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Abstract

Significance: The imino acid proline is utilized by different organisms to offset cellular imbalances caused by
environmental stress. The wide use in nature of proline as a stress adaptor molecule indicates that proline has a
fundamental biological role in stress response. Understanding the mechanisms by which proline enhances
abiotic/biotic stress response will facilitate agricultural crop research and improve human health. Recent Ad-
vances: It is now recognized that proline metabolism propels cellular signaling processes that promote cellular
apoptosis or survival. Studies have shown that proline metabolism influences signaling pathways by increasing
reactive oxygen species (ROS) formation in the mitochondria via the electron transport chain. Enhanced ROS
production due to proline metabolism has been implicated in the hypersensitive response in plants, lifespan
extension in worms, and apoptosis, tumor suppression, and cell survival in animals. Critical Issues: The ability
of proline to influence disparate cellular outcomes may be governed by ROS levels generated in the mito-
chondria. Defining the threshold at which proline metabolic enzyme expression switches from inducing survival
pathways to cellular apoptosis would provide molecular insights into cellular redox regulation by proline. Are
ROS the only mediators of proline metabolic signaling or are other factors involved? Future Directions: New
evidence suggests that proline biosynthesis enzymes interact with redox proteins such as thioredoxin. An
important future pursuit will be to identify other interacting partners of proline metabolic enzymes to uncover
novel regulatory and signaling networks of cellular stress response. Antioxid. Redox Signal. 19, 998–1011.

Introduction

Almost three decades ago, the proline metabolic path-
way was proposed to have a regulatory function in

oxidation–reduction homeostasis and cell survival (95).
Now, numerous laboratories have shown that the imino acid
proline impacts a wide range of cellular processes, including
bioenergetics, differentiation, growth, lifespan, and apo-
ptosis (30, 70, 74, 75, 84, 95, 97, 99, 153). It is well established
that proline metabolism leads to increased mitochondrial
reactive oxygen species (ROS) production via the electron
transport chain (ETC) and that proline metabolism impacts
cell survival and cell death in different species (14, 30, 84, 97).
In plants, the protective effect of proline during stress is es-
pecially well documented (123). Here, we review proline
metabolic stress adaption in plants and examine the poten-
tial mechanisms of proline stress protection in different
organisms.

Proline Metabolic Enzymes

The reactions of the proline metabolic pathway are shown
in Figure 1. Proline is synthesized from glutamate by
the enzymes D1-pyrroline-5-carboxylate (P5C) synthetase
(P5CS) and P5C reductase (P5CR). Alternatively, proline
can be formed from ornithine, which is converted into
P5C/GSA via ornithine-d-aminotransferase (OAT) (2). The
conversion of proline back to glutamate is catalyzed by
proline dehydrogenase (PRODH) and P5C dehydrogenase
(P5CDH). An overview of the proline metabolic enzymes is
provided next.

P5C synthetase

P5CS catalyzes the NADPH-dependent reduction of glu-
tamate to c-glutamate-semialdehyde (GSA), which then
spontaneously cyclizes to P5C (49, 110). The full-length cDNA
encoding P5CS in multicellular eukaryotes was first cloned
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and characterized in plants (49). P5CS is a bifunctional
adenosine triphosphate (ATP) and an NAD(P)H-dependent
enzyme in higher eukaryotes that displays glutamate kinase
(GK) and c-glutamyl phosphate reductase (GPR) activities
(49, 110). In primitive organisms such as bacteria and yeast,
GK and GPR are monofunctional enzymes (6, 94). The struc-
ture of bifunctional P5CS has not been reported, but indi-
vidual structures of GK and GPR are available from bacteria
(79, 89). Important residues for glutamate binding in the GK
domain are conserved among GK of different species (93, 94).
Proline biosynthesis is feedback inhibited by proline binding
to the GK domain and interfering with the glutamate binding
site (93).

Recently, Engelhard et al. identified human P5CS as a po-
tential target of mitochondrial thioredoxin 2 using an in situ
kinetic trapping assay (32). This interesting finding indicates
that P5CS is in the mitochondrial matrix and subject to redox
regulation.

