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Abstract
Tuberculosis (TB) remains one of the greatest threats to human health. The causative bacterium,
Mycobacterium tuberculosis (Mtb) is acquired by the respiratory route. It is exquisitely human-
adapted and a prototypic intracellular pathogen of macrophages, with alveolar macrophages
(AMs) being the primary conduit of infection and disease. The outcome of primary infection is
most often a latently infected healthy human host, in whom the bacteria are held in check by the
host immune response. Such individuals can develop active TB later in life with impairment in the
immune system. In contrast, in a minority of infected individuals, the host immune response fails
to control the growth of bacilli, and progressive granulomatous disease develops, facilitating
spread of the bacilli via infectious aerosols coughed out into the environment and inhaled by new
hosts. The molecular details of the Mtb-macrophage interaction continue to be elucidated.
However, it is clear that a number of complex processes are involved at the different stages of
infection that may benefit either the bacterium or the host. Macrophages demonstrate tremendous
phenotypic heterogeneity and functional plasticity which, depending on the site and stage of
infection, facilitate the diverse outcomes. Moreover, host responses vary depending on the specific
characteristics of the infecting Mtb strain. In this chapter, we describe a contemporary view of the
behavior of AMs and their interaction with various Mtb strains in generating unique immunologic
lung specific responses.
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1. Tuberculosis
1.1 Human infection: Latency and disease

Mycobacterium tuberculosis (Mtb) is an exquisitely adapted human pathogen that infects an
estimated 2 billion people [1]. Infection occurs following inhalation of aerosolized droplets
containing viable bacilli. Once inhaled, the bacilli are phagocytosed in the air spaces
primarily by resident alveolar macrophages (AMs) and dendritic cells (DCs). Following
lung exposure, Mtb-infected phagocytes can migrate from the alveolar space into the lung
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interstitium and then, via the lymphatic and hematogenous routes, disseminate to other
organs [2]. Subsequently, the bacilli may grow unimpeded within host macrophages,
resulting in primary progressive disease or reactivation disease after a short period of
latency, as seen in about 10% of immune competent individuals. Alternatively, bacillary
growth may be controlled, and the bacteria may be killed or may adapt to survival within
cellular granulomas in a non-replicating state, thereby establishing a latent infection, as is
seen in approximately 90% of otherwise healthy hosts. Latent infection can persist for
decades after exposure to Mtb before reactivating to cause active disease (primarily in the
lungs), when the immune-mediated control of bacillary growth fails, as seen for example
following human immunodeficiency virus (HIV) infection [3]. The ability of Mtb to
establish latency, combined with the massive exposure of individuals to infectious
organisms in hyperendemic areas of the world, is responsible for the huge reservoir of
latently infected individuals. The Global Burden of Disease Study determined that, globally,
tuberculosis (TB) is the 7th leading cause of Disability Adjusted Life Years (DALYs) and,
unlike most infectious diseases, will still be among the top ten causes of DALYs in 2020 [4].
Thus, an understanding of mechanisms through which Mtb bacilli interact with host
macrophages (particularly AMs), grow, persist and reactivate, is crucial to the development
of new tools for improving TB control.

2. The macrophage
2.1 Macrophage heterogeneity and plasticity

Macrophages serve as the major host cell niche for the growth and survival of Mtb.
However, these cells are also responsible for activation of the protective immune responses,
both innate and acquired, which are necessary to control or eliminate the infection.
Macrophages, derived from hematopoietic cells in the bone marrow [5,6], differentiate from
promonocytic cells to mature monocytes in the peripheral blood and further into
macrophages, following migration into tissue where they maintain homeostasis (low-level
recruitment) or are recruited in response to inflammation/infection (high-level recruitment)
[7,8]. Macrophages are present in almost all tissues throughout the body. Their pattern of
differentiation is highly dependent on the local environment, including the tissue location
and associated cells, as well as growth factors and cytokines present at each site. Through
the expression of various cell surface receptors, the macrophage recognizes, binds and
internalizes foreign particles, including Mtb. This initiates a complex process of control of
intracellular growth of the bacilli via a cascade of signaling events that result in the release
of soluble and cell-associated antimicrobial and innate immune mediators [9].

Early macrophage biology studies revealed heterogeneity, functional and morphologic, often
based on phenotyping the diverse cell populations using antibodies [10–13]. More recent
advances in genetics, isolation of monocyte subsets, improved DNA microarrays and
proteomics have allowed scientists to reconsider macrophage activation phenotypes in more
detail [14–22]. The heterogeneity observed reflects the plasticity and adaptation of the cells
to different anatomical and immunologic locations. For example, high expression of a subset
of pattern recognition receptors (PRRs) on AMs appears to be associated with the ability of
these cells to clear particles and microbes from the lungs without causing excessive
inflammation (see below). Recent studies have suggested that the initial interaction of
macrophages with soluble mediators, such as cytokines, determines the functional
phenotype of the cells; others have shown that macrophages can be continuously altered as
the environment changes [23–28]. These observations help explain the fact that Mtb
interactions with macrophages can vary greatly depending upon the local microenvironment
in which they occur.
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For simplicity, macrophage heterogeneity has been categorized into four major groups
defined primarily by in vitro cell culture under different conditions: type I and type II
macrophages, alternatively activated macrophages and deactivated macrophages [15,29–32].
Type I macrophages (classical activation or M1 cells) are differentiated by in vitro culture
with the lymphoid cell mediator interferon gamma (IFN-γ) and lipopolysaccharide (LPS), a
Gram-negative microbial trigger which induces pro-inflammatory cytokine production. Type
II macrophages (innate activation) are differentiated in in vitro culture by ligation of
receptors by immune complexes. Both of these macrophage phenotypes are associated with
high microbicidal activity, the production of pro-inflammatory cytokines [tumor necrosis
factor alpha (TNF-α), interleukin 1 beta (IL-1β) and interleukin 6 (IL-6)] and reactive
oxygen species (ROS), and the activation of inducible nitric oxide synthase (iNOS), the
latter leading to the synthesis of nitric oxide (NO) [33]. Type I macrophages also have
increased major histocompatibility complex (MHC) class II and cluster of differentiation
(CD) 86 (CD86) expression, and increased antigen presentation. Differences between them
include decreased mannose receptor (MR, CD206) expression in type I macrophages, while
type II macrophages have increased production of the immunoregulatory cytokine
interleukin 10 (IL-10) and decreased production of the pro-inflammatory cytokine
interleukin 12 (IL-12) [30,31]. Thus, the two macrophage populations, although
phenotypically similar, have distinct functional profiles.

