both generic and non-generic versions of sodium stibogluconate and meglumine antimoniate
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