P5C reductase

The product of the P5CS reaction, P5C, is reduced to proline
by P5CR using NAD(P)H as an electron donor (2). P5CR is
conserved among bacteria, plants, insects, and vertebrates (82,
103). X-ray crystal structures of P5CR from different organ-
isms, including humans, have been solved showing a con-
served N-terminal Rossmann fold for NADPH binding (6, 82).
In plants, P5CR is not only located in the cytosol but has also
been shown to be expressed in chloroplasts (123, 131). There
are three isoforms of P5CR in humans: PYCR1, PYCR2, and
PYCRL. PYCR1 and PYCR2 are localized in mitochondria (24,
103), whereas PYCRL is cytosolic (24). P5CR is not only critical

for synthesizing proline, but also has a critical role in cycling
proline and P5C between cellular compartments and in
maintaining proper NADP + /NAPDH levels in the cytosol to
drive the pentose phosphate pathway (84, 95).

Ornithine-d-aminotransferase

OAT catalyzes the interconversion of ornithine and GSA
with the flux direction determined by nutritional needs such
as in neonate, where the overall flux from proline to arginine
is favored (98, 142). In yeast, OAT is cytoslic (55); whereas in
plants and humans, OAT is localized in the mitochondria (65,
116, 123).

Recently, Jortzik et al. reported that OAT of the malaria
parasite Plasmodium falciparum (PfOAT) interacts with thior-
edoxin via Cys154 and Cys163, which are highly conserved
residues in Plasmodium OAT but absent in other organisms
(56). PfOAT also interacts with other cellular redox proteins
such as glutaredoxin and plasmoredoxin and is reversibly
regulated by S-glutathionylation (56, 60). It is of interest to
note that no homolog of P5CS or GK and GPR can be found in
the genome of Plasmodium, indicating that proline synthesis in
Plasmodium may only be through the degradation of ornithine
(56). These data suggest that proline biosynthesis in Plasmo-
dium is redox regulated via OAT, and they reveal new mo-
lecular linkages between redox homeostasis and proline
metabolism.

Proline dehydrogenase/P5C dehydrogenase

PRODH and P5CDH are well conserved in eukarya and
bacteria with PRODHs sharing a catalytic core domain of a

FIG. 1. Reactions of the proline metabolic pathway. Proline (Pro) is synthesized from glutamate (Glu) starting with the
enzymes glutamate kinase (GK) and c-glutamyl phosphate reductase (GPR), which in plants and animals are fused together
in the bifunctional enzyme P5C synthetase (P5CS). The intermediate, c-glutamate-semialdehyde (GSA), spontaneously cy-
clizes to D1-pyrroline-5-carboxylate (P5C), which is then reduced to proline by P5C reductase (P5CR). Alternatively, GSA/
P5C can be generated from ornithine and ornithine-d-aminotransferase (OAT). Proline is oxidized back to glutamate by
proline dehydrogenase (PRODH) and P5C dehydrogenase (P5CDH) in the mitochondrion. PRODH couples proline oxidation
to the reduction of ubiquinone (CoQ) in the electron transport chain (ETC). In Gram-negative bacteria, PRODH and P5CDH
domains are fused together in the PutA protein.
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distorted (ab)8 barrel (117, 126). It should be noted that
PRODH enzymes from Archaea have a structural fold that is
distinct from eukarya/bacteria PRODHs (59, 126). In eu-
karyotes, PRODH and P5CDH are localized in the mito-
chondrial matrix with PRODH associated with the inner
membrane of the mitochondria. In Gram-positive bacteria,
PRODH binds peripherally to the cytoplasmic membrane,
whereas P5CDH is cytosolic (126, 137). Interestingly, in Gram-
negative bacteria, PRODH and P5CDH are combined into a
single protein known as proline utilization A (PutA) with
the PRODH domain linked N-terminal to the P5CDH domain
(73, 83, 126). In some Gram-negative bacteria such as Escher-
ichia coli, PutA also has an N-terminal DNA-binding domain
(ribbon-helix-helix motif), enabling PutA to function as
a transcriptional repressor and a proline metabolic enzyme
(72, 155).