The third major group is the alternatively activated macrophage (or M2 cells) [30,34,35].
These cells result from in vitro culture with the TH2-type cytokines, interleukin 4 (IL-4) or
interleukin 13 (IL-13), which decrease cellular responsiveness to IFN-γ and inhibit the
synthesis of iNOS [30]. Glucocorticoids are also able to induce an alternative macrophage
activation state [32]. Alternatively activated macrophages have increased PRR expression,
particularly of the MR, with decreased CD14 expression. Additionally, these cells do not
produce large amounts of oxidants or pro-inflammatory cytokines, but rather secrete some
anti-inflammatory cytokines (e.g. transforming growth factor beta (TGF-β)) [30,31] and
decrease the TH2 response likely by regulating the stimulation of lymphocytes [36]. This
macrophage population has been associated with tissue repair and humoral immunity.
Finally, the deactivated macrophage phenotype is induced by in vitro culture in the presence
of cytokines such as IL-10 or TGF-β, or by ligation of inhibitory receptors (i.e., CD200-
CD200R, CD47- CD172a or esteroids). This macrophage phenotype has been associated
with anti-inflammatory cytokine production, prostaglandin E2 (PGE2) production and
reduced MHC II expression [30].

Although this classification provides a useful framework for studying and understanding
macrophage heterogeneity, it is undoubtedly simplistic and lacks the impact of specialized
local in vivo microenvironments on the macrophage phenotype [37–41]. A more flexible
classification has been suggested recently where macrophage heterogeneity, generated in
response to innate or acquired immune responses, is considered to be a spectrum, wherein
different cell populations, such as classically activated macrophages, wound healing
macrophages and regulatory macrophages, may overlap in their functions, representing
different points along a spectrum [42].

2.2 Macrophages in the Mtb granuloma
Phagocytosis of Mtb by AMs and DCs initiates a cascade of events involving the production
of cytokines and chemokines, which stimulate the activation of phagocyte anti-microbial
activities and recruit blood polymorphonuclear leukocytes (PMN) and additional
mononuclear leukocytes into the tissue to the site of infection. The accumulation of
mononuclear leukocytes around foci of infected cells leads to the formation of a
macrophage-rich cell mass known as the granuloma. Macrophages play an essential role in
the formation of Mtb granulomas. The macrophage population within these structures has a
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high turn-over rate and is diverse, including epithelioid cell, multinucleated giant cell
(MNG) [43] and foamy cell [44] phenotypes. The role of the granuloma is to control the
growth of intracellular Mtb and to limit bacillary dissemination. Persistence of the
granuloma depends on local production of TH1 type cytokines by antigen-specific T
lymphocytes, responding to the presence of Mtb antigens and leading to sustained phagocyte
activation, inflammation and anti-microbial activity. If optimal, the anti-microbial
granulomatous response to infection leads to complete bacillary control and latency. As the
bacilli are controlled and latent infection is established, the granulomas decrease in size and
cellularity, and the lungs typically show no clinical signs of disease by chest X-ray [45].
However, when the granulomatous response is not fully protective, the bacilli continue to
replicate and active TB disease ensues. The lungs of such individuals contain enlarging
granulomas that differentiate with time, leading to the development of cavitary pulmonary
disease. A complex set of interactions between host macrophages and their response to the
infecting bacilli, as well as the specific properties of the Mtb strain, are presumed to be
responsible for determining the outcome during this process.

Histopathologic examination of lesions in the lungs of humans with advanced pulmonary
disease reveals heterogeneous cellular architecture, most prominent in the concentrically
layered cavitating and non-cavitating necrotic granulomas seen in patients with sputum-
positive TB. Cross-sections of large cavitating lesions show loose cellular accumulation at
the luminal surface of the cavity, consisting of numerous PMNs and macrophages,
surrounded by a layer of acellular caseous necrotic material. In non-cavitating closed
granulomas, the central necrotic area is fully acellular. Subtending the acellular necrotic
layer in both types of lesions, there is granulomatous-fibrotic tissue with a mixed
mononuclear leukocyte infiltrate consisting of Langerhans-type giant cells, epithelioid
macrophages, foam cells and many scattered lymphocytes [46]. Acid-fast bacilli (AFB),
apparently cell-associated, can be detected in large numbers at the cavity surface; while the
granulomatous-fibrotic layer, with abundant macrophages, MNGs, and lymphocytes, is
essentially devoid of visible AFB. In addition, AFBs are seldom seen in AMs residing
within airspaces of the residual functional lung. In closed (non-cavitary) necrotizing
granulomas, small to moderate numbers of AFB can be observed in foamy macrophages
occupying the borders of the necrotic areas, most prominently where breakdown
(liquefaction) is occurring. Thus, in most patients with sputum-positive disease, AFB are
most numerous at the luminal surfaces of the cavities, i.e., in areas of the granulomas with a
patent connection to the airways. In comparison, in sputum-negative patients, the surfaces of
the cavities appear inactive, with re-epithelialization over fibrotic tissue. Despite the absence
of any visible AFB and the failure to grow bacilli from many of these lesions, MNGs,
epithelioid macrophages, and lymphocytes are apparent in small aggregates within the
fibrotic tissue. Staining for the presence of CD3+CD4+ or CD3+CD8+ T lymphocytes
reveals an abundance of these cells within the granulomatous-fibrotic layer and in lymphoid
aggregates of the granuloma. Scattered T lymphocytes are also seen within the airspaces. In
contrast, a striking absence of CD3+ CD4+ and CD3+CD8+ T cells is noted in the necrotic
zone, as well as at the luminal surface of the cavity [46].

Taken together, these observations suggest that in the cellular granulomatous fibrotic area,
adjacent to the necrotic zone, a microenvironment exists where macrophages and T cells co-
localize and are free to interact directly, presumably resulting in an efficient immune
response capable of inhibiting mycobacterial replication. In contrast, only millimeters away,
the luminal surface of the cavity represents a microenvironment within the lung where
macrophages do not co-localize with T cells, thus precluding any direct T-cell-macrophage
interactions at these sites. This may result in failure to activate the macrophages, thus
rendering them permissive to the growth of Mtb. Interestingly, the presence PMNs at the
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luminal surface of the cavity could potentially be associated with down-regulation of the
local control of bacillary growth, particularly in advanced disease.

2.3 The alveolar macrophage
In addition to its central role in respiration, the lung serves as a major interface between the
host and the external environment and is constantly bombarded by foreign matter, including
microbes. Therefore, the lung contains an intricate pulmonary innate and adaptive immune
system which serves to protect the host from inhaled foreign particulates [47,48]. Upon
inhalation, small (< 5 μm) particulates, such as microbes, are able to avoid the upper airway
ciliary beat, the cough reflex, and mucus clearance mechanisms to travel down the trachea
and through the bronchi, where they eventually settle in the alveolus. Pulmonary innate
immunity at this site is controlled by cellular and soluble components; airway and alveolar
epithelial cells and leukocytes join forces with antimicrobial products (e.g. collectins,
defensins, lactoferrin, and cathelicidins) secreted into the epithelial lining fluid [49]. Mtb is
deposited in this environment and, thus, its interactions in this site are particularly relevant
to immune pathogenesis of active TB disease.

The inflammatory response in the alveoli must be tightly regulated in order to protect the
delicate gas-exchanging structures from destruction by toxic mediators of the immune
system [48,50–53]. AMs are closely associated with the alveolar epithelium and are
continuously bathed in surfactant, which is an important immune modulator produced by
type II epithelial cells [54]. AMs comprise greater than 95% of the cells found in a
bronchoalveolar lavage. Only one to two AMs are found per alveolus, ranging in size from
9–40 μm in diameter [50]. These cells constitute the first line of defense against pulmonary
pathogens [55]. The majority of AMs are thought to originate from peripheral blood
monocytes that migrated into the airways where they differentiated [14,56]. Alternatively,
and more controversial, mononuclear phagocytes present in the lung can divide in the
alveolus in response to local inflammatory stimuli [50,57].

AMs are generally considered to be alternatively activated macrophages. While the cells
effectively eradicate routinely encountered microbes, they often fail to do so for host-
adapted intracellular pathogens such as Mtb. The specific innate inflammatory response
produced by AMs upon recognition and uptake of pathogens influences the subsequent
adaptive immune system and determines whether the microbe is successfully eliminated
with minimal damage to the host [58]. In this regard, AMs have a unique phenotype that
includes expression of high levels of a subset of surface PRRs such as the MR, specific Toll-
like receptors (TLRs), and scavenger receptor (SR) A [59]. They also have high expression
of intracellular regulators, such as nuclear receptor peroxisome proliferator-activated
receptor-γ (PPARγ) that respond to infectious agents [60,61] and mediate their clearance
[62] and yet do not cause the same marked increase in local tissue inflammatory responses
seen in other macrophage populations [58]. Thus, AMs appear to be immunoregulatory cells
with high phagocytic activity but relatively poor bactericidal and antigen presentation
capabilities, and with the ability to suppress lymphocyte activation [63,64]. They possess a
relatively attenuated respiratory burst, increased production of the anti-inflammatory
mediators PGE2 and TGF-β, as well as IL-10, and function to inhibit the amplification of
signaling leading to a robust pro-inflammatory response [30,31,65–69]. In this way, AMs
protect the delicate lung tissues from destruction by inflammatory mediators [70] or a
damaging oxidative burst [71]. In mice, this decrease in oxidative metabolites is partially
due to AM production of arginase, which limits NO production [72]. AMs produce less of
the intracellular signaling molecule TLR9, which is consistent with a decreased
inflammatory response to pathogens [73]. AMs also have decreased production of calcium-
dependent protein kinase C (PKC) isoforms and decreased activation of the transcription
factor activator protein 1 (AP-1) [74]. Through the increased activity of PPARγ, they also
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function to inhibit the amplification of intracellular signaling leading to a robust pro-
inflammatory response by repressing the transcription factors nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-kB), AP-1, and signal transducer and activator
(STAT) [60,75–77].

Pulmonary collectins play an important role in the Mtb-AM interaction. Upon entry into the
alveolus, Mtb encounters surfactant, and two surfactant-associated collectins, surfactant
protein A (SP-A) and surfactant protein D (SP-D), which regulate the early interaction of the
bacilli with resident phagocytes [53,78–80]. SP-A has been shown to enhance PRR activity,
increase phagocytosis, alter production of pro-inflammatory cytokines, and decrease reactive
nitrogen intermediates (RNIs) and reactive oxygen intermediates (ROIs) in response to
stimuli [53,81]. In contrast, SP-D decreases phagocytosis of Mtb by binding to the mannose
caps of the Mtb cell wall mannosylated lipoarabinomannan (ManLAM) (see below) and
inhibiting the normal interaction with the MR [82]. SP-D-opsonized Mtb that enter the
macrophage have reduced intracellular growth due in part to increased phagosome-lysosome
fusion [82,83].

In summary, the increased phagocytic potential, combined with a highly regulated and
relatively balanced pro- and anti-inflammatory response, makes AMs ideal for preserving
the alveolar structure and its essential gas exchange function. Host-adapted intracellular
pathogens like Mtb appear to be able to exploit the tightly balanced activity of these cells to
enhance their survival and persistence [60,84].

3. Macrophage interaction with Mtb
3.1 Macrophage recognition of Mtb

Macrophages express an array of PRRs and phagocytic receptors that play crucial roles in
their recognition and response to pathogens, essential in the initiation of the innate immune
response. The divers cell surface receptors are responsible for the generation of
combinatorial signals that result in macrophage activation as part of the host defense
machinery against invading pathogens [85–87].

I. C-type lectins: Mannose receptor, DC-SIGN, Dectin-1 and Mincle—The MR
(CD206) is expressed on AMs [88,89], monocyte-derived macrophages and DCs [90], but
not on monocytes [90–93]. It is the predominant C-type lectin expressed on non-activated
human macrophages; this selective distribution is different for other mammalian
macrophages. Its eight lectin-like carbohydrate recognition domains (CRDs) bind with high
avidity and affinity to mannans, notably endogenous unwanted high mannose N-linked
glycoproteins, to maintain homeostasis of the host [94,95]. The MR also interacts with
microbial pathogen-associated molecular patterns (PAMPs) that contain mannose, found on
many different pathogens [96]. The development of these mannosylated PAMPs is thought
to be a form of molecular mimicry by which pathogenic microbes, such as Mtb, can evade
the immune system through cloaking themselves in molecules that are similar to
mannosylated glycoproteins found within the host. Mtb is recognized by the MR via its
mannosylated surface structures [97]. MR recognition varies among Mtb strains [98,99], and
its involvement has been postulated to be a marker of host adaptation [97]. The MR can
discriminate among specific cell wall components of the bacteria due to subtle variations in
the degree and nature of mannan motifs. It specifically binds to the mannose caps of
ManLAM [100] and to higher order phosphatidyl-myo-inositol mannosides (PIMs) found in
greater amounts in pathogenic bacteria [101]. MR ligation on non-activated macrophages
produces an anti-inflammatory response by stimulating the release of anti-inflammatory
cytokines [102] and inhibiting the production of pro-inflammatory IL-12 [103] and ROS
[104]. Entry of Mtb through the MR leads to the development of a unique phagosome that
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has reduced fusion with the lysosome [101,105,106]. This phagosome does not acidify
normally in part because it does not acquire all subunits of the vacuolar proton ATPase
[107,108]. MR engagement by Mtb leads to the induction of PPARγ which, as noted earlier,
functions to inhibit a robust pro-inflammatory response. As a prototypic PRR, the MR links
innate and adaptive immune mechanisms and, with regards to Mtb, facilitates presentation
of lipids and ManLAM through CD1b [90,109–116]. Finally, the MR is thought to play a
role in cellular adhesion and fusion, with the formation of MNG, and is thus implicated in
Mtb granuloma formation [117].

DC-SIGN (dendritic-cell specific intercellular adhesion molecule 3 grabbin non-integrin)
demonstrates high avidity binding to mannosylated glycoconjugates such as N-linked high
mannose structures and fucose-containing glycans [101,118–121]. It is present on immature
and mature DCs and small sets of macrophages [89,122] and binds to a variety of microbial
pathogens [123]. In general, DC-SIGN is not expressed on non-activated human
macrophages; however, its expression can be up-regulated upon Mtb infection [124] and
induced on macrophages stimulated with IL-4 or IL-13 and granulocyte macrophage colony
stimulating factor (GM-CSF) [125]. Mtb ManLAM and PIMs serve as ligands for DC-SIGN
on DCs [101,126]. Upon interaction of DC-SIGN with Mtb, the phagocytosed bacteria are
targeted for phagosome-lysosome fusion in the antigen presenting cells (APC) [127–129]
and DC maturation is impeded [126].