PRODH contains a noncovalently bound flavin adenine
dinucleotide (FAD) and is responsible for catalyzing the first
step of L-proline oxidation (6). The reaction catalyzed by
PRODH results in the transfer of two electrons from proline to
the flavin cofactor to generate P5C and reduced flavin. Next,
PRODH transfers two electrons from reduced flavin to an
electron acceptor such as ubiquinone in the inner membrane
of the mitochondria (or cytoplasmic membrane in prokary-
otes) (86, 135). After P5C spontaneously converts into GSA,
GSA is oxidized to L-glutamate by P5C dehydrogenase
(P5CDH) using nicotinamide adenine dinucleotide as an
electron receptor (6, 121). Glutamate generated by proline
oxidation enters the tricarboxylic acid cycle after enzymatic
conversion to a-ketogluturate. The oxidation of one molecule
of L-proline can yield approximately 30 ATP equivalents, thus
providing important energy for the cell, particularly under
nutrient deplete conditions (44, 96, 98).

Proline Metabolic Adaptation in Plants During Stress

Proline accumulation is a common phenomenon observed
in response to environmental stress in bacteria, protozoa, al-
gae, plants, and marine invertebrates (21, 81, 123, 131). In
plants, intracellular proline levels have been found to increase
by > 100-fold during stress (42, 131). Proline accumulation in
plants occurs during exposure to various stresses, including
salt (150), drought (9, 19), UV radiation (108), heavy metal
ions (18), pathogens (33), and oxidative stress (146). Proline
accumulation and stress tolerance have been studied in plants
by exogenously and endogenously manipulating proline
levels (45). Under stress conditions (e.g., drought, cold shock,
and biotic challenges), proline accumulation in plants in-
volves reciprocal regulation of P5CS and PRODH (44, 45, 101,
131). In tobacco, overexpression of P5CS results in higher
levels of proline, enhanced osmotolerance, root biomass, and
flower development (45, 46). Here, we provide a summary of
proline metabolic gene expression changes in plants in re-
sponse to stress. For a more detailed description of metabolic
changes in plants, readers are encouraged to see the excellent
review by Szabados and Savouré (123).

Proline biosynthesis

Glutamate appears to be the main precursor in stress-
induced proline accumulation in plants, as the ornithine
pathway mainly facilitates nitrogen recycling from arginine to
glutamate (41, 123). The rate-limiting enzyme for proline

synthesis is P5CS, the increased expression of which correlates
with proline accumulation in Arabidopsis (110). Changes in
P5CR (P5CR; At5g14800) expression levels seem to associate
less with proline accumulation, which is consistent with P5CS
catalyzing the rate-limiting step of the pathway. However,
there are a few reports that P5CR transcripts levels are mod-
erately enhanced in the root of soybean and pea, and in the
leaves of Arabidopsis in response to osmotic stress (26, 132,
138). In addition, Cecchini et al. recently showed that P5CR
was up-regulated by the hypersensitive response (HR) in
Arabidopsis after infection with an avirulent strain of Pseudo-
monas syringae (13). Thus, P5CR may have an important role in
stress response that is not yet fully realized.

There are two isoforms of P5CS in plants; in Arabidopsis,
isoform 1 (P5CS1; At2g39800) is localized in the chloroplasts
and is required for stress-induced proline accumulation (80,
124). Isoform 2 (P5CS2; At3g55610) is localized mainly in the
cytosol and is essential for embryo and seedling development
(80, 124). Disruption of P5CS1 by T-DNA insertion in Arabi-
dopsis leads to significantly lower proline accumulation in
plants during stress, resulting in hypersensitivity to salt
stress and high levels of ROS (124). Disruption of P5CS2 does
not significantly impact proline accumulation but impairs
development of seedlings and fertile plants (124). Consistent
with an important role in proline accumulation, P5CS1 ex-
pression is up-regulated in response to drought and salt stress
(1, 122, 150).

Recently, Verslues et al. identified a splice variant of P5CS1
in Arabidopsis that resulted in a nonfunctional transcript (62).
The alternatively spliced transcript led to reduced P5CS1
protein levels and proline accumulation (62). In a compre-
hensive study of how proline content and the abundance of
the nonfunctional splice variant varied with climate, it was
found that the nonfunctional P5CS1 transcript correlated
better with climate variability than with proline content (62).
These interesting findings suggest that proline accumulation
may not be the sole factor for adaptation to environmental
stress, but rather the proline biosynthesis pathway may have
an important role in climate adaptation that is not yet fully
realized (62).

The signaling mechanisms by which environmental stress
induces proline biosynthesis in plants includes several mole-
cules such as abscisic acid (ABA) (109, 122), calcium, and
phospholipase C (91, 109, 148). Recently, Sharma et al. re-
ported that proline metabolism is required for ABA-mediated
growth protection in plants under water deficit (112). Evi-
dence for ROS-mediated regulation of proline biosynthesis
has also been found (33, 134, 146). Fabro et al. reported that in
Arabidopsis, HR triggered by incompatible plant pathogen
interaction results in proline accumulation via up-regulation
of P5CS2 but not P5CS1 in a salicylic acid and an ROS-
dependent manner (33). Later, Verslues et al. also reported
that hydrogen peroxide (H2O2) may cause proline accumu-
lation or promote ABA-induced proline accumulation (134).
Recently, Yang et al. suggested that H2O2 may induce proline
accumulation by up-regulation of P5CS and down-regulation
of PRODH activity in coleoptiles and radicles of maize
seedlings (146).

In addition to transcriptional regulation, plant P5CS is
feedback inhibited by proline (154). The feedback inhibition of
P5CS is similar to that of bacterial GKs and involves com-
petitive inhibition by proline with regard to glutamate (93,
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94). Structural analysis and site-directed mutagenesis of bac-
terial GKs suggest that proline partially occupies the gluta-
mate binding site when bound to GK, thus interfering with
glutamate binding and inhibiting GK activity (93). In-
corporating a GK variant that is insensitive to proline inhibi-
tion has been used to overproduce proline in bacteria (23, 119)
and yeast (125). In plants, expression of a P5CS variant lacking
proline inhibition increased proline levels by two fold (46). In
a recent review, Pérez-Arellano et al. (94) noted that under
stress conditions, some bacteria and plants accumulate pro-
line at a concentration ( > 100 mM) that is well above that
which is needed to inhibit GK activity with KI values ranging
from *0.2 to 1 mM proline for bacterial GK and plant P5CS
enzymes, respectively (10, 27, 61, 93, 94). It has been proposed
that under stress conditions, proline inhibition of GK activity
is attenuated by the high levels of other solutes such as glu-
tamate (61, 93, 94).

Proline degradation

During stress response, it is generally anticipated that along
with up-regulation of proline biosynthesis, a corresponding
decrease in the proline degradation pathway occurs that
maximizes proline accumulation. Similar to proline biosyn-
thesis, the first step in the pathway of proline degradation (i.e.,
PRODH) is rate determining. Arabidopsis has two functional
PRODH isoforms, both of which are localized to the mito-
chondria: PRODH1 (PRODH1; At3g30775), also known as
ERD5 gene (Early Responsive to Dehydration) (40, 64) and
PRODH2 (PRODH2; At5g38710) (40, 123). PRODH1 is widely
expressed in plants and is considered the predominant iso-
form (40). Expression of PRODH2 is significantly lower than
PRODH1 with PRODH2 expressed mainly in the vasculature
(40). PRODH1 and PRODH2 are up-regulated by exogenous
proline but surprisingly, they respond differently to drought
and salt stress (131, 136). It is well documented that PRODH1
expression decreases in response to cold, drought, and salt
stress (57, 64). Drought-tolerant wheat (Tritium aestivum)
cultivars were found to contain significantly lower PRODH
activity than drought-sensitive plants (147). Moreover, when
seedlings were exposed to lead (Pb(NO3)2), an elevation of
PRODH activity was found in drought-sensitive wheat cul-
tivars (Ningchun) but not in drought-tolerant ones (Xihan),
which is consistent with down-regulation of proline degra-
dation and providing a benefit to plants during stress (147).