Dectin 1 is a transmembrane PRR expressed on macrophages as well as DCs, monocytes
and a subset of T cells [130]. It binds to β-glucan, a common component of the fungal cell
wall [131]. Dectin 1 ligation triggers phagocytosis and intracellular signaling cascades,
including synergistic interactions with the TLRs, leading to a pro-inflammatory response
[132] and a respiratory burst [133]. The role of Dectin-1 in Mtb infection is still unclear.
Although no specific mycobacterial ligands for Dectin-1 have been identified so far, this
receptor interacts with mycobacteria in concert with TLR2 to produce cytokines such as
TNF-α and IL-12p40 [134,135]. Recent studies have proposed additional roles for Dectin-1
in Mtb infection [136,137].

Mincle (Macrophage-inducible C-type lectin; also known as Clec4e or Clecsf9) is mainly
expressed on myeloid cells. Mincle expression is very low on non-activatd leukocytes, but is
up-regulated after exposure to various inflammatory stimuli, such as cytokines and TLR
ligands [138]. Its ligation can induce cytokines such as TNF-α, MIP-2 (macrophage
inflammatory protein 1) (CXCL2), and IL-6. Mincle can sense infection by some fungi
[139] and can detect an endogenous protein, spliceosome-associated protein 130 (SAP 130),
which is released from necrotic host cells. Mincle has recently been shown to serve as a
PRR for trehalose dimycolate (TDM) from Mtb [140] but is not essential for controlling Mtb
infection in mice [141].

II. Complement receptors and Fcγ receptors—The complement C3 receptors (CR1,
CR3 and CR4) and Fcγ (FcγRI, II, III) receptors are major phagocytic receptors on
monocytes and macrophages, although their expression and activities vary in a tissue-
specific manner. Among the CRs, CR4 is reported to be more prominent in AMs than CR1
and CR3 [142]. In fact, the relative CR expression pattern changes during differentiation
with CR3 ≫ CR4 on monocytes developing into CR4 > CR3 on AMs [143]. Thus,
complement-opsonized pathogens will interact differently with AMs compared with other
macrophage/monocyte populations.

CRs expressed on human monocytes and macrophages play an important role in both
opsonic and non-opsonic phagocytosis of Mtb [59,144–146], the latter through interaction of
the receptor with surface polysaccharides [147], lower order phosphatidylinositol
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mannosides (PIMs; see below) and glycopeptidolipids [148]. Although CR3 mediates Mtb
phagocytosis, the host response following phagocytosis through this receptor is unclear for
human macrophages. In vitro analysis of peritoneal macrophages from CR3-knockout mice
showed decreased uptake of Mtb with equivalent bacterial growth compared to wild type
[149]. However, injecting intravenous Mtb into CR3-knockout mice failed to reduce
bacterial burden or lessen pathological lesions [150].

Despite the relatively increased expression of Fcγ receptors on AMs, these receptors do not
play a role in the initial phagocytosis of Mtb in the absence of opsonizing immune antibody
[144] which generally requires activation of the adaptive immune response for specific
antibody production, a process that takes several weeks. However, when the bacteria are
opsonized with Mtb-specific antibody and phagocytosed, there is enhanced phagosome-
lysosome fusion [151], facilitating an increased host macrophage protective mechanism.

III. Toll-like receptors—TLRs are a highly conserved family of transmembrane receptors
with an extracellular amino-terminal leucine-rich repeat (LRR) domain that recognizes
PAMPs and an intracellular carboxy-terminal tail that is homologous to the interleukin 1
receptor (IL-1R) [152]. The receptor contains a Toll-IL-1R (TIR) domain that forms a
scaffold for the assembly of signaling intermediates. TLRs are present on AMs [153],
neutrophils [154], lymphocytes [155] and DCs [156] as well as on alveolar epithelial cells
[157]. There are at least twelve mammalian TLRs, each responding to a variety of ligands
[86,158–161]. After specific ligand binding, TLRs such as TLR2 and TLR4 initiate an
intracellular signaling cascade, which generally leads to differential activation of NF-κB and
an inflammatory response [86,162,163]. However, several negative regulators, such as
interleukin-1 receptor-associated kinase M (IRAK-M), have been identified [164], and
pulmonary surfactant can drive increased IRAK-M expression and IL-10 production in
macrophages [165]. Signaling can also lead to alternate intracellular cascades, resulting in
an anti-inflammatory response [166]. To add to the complexity, TLRs are increasingly found
to interact with other cell surface receptors, leading to a modulated inflammatory response
[167,168].

TLRs are critical mediators of the immune response to a variety of pathogens, including Mtb
[169,170]. TLRs are either expressed on the cell surface (e.g. TLR2 and 4) or intracellularly
(e.g. TLR8 and 9) [171]. Mtb and its cell wall components are recognized by several TLRs,
including TLR1, TLR2, TLR4, TLR6, and TLR9 [172–176]. Among them, evidence for
genetic variants associated with TB susceptibility is most abundant for TLR2, which
functions alone or as a heterodimer with TLR1 or TLR6. The 19kDa lipoprotein,
lipomannan (LM), and lower order PIMs found on the surface of the mycobacterial cell wall
have all been shown to interact with TLR2 [177–179]. TLR expression and function are
influenced by the local pulmonary microenvironment. For example, SP-A up-regulates the
surface expression of TLR2 on human macrophages, while inhibiting the intracellular
signaling of TLR2 and TLR4, which results in a dampened pro-inflammatory response [80].

IV. Scavenger receptors—There are several scavenger receptors (SRs) on AMs with
reported roles in antimicrobial host defense, namely SR I and II (SR-AI/II) and the
macrophage receptor with collagenous structure (MARCO) [180–182]. In the context of
Mtb infection, MARCO is thought to be involved in TLR signaling in response to cell wall
components, resulting in increased NFκB activation [183].

V. CD14—CD14 is highly expressed in macrophages and monocytes. It binds to the plasma
membrane through a glycophosphatidylinositol (GPI) anchor, although it can also be found
in its soluble form in plasma [184]. CD14 recognizes peptidoglycan from Gram-positive
bacteria [185] and LPS from Gram-negative bacteria [186]. Other bacterial ligands are
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lipoteichoic acid, lipoproteins and lipoarabinomannan (LAM) from mycobacteria, and
mannuronic acid from Gram-negative bacteria [185,187,188]. CD14 has been shown to
facilitate the uptake of non-opsonized Mtb by microglia (resident brain macrophages) [189],
although by itself is not capable of mediating phagocytosis of the bacilli by human
macrophages without the cooperation of other receptors [190] such as TLR2 and 4. Upon
ligand binding, macrophage activation leads to inflammatory cytokine production.