In Arabidopsis, salt stress has been shown to induce
PRODH2 expression, while PRODH1 expression is signifi-
cantly down-regulated (40). Differential regulation of the two
PRODH isoforms has also been reported in tobacco (104).
Thus, it appears that PRODH1 and PRODH2 have distinct
physiological roles, which will require further investigation to
fully understand the benefits of proline in stress tolerance.
Funck et al. suggest that proline degradation in the vascula-
ture may provide important energy for the plant during stress
exposure (40). Indeed, some tissues in plants have been found
to maintain proline oxidation under stress. At low water po-
tential (drought), PRODH1 expression was found to remain
high in root apex and shoot meristem in Arabidopsis, whereas
PRODH1 expression was reduced in the bulk of shoot tissue
(112). A PRODH1 mutant in Arabidopsis exhibited signifi-
cantly lower oxygen consumption in the root apex, indicating
that proline catabolism is a important pathway for driving

oxidative phosphorylation (112). Furthermore, the apical re-
gion of barley roots under NaCl stress had less free proline
accumulation even though L-proline transporter and P5CS
activities were increased (128). Thus, proline transport and
utilization may vary in different tissues depending on the
energy demands of different regions of the plant.

The second enzyme of the proline catabolic pathway in
Arabidopsis, P5CDH (P5CDH; At5g62530), is up-regulated by
exogenous proline, although the induction of P5CDH is much
slower than that of PRODH (29). For the most part, P5CDH
expression remains constant during stress. Interest in P5CDH
has been in whether P5CDH expression levels attenuate the
toxicity of proline, which is observed in plants at high proline
levels (29). The adverse effect of exogenous proline has been
postulated to be caused by the build-up of P5C/GSA due to
low P5CDH activity (123, 131). P5C/GSA has been reported
to increase intracellular ROS (88) and to react with other
metabolites (35). Knockout of P5CDH in Arabidopsis generates
mutant plants that are hypersensitive to exogenous proline,
whereas P5CDH-overexpressing plants are more tolerant to
exogenous proline treatment (28). However, Arabidopsis with
limited PRODH activity still exhibits sensitivity to exogenous
proline, suggesting that other mechanisms contribute to
proline toxicity such as inhibition of endogenous proline
synthesis (13, 44, 78, 123).

During the recovery phase after stress, proline is consid-
ered as serving as an important energy source (44, 123). Pro-
line oxidative metabolism in the mitochondria helps drive
oxidative phosphorylation and ATP synthesis in recovering
tissues (44). Accordingly, PRODH and P5CDH expression are
increased during rehydration (64). Accumulated proline has
been shown to be rapidly degraded during stress recovery in
cultured tomato cells (Lycopersicon esculentum cv VFNT-
Cherry) (43).

Mechanisms of Proline Stress Protection

The molecular mechanisms of how proline protects cells
during stress are not fully understood but appear to involve
its chemical properties and effects on redox systems such as
the glutathione (GSH) pool (Fig. 2). The function of proline in
stress adaptation is often explained by its property as an os-
molyte and its ability to balance water stress (27). However,
adverse environmental conditions often perturb intracellular
redox homeostasis, necessitating mechanisms that also work to
balance oxidative stress. Thus, proline protective mechanisms
have also been proposed to involve the stabilization of proteins
and antioxidant enzymes, direct scavenging of ROS, balance of
intracellular redox homeostasis (e.g., ratio of NADP+ /NADPH
and GSH/GSSG), and cellular signaling promoted by proline
metabolism. The potential mechanisms by which proline pro-
vides stress protection are discussed next.

Osmolyte function

Proline is one of the several small molecules classified as an
osmolyte or an osmoprotectant (22). Other biologically im-
portant osmolytes are glycerol, trehalose, sorbitol, sucrose,
taurine, sarcosine, glycine betaine, and trimethylamine N-
oxide (145). These osmolytes are accumulated in response
to conditions of drought, salt, and temperature extremes.
Osmolytes help mitigate water stress and balance turgor
pressure during stress (22). Osmolytes are also excellent
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cryoprotectants (92). For example, proline has been shown to
increase the freeze tolerance of yeast (85, 125) and plants (45,
123, 151), and to be a useful cryoprotector of protein crystals
(92), fly larvae (67, 68), plant cells (140), and human stem cells
(39). Thus, as an osmolyte, proline is an important molecule
that is employed by various organisms to combat stress.