VI. The NOD-like receptors—The NOD (nucleotide-binding oligomerization domain)-
like receptor (NLR) family members play a major role in innate immunity through inducing
an inflammatory response and regulating cell death/survival pathways. They are a second
line of recognition, inducing a pro-inflammatory response to bacteria once inside the
macrophage [191]. NLRs are mainly expressed in APCs, including AMs and epithelial cells.
Most mammalian NOD family members contain 3 distinct functional domains: an amino
terminal effector binding domain (EBD), a centrally located NOD, and a carboxy-terminal
ligand recognition domain. The NLR family can be divided into four subfamilies depending
on the composition of their N-terminal EBD. The differing N-terminal domains are as
follows, with subfamily name: acidic transactivation domains (NLRAs), caspase activation
and recognition domain (CARD) (NLRCs), pyrin domains (NLRPs), and baculovirus IPA
repeat domains (NLRBs). NOD1 and NOD2 are part of the NLRC subfamily and contain a
LRR domain, NOD domain, and CARD domains [192]. NOD1 protein is abundantly found
in multiple cell types, whereas NOD2 protein expression is abundant in human macrophages
[193,194]. NOD1 and NOD2 recognize specific muropeptides found in the peptidoglycan
layer of Gram-positive and Gram-negative bacteria [195]. Upon ligation, they activate the
mitogen-activated protein kinases (MAPKs) and thereby indirectly allow for NF-κB and
AP-1 activation, leading to the production of pro-inflammatory cytokines [196]. NOD2 can
directly bind and activate caspase-1 and interact with the NALP1/NALP3 (NACHT, LRR
and PYD domain-containing proteins 1 and 3) inflammasome, which causes the activation
of caspase-1, an enzyme needed to cleave pro-IL-1β into its active secreted form [197].
Furthermore, there are many reports on the synergistic crosstalk between TLR agonists and
NOD2 agonists in pro- and anti-inflammatory cytokine release [198–205].

NLRs have proven to be important in the recognition of a variety of bacterial pathogens,
including Mtb [197,206–216]. Recent studies have reported that NOD2 does not have a
significant role in controlling Mtb growth during early infection in mouse macrophages
[217] but may play a role during late infection [214]. A decrease in pro-inflammatory
cytokine production has been observed in mouse NOD2 knockout bone marrow-derived
macrophages and naive murine AMs in response to Mtb, without affecting intracellular
bacterial growth [214,217]. NOD2 recognizes an N-glycolylated form of muramyl dipeptide
(GMDP) found in Mtb [195] and controls the nature of the inflammatory response and
subsequent fate of Mtb and M. bovis BCG in human macrophages [194].

3.2 The Mtb phagosome
During normal phagocytosis, actin-mediated membrane movements engulf the bacterium
into a phagosome with the sequential recruitment of Rab GTPases to the phagosomal
membrane, which then recruits the vacuolar ATPases to acidify the phagosomal contents.
The membrane ultimately fuses with a lysosome to merge the contents of the acidified
phagosome with the lysosomal acid hydrolases. However, during Mtb infection, the
phagosome trafficking pathway is altered through multiple mechanisms to disrupt normal
host cell microbicidal activities and/or phagocyte effector functions [218–221].
Consequently, once inside the macrophage, Mtb resides in a unique phagosome with an
abnormally high pH of ~6.2 and limited fusion of pre-formed lysosomes [222,223]. The
early trafficking pattern of the Mtb phagosome includes fusion with early endosomes, since
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both iron [224,225] and glycosphingolipids [226] are found associated with it. However,
Mtb ManLAM can inhibit normal calcium increase in the cytosol, causing a disruption in
calmodulin complex formation with phosphatidylinositol 3-kinase (PI3K) [222,227,228] and
preventing the recruitment of phosphatidylinositol 3-phosphate (PI3P) to the phagosomal
membrane [229]. PI3P is a critical lipid intermediate in the recruitment of the vacuolar
GTPases to the phagosome [230]. Mtb also inhibits sphingosine kinase which inhibits
calcium signaling [231]. Inhibition of full maturation of the phagosome also involves the
lack of recruitment of Rab5 effector proteins, such as early endosomal autoantigen 1 (EEA1)
[59,232] and hVPs35, to the phagosomal membrane [223,233,234]. EEA1 and Syntaxin-6
are required for the delivery of lysosomal hydrolases, cathepsins and vacuolar ATPases. The
Mtb phagosome lacks a specific type III PI3K, required for retention of EEA1 on the
endosomal membrane [108,230,235]. Ultimately, these processes result in a failure of
phagosome maturation between the Rab5 (an early endosomal marker) [236] to Rab7 (a late
endosomal marker) [237] conversion.

ESAT-6/CFP-10 (early secretory antigenic target 6/culture filtrate protein 10), the SecA 1/2
proteins and the eukaryotic-like serine/threonine protein kinase G (PknG) from Mtb interfere
with phagosomal maturation [238–241]. Also, several of the Mtb lipoglycans discussed
earlier have important effects on phagosome-lysosome fusion. For example, ManLAM
modifies trafficking and phagosome-lysosome fusion, as well as decreasing MAPK
activation, a critical intracellular signaling molecule [242,243]. The lower order PIMs
(fewer mannose molecules), which are found more commonly in less virulent mycobacteria,
can enhance phagosomal fusion with early endosomes [179]. Glycolipids such as TDM can
interfere with membrane trafficking, preventing phagosome maturation [244]. Recent
studies have focused on the utilization of host fatty acid stores and fatty acid metabolism for
persistence of Mtb in the phagosome [245–247].

Many studies over several decades have provided evidence that Mtb enters and divides
within the macrophage phagosome. However, there continues to be active debate over
whether Mtb can also escape from the phagosome into the cytosol [248] and why this would
be advantageous to the bacterium or the host. Experiments performed by several groups
during the mid 1980s and 1990s showed electron microscopy images where Mtb appears
devoid of a phagosomal membrane some days after infection [249–251]. More recently,
Brown and colleagues [252] showed that at least some portion of intracellular M. marinum
(a highly genetically related mycobacterium) escape from the phagosome into the cytosol
using an actin-based propulsion system similar to Listeria; others have shown that the
presence of region of difference 1 (RD1) in the bacterial genome is required for this escape
[253]. Similarly, Mtb and M. marinum have been shown to be ejected from the amoeba
Dictyostelium through an actin-based structure called the ejectosome, using elements of
RD1 [254]. Peters and colleagues have recently reported that Mtb can escape from the
phagosome of DCs and macrophages after several days in culture [255] in an RD1- and
ESAT-6-dependent manner [256]. Several factors have contributed to the discordant results
obtained among labs throughout the years regarding bacterial localization and escape. These
include the source of cells used, bacterial strain, multiplicity of infection, length of infection,
how the bacterial inoculum was prepared, and the microscopy technique used to visualize
the phagosomal membrane.

Some studies have proposed that Mtb might be present in the macrophage cytosol several
days after infection on its way to escape from the cells and to spread to adjacent cells.
Consistent with this, there is growing evidence that virulent Mtb induces cell necrosis by
activation of the cytosolic positioned inflammasome in an RD-1 dependent fashion
[257,258]. In a very recent study, phagosomal rupture by Mtb and M. marinum was closely
followed by necrotic cell death of the infected macrophages [259]. Thus, further studies are
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needed to determine whether phagosomal escape is a virulence strategy in terms of
intracellular survival or just a consequence of membrane rupture during cell death. Another
possibility is that early following infection of macrophages, intraphagasomal Mtb, which
possesses an RD-1 dependent ESX-1 secretion system, is able to perforate but not destroy
the phagosomal membrane, allowing for a mixture of phagosomal and cytosolic components
[260,261]. Finally, it has been postulated that the escape of Mtb from the phagosome to the
cytoplasm might be a mechanism by which mycobacterial antigens can be processed and
loaded onto MHC I for presention to CD8+ T cells. While the escape of virulent Mtb from
the phagosome provides a possible explanation for this form of antigen presentation, an
alternative hypothesis is that the phagosome can interact directly with the endoplasmic
reticulum [255,262–264].

3.3 The pro-inflammatory cytokine/chemokine response
Local and systemic macrophage production of cytokines and chemokines are central to the
cellular response to Mtb infection. These soluble mediators play an important role, not only
in controlling early infection, but also during the chronic infection state [265,266]. Of major
importance to Mtb infection control are the macrophage cytokines TNF-α, the IL-12 family,
IL-6, IL-1α/β and IL-10 [267–272].

TNF-α is an autocrine/paracrine cytokine produced by a variety of cells, including
macrophages, DCs, lymphocytes, neutrophils, mast cells and endothelial cells. During Mtb
infection, the cytokine functions to regulate the inflammatory response, stimulating the
production of IL-1 and IL-6 [273]. It also contributes to the control of Mtb by inducing the
production of ROIs and RNIs by macrophages and the early secretion of chemokines [274].
TNF-α plays a crucial role in maintaining granuloma structure and function [275]. Its
production is highly regulated because excess TNF-α leads to tissue damage and
immunopathology, along with worsened clinical symptoms.

IL-12 represents a family composed of IL-12p40 (homodimer p40 + p40), IL-12 or
IL-12p70 (heterodimer p35 + p40), interleukin 23 (IL-23) (heterodimer p40 + p19) or
interleukin 27 (IL-27) (heterodimer cytokine with Epstein-Barr virus induced gene 3 [EBI3
or IL-27B] + p28 [known as interleukin 30 (IL-30)]). It is produced by macrophages and
DCs after activation by microbial ligands and other cytokines [276] and leads to the
development of the TH1 response during Mtb infection [277,278]. Several studies have
shown that IL-12 plays an important role in both innate and adaptative immune responses to
Mtb infection. The level of complexity of this family of cytokines during Mtb infection has
been highlighted recently [279]. The role of IL-27 during Mtb infection has been focused on
during the past decade. This cytokine promotes both pro- and anti-inflammatory responses.
Together with IL-12, it initiates the TH1 response, enabling the release of T cell IFN-γ
during infection [280,281], although it can contribute to uncontrolled inflammatory
responses over time [282,283]. A recent study has shown that IL-27 inhibits human
macrophage activity during Mtb infection [284].

IL-23 is produced in response to interleukin 17 (IL-17) from TH17 CD4 T cells, and recent
studies have demonstrated that the IL-17/IL-23 pathway may play a key role in controlling
mycobacterial infections [285–287] by enhancing the development of protective and
regulatory immune responses. IL-17 promotes the development of antimicrobial responses,
chemokine production and the recruitment of inflammatory cells [288,289]. IL-23 is
required for the maintenance of TH17 responses against Mtb by inducing IL-17 production
by memory T cells [290,291]. In general, the IL-17 family is crucial in keeping the balance
between bacterial killing and minimizing tissue damage.
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IL-6, produced by macrophages and a variety of other cell types [292,293], has both pro-
and anti-inflammatory effects. It is produced during early Mtb infection and is critical for
early protective mechanisms, such as cytotoxic T cell differentiation.

IL-1β is a product of inflammasome activation and regulates a number of processes
important in controlling Mtb infection, including iNOS production [294], phagosomal
acidification and maturation, up-regulation of adhesion molecules [295] and regulation of a
variety of enzymatic activities, such as cyclooxygenase and phospholipase A [296,297]. It is
essential in maintaining resistance against Mtb infection.

IL-10 is produced by monocytes, macrophages, DCs, and T regulatory cells (T regs)
[298,299]and functions as an immunomodulatory cytokine. During Mtb infection, it is
thought to suppress inflammation to limit tissue damage. It inhibits pro-inflammatory
cytokines (IL-1, IL-6, IL-12, IL-8 and IFN-γ) [300–305]and chemokines (CCL (C-C motif
ligand) 3, CCL4 and CCL5) impacting cell recruitment, the generation of oxidants
[300,306,307] and antigen processing and presentation [308]. Recent studies have shown
that IL-10 may interfere with phagosome maturation in human macrophages [309].

The production of chemokines is essential for the recruitment of inflammatory cells to the
site of infection. The early recruitment of macrophages is an important step in controlling
the infection [310]. Mtb is a strong inducer of chemokines that participate in protective and
immunopathogenic host responses during Mtb infection [311,312]. Several studies have
focused on the expression of inducible chemokines after Mtb infection of macrophages in
vitro [313]. The results have shown that human macrophages produce CCL2, CCL3, CCL4
and CCL5 (MCP-1 (monocyte chemoattractant protein 1), MIP-1a, MIP-1b and RANTES
(regulated upon activation normal T cell expressed and secreted)) in response to virulent
mycobacterial strains [314,315]. MIP-1a, MIP-1b and RANTES induce T cell activation and
proliferation [316] and activation of macrophages [317], and MIP-1a promotes T cell
differentiation [318]. Several studies have shown the presence of MCP-1, MIP-1a, RANTES
and IP-10 in the serum and bronchoalveolar lavage of TB patients [314,319]. AMs produce
more CCL2, CCL3, CCL4, IP-10 (CXCL (C-X-C motif ligand) 10) and CCL5 than
monocytes after Mtb infection [314]. These results also suggest that chemokines interacting
with CCR (chemokine C-C motif receptor) 1, CCR2 and CCR5 play a role in the influx of
cells to the site of infection, thereby impacting granuloma formation [320]. Expression of
chemokines by macrophages can influence TNF-α production by macrophages after Mtb
infection, specifically CCL2, CCL3, CCL4, CCL5, CXCL10 and CXCL13 [321].
Chemokine receptor expression may also be affected by TNF-α production. Therefore,
TNF-α may influence the chemokine network expression during Mtb infection, which can
indirectly impact granuloma formation. Also, some mycobacterial cell wall components
regulate the induction of chemokine secretion by macrophages [322].