Chemical chaperone

Proline has been shown to act as a chemical protein chap-
erone and to prevent protein aggregation (71, 107). A ther-
mosensitive dnaK-mutant strain of E. coli was rescued by
increased intracellular proline levels using a GK variant that is
insensitive to proline inhibition (15). The higher proline levels
reduced protein aggregation and thermodenaturation. In an
in vitro experiment, proline (1 M) protected nitrate reductase
under osmotic, metal, and H2O2 stress (111). Ignatova et al.
reported that proline can prevent the aggregation of P39A
cellular retinoic acid-binding protein (an aggregation prone
protein) under salt stress (51). Proline also diminished the
aggregation of a cellular retinoic acid-binding protein that is
fused to a pathogenic polyglutamine repeat of the human
huntingtin protein (51).

Due to its chaperone properties, proline protection against
oxidative stress has been proposed to involve enhancement
and stabilization of redox enzymes. Exogenous application of
proline to cell cultures has been found to increase the activity
of different antioxidant enzymes under salt (47), cadmium
(53, 54, 144), and oxidative stress (17), resulting in increased
stress tolerance. These enzymes include superoxide dis-
mutase (53, 144), catalase (17, 48, 53, 144), and GSH related or
ascorbate (ASC)-GSH cycle-related enzymes (47, 54). All these
are important antioxidant enzymes (52, 87) and in plants, the
ASC-GSH cycle is especially critical for mitigating ROS (87).
In the P5CS1 knockout of Arabidopsis, significantly lower ac-
tivities of ASC-GSH cycle-related enzymes, including ascor-
bate peroxidase, GSH peroxidase, and GSH-S-transferase,
were observed under NaCl stress conditions (124). Chen et al.
reported that the addition of proline in the growth medium
quenched ROS as efficiently as other ROS scavengers, such as
N-acetyl cysteine in the fungal pathogen Colletotrichum trifolii
(17). The decrease in ROS was shown to be due to an increase
in catalase activity by proline treatment (17). Altogether, dif-
ferent groups have reported that increased proline levels en-
hance antioxidant enzyme activity.

Studies comparing the ability of different biological os-
molytes to stabilize proteins have provided insights into the
chaperone properties of proline. Proline stabilizes protein

structures by driving burial of the peptide backbone and
protein folding (7, 130, 143). This is different than protein
folding in the absence of osmolytes, which is driven by fa-
vorable burying of nonpolar side chains (7, 130, 143). Relative
to other osmolytes, proline is categorized as a weak stabilizer
of protein folding and ranks lower in ability to induce protein
folding (7, 11). Thus, although proline helps stabilize proteins,
besides facilitating protein folding, additional mechanisms
likely contribute to the protective effect of proline during
stress.

Metal chelator

Another mechanism by which proline protects cells against
stress has been suggested to involve the chelation of metals.
High proline content in metal-tolerant plants is not unusual
(113). One of the major toxicities of heavy metals is pertur-
bation of cellular redox balance by ROS production (114). A
potent oxidizing agent of biological macromolecules in the
cell is the hydroxyl radical (OH�), which is formed by the
reduction of H2O2 by transition metal ions such as Cu + and
Fe2 + (114). The function of proline as a metal chelator was
suggested by Sharma et al., who reported that proline can
protect enzymes from zinc- and cadmium-induced inhibition
by forming proline-metal complexes (115). A copper–proline
complex was also reported in the copper-tolerant Armeria
maritima (34).