3.4 Macrophage death during Mtb infection
The ability to regulate the death of infected host cells is important during many microbial
infections. The host regulates cell death pathways to enhance the induction of immunity and
to control pathogen dissemination, while the pathogen uses many strategies to manipulate
host cell death pathways to enhance its survival. Apoptosis (programmed cell death) plays a
critical role in homeostasis and embryonic development. Apoptosis is an energy-dependent
process mediated by the caspase cascade that results in the formation of apoptotic vesicles,
organelles where the cell contents are kept inside a plasma membrane. Apoptotic cells,
including macrophages, are degraded by adjacent macrophages through efferocytosis, which
has recently been shown to function as a host defense mechanism for Mtb [323]. Apoptosis
represents primarily an anti-inflammatory and immunoregulatory process [324]. However, a
recent study has shown that apoptosis may induce a pro-inflammatory response upon
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macrophage phagocytosis of Mtb-triggered apoptotic neutrophils [325]. In contrast to
apoptosis, necrosis is a relatively energy-independent process that does not involve caspase
activation. Necrosis elicits a pro-inflammatory response as the cell membrane is
permeabilized and the cell contents are extruded. It has long been thought to be a non-
specific response to excessive stress, tissue damage or microbial invasion of the cell.
However, it may in fact follow a series of programmed steps [326]. Macrophage necrosis in
the TB granulomas appears to be driven by the bacillary load and the proapoptotic cytokines
produced by the infected and associated uninfected leukocytes surrounding bacilli-infected
cells in the granuloma, and is a hallmark of the host granulomatous response to Mtb
infection [327].

Finally, regarding inflammasome-related cell death types, pyroptosis and pyronecrosis can
both occur with microbial infection. They are considered to be pro-inflammatory and are a
way to increase the recruitment of immune cells to the site of infection, although they can be
detrimental to the host if excessive inflammation is elicited. While it has been shown that
Mtb is able to activate the NLRP3 inflammasome through ESAT-6 [328–330], evidence is
lacking for whether Mtb can induce pyroptosis and pyronecrosis in the macrophage.

In summary, cell death has been associated with both Mtb virulence and host defense. In the
granulomas, where leukocyte necrosis can be extensive, macrophage death is closely
associated with the pathology and tissue damage of chronic TB disease. The relative
contribution of various specific cell death pathways during the course of Mtb infection in
vivo (primary infection, latency and reactivation) awaits further study.

3.5 Chronic inflammation and fibrosis
The progression of Mtb infection to active disease leads to a chronic inflammatory state and
eventually tissue necrosis, fibrosis and remodeling. Macrophages play a central role in these
processes by secreting cytokines and inflammatory mediators, such as prostaglandins, and
producing enzymes and growth factors that promote connective tissue degradation, fibrosis
and angiogenesis. The matrix metalloproteases (MMPs) are important mediators of
extracellular matrix proteolysis and tissue. Various types of collagenases (MMP1, MMP13),
elastases (MMP12) and gelatinases (MMP2, MMP9) are members of the MMP family. Each
of these enzymes degrades specific components of the underlying connective tissues
associated with granulomas in the lung or other infected organs [331]. The interaction of
these MMPs with their respective tissue inhibitors of metalloproteinases (TIMPs) in
response to Mtb infection is an important regulatory component of immune pathogenesis at
the site of Mtb infection [332].

During TB, Mtb promotes destruction of the lung extracellular matrix to cause necrosis,
liquefaction and ultimately formation of cavities, where Mtb can proliferate and spread from
the interstitium to the airways [46]. To generate cavities, Mtb requires the activity of MMPs
[333,334]. The MMP:TIMP ratio is critical in regulating the proteolysis of tissue and
controlling tissue damage. In this regard, several studies have assessed MMP expression in
response to Mtb infection in vitro and in animal models. Expression of MMP-1 and MMP-9
is up-regulated in human THP-1 cells after stimulation with mycobacteria [335,336] or LM
via TLR and CD14 signaling [337]. Mtb infection can up-regulate MMP-1, −3, −7 and −10
as well as the related A disintegrin and metalloproteinases (ADAMs) in primary human
macrophages [338]. In addition, MMP-1 up-regulation was higher in Mtb-infected primary
human cells, compared to M. bovis BCG, while MMP-7 production was equivalent. In a
rabbit model of pulmonary TB, the transcript levels of MMP-1, 2, 3, 9, 1, 13 and 14 were
found to be elevated during the active disease process, and characterized by tissue necrosis
and cavitation [339]. Consistent with this finding, a fibrotic capsule surrounding the lung
granulomas of rabbits with active disease was observed, as demonstrated by positive
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staining for collagen deposition [339]. In humans, the concentrations of MMP-1 and −3
were elevated in induced sputum and bronchoalveolar fluid of TB patients compared with
non-TB patients [340]. A recent study has correlated the presence of MMPs, TIMPs and
pro-inflammatory cytokines in human TB pleuritis patients, concluding that levels of
MMP-1, −7 and −9, as well as TIMP-3, in vivo correlate with production of the pro-
inflammatory cytokines IFN-γ and IL-6 [341]. Histologic studies on human TB granulomas
have shown that MMP expression occurs at the site of Mtb granuloma formation;
specifically, MMP-1 and −7 are expressed by epithelioid cells and giant cells [338], while
MMP-9 is produced by the pulmonary epithelial cells [342]. Although the literature is robust
for the importance of MMP-9 during Mtb infection, its biological relevance compared with
other MMPs remains unclear.

4. Mtb strain diversity
4.1 Strain specific macrophage activation

Recent reports have indicated that different clinical Mtb strains can induce differential host
immune responses, leading to variable levels of pathogenesis in animal models [343–346].
Indeed, the view of pathogenic mycobacteria as a relatively homogeneous clonal population
with minimal functional genetic diversity has been challenged by molecular genotyping
[343,347,348] and whole genome sequencing of members of the Mtb cluster (MTC)
[349,350]. An analysis of diverse Mtb and MTC strains show phylogenetically-constrained
patterns of bacterial gene expression, including lineage-, genotype-, and strain-specific
signatures. These observations suggest a functionally heterogeneous population of
pathogenic mycobacteria, highlighting the impact of genetic diversity [351]. In the absence
of significant horizontal gene transfer, lineages of Mtb may define discrete evolutionary
trajectories bearing distinct phenotypic properties [352,353]. Thus, biomedically relevant
traits may be non-randomly distributed in the bacterial population along clonal lines
[354,355]. Recently, phylogenetically diverse Mtb strains have been shown to exhibit
markedly different virulence and pathogenesis phenotypes in macrophage in vitro culture
and animal infection models [344]. Moreover, a number of specific Mtb strain families have
been reported to show an unusual degree of outbreak or epidemic potential, drug-resistance
or marked tissue tropism in humans [356–358]. Thus, there is evidence of genetic variation
and associated phenotypic diversity in Mtb. However, there have been few in-depth studies
to examine the mechanistic underpinnings for these clinically and epidemiologically
important associations.