ROS scavenger

The ability of proline to directly react with ROS has been
investigated by numerous laboratories (58, 114). Previous
studies have shown that free and polypeptide-bound proline
can react with H2O2 and OH� (pH 7–8) to form stable free
radical adducts of proline and hydroxyproline derivatives as
shown in Figure 3 (e.g., 4-hydroxyproline and 3-hydro-
xyproline) (38, 58, 102, 106, 127). Although Floyd and Nagy
(38) observed that nitroxyl radicals accumulate during the
incubation of proline with H2O2, the reaction is very slow
relative to that of proline and OH� (5.4 · 108 M - 1s - 1) (3).
Recently, the ability of proline to scavenge H2O2 was com-
pared with pyruvate, a well-established scavenger of H2O2.
At 30 min, H2O2 levels were diminished by > 90% in cell
medium supplemented with 1 mM pyruvate, whereas no
significant decrease was observed with proline (5 mM) (70).
This observation further indicates that a direct reaction be-
tween H2O2 and proline does not significantly contribute to

FIG. 2. Potential functions of proline and proline me-
tabolism in stress protection.

FIG. 3. Potential reactive oxygen species (ROS) scavenging
mechanisms of proline.
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the scavenging of cellular H2O2 (48). Proline has also been
shown not to directly scavenge O2

� - (58).
An ROS-scavenging mechanism that is important to pro-

line stress protection is the facile reaction of proline with
singlet oxygen (1O2). In cultured skin fibroblasts, exogenously
added proline has been shown to diminish 1O2 levels (141).
Proline has been shown to protect human skin cells from
photo-induced apoptosis, suggesting that proline suppresses
photo-oxidative stress and skin carcinogenesis (141). In
plants, Alia et al. reported that during strong illumination, the
production of 1O2 in the thylakoids from the cotyledons of
Brassica juncea was dramatically suppressed by proline (5).

The five-membered ring of proline, pyrrolidine, has a low
ionization potential that effectively quenches 1O2 most likely
through a charge transfer mechanism in which molecular
oxygen returns to the ground triplet state (3O2) (Fig. 3) (20, 81,
152). Alia and coworkers used irradiation of various photo-
sensitizers to produce 1O2, which is detected by measuring the
formation of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)
by EPR (4). TEMPO formation was completely inhibited by
adding 20 mM proline to the reaction, indicating that proline
directly scavenged or quenched 1O2 (4). Quenching of 1O2 is
also documented for other secondary amine compounds as
well, such as spermine (63). Due to its action as a 1O2

quencher, proline may help stabilize proteins, DNA, and
membranes (81). Prolyl residues in proteins also provide
protection against oxidative stress caused by 1O2. For exam-
ple, the epithelial small proline-rich protein, which is a pre-
cursor of the cornified envelope of the epidermal skin, is
strongly induced after exposure of the skin to UV radiation
(37, 133). Figure 3 summarizes the reactivity of proline with
different ROS.

Energy homeostasis and NADP + /NADPH

In addition to the chemical properties of proline discussed
earlier, changes in proline metabolic flux can also impact
stress tolerance. The effects of proline metabolism on the in-
tracellular redox state have been well studied by Phang and
coworkers, who first proposed that the proline-P5C cycle can
help maintain proper NADP + /NADPH levels in the cytosol
and drive the oxidative pentose phosphate pathway (95). The
cycling of proline and P5C via PRODH and P5CR results in the
transfer of reducing equivalents from the cytosol into the
mitochondria (84, 95). Electrons are passed into the mito-
chondrial ETC directly from PRODH via ubiquinone, leading
to increases in oxidative phosphorylation and mitochondrial
ROS production (84, 95). The proline-P5C cycle is, thus,
thought to help maintain a proper NADP + /NADPH ratio
(84, 95). The proline-P5C cycle may especially be important
when increased PRODH activity is not balanced with P5CDH
activity (84, 149). Currently, it is not known how P5C shuttles
in/out of the mitochondria. An excellent review on the pro-
line-P5C cycle and the wide ranging effects of proline me-
tabolism was recently provided by Phang (97).