Recent studies suggest that the differential induction of host macrophage activation and
consequently host immunity plays an important role in this Mtb strain-dependent diversity
of pathogenesis [343,344]. One study has shown that a W-Beijing strain was able to
replicate in cultured human macrophages at a 4–8 fold higher rate, compared to other
unrelated Mtb strains [359]. In mice infected with a W-Beijing isolate (HN878), the
bacillary load in the lungs was 10-fold higher than in mice infected with a non-W-Beijing
isolate (CDC1551) [344]. Reduced survival of HN878-infected mice correlated with
relatively weak pro-inflammatory immune cytokine production following in vitro
macrophage infection (e.g. TNF-α). This differential immune response was attributable to
the presence of an Mtb-specific phenolic glycolipid (PGL-tb) in HN878 [360]. The
differential cytokine responses of macrophages exposed to lipid extracts prepared from
HN878 or CDC1551 were similar to those stimulated by the intact bacilli, while other
cellular fractions did not induce a differential response [361]. When a single gene necessary
for the synthesis of PGL-tb (polyketide synthase, pks1-15) was disrupted
(HN878pks1-15::hyg), a less virulent phenotype was obtained; complementation of the
PGL-tb phenotype restored virulence. In another report, hypoimmunogenic strain CH,
responsible for an outbreak in Leicester, was linked to a specific chromosomal deletion
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(Rv1519) [362]. While some of the microbial factors driving immunologic phenotypes have
been shown to be strain-specific, a study describing cytokine responses between broader,
phylogenetically defined “ancient” and “modern” lineages, noted reduced in vitro human
macrophage responses in the latter group, possibly lending selective advantage in the
context of rapidly expanding human populations [363]. A study by Lopez et al. found that
genetically distinct Mtb strains (representing the four major lineages found globally)
resulted in a spectrum of immunopathologies in a murine intratracheal infection model
[343]. Macrophage infections with various Mtb strain types induced a differential pattern of
cytokines in vitro [364]. Dormans et al. found in a murine model that 19 different Mtb
complex strains from 11 major genotypes produced responses that varied widely with
respect to virulence, pathology, bacterial load and delayed-type hypersensitivity [365]. In
support, a study by Homolka et al noted that genetic diversity appeared to have functional
consequences during intracellular infection of bone marrow-derived macrophages, where
transcriptomic profiles were lineage-specific [351].

These studies and others show that subtle genetic alterations among clinical Mtb strains can
lead to variance in the ability to induce immune responses in the infected host [366]. In this
regard, recent studies have compared the immune response to the clinical Mtb isolates
HN878 and CDC1551during infection of New Zealand White (NZW) rabbits. These studies
and others demonstrate that selection of the Mtb strain used for infection determines whether
the animals control the infection and establish latency (e.g. CDC1551) or fail to control
infection with development of progressive cavitary disease (e.g. HN878) [367,368].
Infection of rabbits with the HN878 strain leads to the formation and maturation of all of the
granuloma types discussed earlier, thereby mimicking human TB [367]. Gene arrays and
RT-PCR have shown that, as granulomas progress, the nature of macrophage activation
evolves as well [367,369].

4.2 The mycobacterial cell envelope
Induction of differential immune responses to Mtb strains is due in part to differences in the
nature of the mycobacterial cell envelope, which plays a critical role in the survival of
bacteria within macrophages [370,371]. The cell envelope consists of an innermost plasma
membrane, followed by a peptidoglycan-arabinogalactan layer, a thick mycolic acid layer,
and then an outer layer consisting mainly of surface carbohydrates and proteins [372].
Several of the components of the Mtb cell wall have been shown to be immunomodulatory,
including the lipoglycoconjugates: LAM, LM and PIMs. These lipoglycoconjugates are
biosynthetically and structurally related and are thought to be located both in the innermost
layer as well as exposed on the surface of the bacteria. The surface-exposed carbohydrate
moieties are, thus, available to interact with lectin components of the innate immune system,
such as the MR and SP-D [83,98,100,145].

PIMs vary in their number of mannose sugars and acyl chains, which affect their interaction
with cell surface receptors, such as the MR and DC-SIGN [101]. These variations confer
subtle differences on the immune response. In general, LMs are thought to be pro-
inflammatory molecules with variable effects on the immune system based on the species of
origin. TNF-α production is robust for M. smegmatis LM-stimulated human macrophages,
but not for LM from Mtb. This diversity was found to be due in part to differential
microRNA regulation [373] in response to subtle variations in the structure of the molecule,
such as the presence of increased succinates in M. smegmatis LM [374]. These results are
consistent with the decreased TNF-α response seen in virulent mycobacteria infection
compared to nonpathogenic mycobacteria [375]. Similarly, it has been shown that LM
stimulates macrophages through different receptors based on the number of acyl chains with
tri-acylated LM interacting through TLR2/TLR1, while tetra-acylated LM interacts through
TLR4 [376].
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The LAMs are the largest, most complex lipoglycans, built upon LM with branches of
arabinans followed by species-specific ‘caps,’ which are the terminal molecules on the end
of some of the arabinan branches. These caps can be 1-, 2- or 3- linked mannoses, known as
mono-, di- or tri-mannoside caps (ManLAM), phosphatidyl-myo-inositol caps (PILAM), or
uncapped (AraLAM from M.chelonae) [377]. Even within Mtb strains, there is variability in
the number and type of caps in mycobacteria. For example, pathogenic Mtb laboratory
strains (Erdman, H37Rv) have a higher proportion of α 1–2 linked di-mannoside-capped
ManLAM, while less pathogenic strains (H37Ra) and species (M. marinum and M. avium)
have relatively more mono-mannoside-capped ManLAM [378], and nonpathogenic M.
smegmatis has infrequent PILAM [379]. ManLAMs are also important regulators of the
immune response that assist in bacterial survival. As with the other lipoglycoconjugates, the
interaction of ManLAM with the host immune system depends upon subtle variations in
structure. For example, the number of mannose caps and degree of mannose capping can
affect the cell receptor that interacts with the bacteria, since ManLAM from three different
Mtb strains, all known to have mainly di-mannosyl groups on ManLAM, showed variations
in their binding to the MR [99]. Thus, subtle variations in structures of these lipoglycans are
important in determining the interaction of the bacteria with specific cell receptors and,
ultimately, the nature of the host immune response [380]. We have recently shown this to be
the case for a set of clinical Mtb isolates found to naturally possess a truncated ManLAM
structure [99].

5. Conclusions
Our current understanding of the role of macrophages in TB, although incomplete, clearly
demonstrates the central role these cells play both in the host protective immune response
and control of infection, and in the maintenance of chronic infection and its associated tissue
damage and pathology. As we gain more knowledge about macrophage responses in the
context of organ-specific microenvironments, our understanding of the molecular details
underlying the pivotal Mtb-macrophage interactions that occur during TB infection will
become more defined. In future studies, it is critical that we better understand these
interactions during the entire spectrum of TB from primary infection, dissemination,
microbial growth within granulomas, control of infection and latency and re-activation
disease. It is clear that the nature of the macrophage receptor recognition, signaling,
inflammation and antigen presentation pathways differ during different stages of infection
and disease, and that the nature of the infecting Mtb strain also contributes to this diversity
of responses. Since recent publications have highlighted the major differences in immune
response among humans and different animal models, future studies must focus on
comparative biology among mammalian hosts with an eye towards the use of animal models
that better recapitulate what is seen in human disease. In addition, an important future focus
will be studies of human clinical samples and the use of platform technologies to maximize
our understanding of human TB in order to develop rational approaches to find critically
needed new biomarkers, therapies and vaccines.
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