Evidence for proline metabolic flux influencing the
NADP + /NADPH ratio in plants has been reported by several
groups and summarized in Figure 4 (44, 66, 112). Proline
metabolic cycling was found to increase oxidation of NADPH
in the soybean nodule, thereby enhancing the oxidative pen-
tose phosphate pathway (66). Increased flux through the ox-
idative pentose phosphate pathway would support purine

nucleotide biosynthesis during stress recovery (Fig. 4) (44, 66).
Up-regulation of proline synthesis has also been proposed to
maintain the NADP + /NADPH ratio at normal levels during
photoinduced stress (44, 123). Significant decreases in the
NADP + /NADPH ratio has been reported under different
stress conditions due to decreased Calvin cycle activity (44,
123). Without sufficient levels of NADP + available for elec-
tron transfer, photosynthetic cells under stress conditions
produce more 1O2 when exposed to high light (16, 123). Light
exposure, however, promotes P5CS expression, leading to
increased proline biosynthesis and NADP + levels, which
ultimately diminishes 1O2 production in the chloroplasts
(Fig. 4) (110, 124). These observations suggest a link between
enhanced proline synthesis and photoinduced oxidative
stress. Hare et al. suggest that the redox modulation accom-
panying proline synthesis may be more important than pro-
line accumulation (44).

Manipulation of proline metabolic enzyme expression has
also provided evidence for proline metabolism influencing
NADP + levels in plants. A comparison of sense-orientated
and antisense-orientated P5CR gene transgenic soybean
plants showed that sense plants had higher NADP + levels
and higher stress tolerance relative to antisense plants (25).
Antisense knockdown of P5CR resulted in lower NADP +

levels and higher sensitivity to stress (25). Recently, Sharma
and coworkers reported that under low water stress, plants
deficient in P5CS1 or PRODH1 exhibit a lower NADP + /
NADPH ratio than wild-type plants (112). In addition, L-
proline catabolism was suggested to be important for main-
taining the NADP + /NADPH ratio, as the NADP + /NADPH
ratio is significantly lower in the prodh mutant of Arabidopsis
than wild-type Arabidopsis (112). Although PRODH1 activity
apparently declines during stress, a low level of cycling be-
tween proline and P5C may be enough to support the main-
tenance of proper NADP + /NADPH (44).

GSH pool

Different studies have shown that proline addition to the
cell medium and up-regulation of endogenous proline bio-
synthesis leads to increased total GSH and protection of in-
tracellular reduced GSH (47, 118, 144). Guarding reduced
GSH is especially important in heavy metal stress, as heavy
metal ion toxicity is often associated with depletion of GSH
(114). The ability of proline to protect GSH during metal ion
stress was tested in Chlamydomonas reinhardtii in which
transgenic algae expressing the mothbean P5CS gene had
80% higher intracellular proline levels relative to wild-
type algae (118). After exposing cells to 50 lM Cd2 + , the
GSH:0.5GSSG ratio was four-fold higher in transgenic algae
relative to wild-type cells, indicating that proline prevents
GSH depletion during heavy metal stress (118). The higher
GSH levels in the P5CS transgenic algae were suggested to
increase phytochelatin synthesis and the formation of Cd-
thiolate complexes in the vacuole, thereby protecting against
heavy metal stress (118). The manner in which proline pro-
tects the GSH pool is not clear, but it has been proposed that
proline directly scavenges OH� and 1O2 generated by heavy
metal stress and helps stabilize ROS detoxifying enzymes
(47, 118, 144).

The proline and GSH synthesis pathways share the inter-
mediate, c-glutamyl phosphate, suggesting possible crosstalk
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between these pathways. Evidence of proline biosynthesis
contributing to GSH synthesis has been recently shown using
a GSH-deficient mutant strain of E. coli that lacks GshA
(glutamate-cysteine ligase), the enzyme which links gluta-
mate and cysteine to form c-glutamylcysteine and is, thus,
auxotrophic for GSH (129). Using a random mutagenesis
screen for mutants that rescue GSH auxotrophy, Veeravalli
et al. discovered that a mutant having both proB (GK) and
proA (GPR) mutations may repress the GSH auxotrophy of
gshA mutation (129). The mutation in proB resulted in a GK
mutant that lacks proline feedback inhibition, and the muta-
tion in proA generated a GPR mutant which lacks NADPH
dehydrogenase activity. The E. coli strain with both proA and
proB mutations rescued the GSH auxotropy of the gshA mutant
by providing an alternative route for generating c-gluta-
mylcysteine as shown in Figure 5. The mechanism is thought
to involve L-cysteine reacting with c-glutamyl phosphate
bound to GPR via an S-to-N acyl shift reaction (129).

Intriguingly, bioinformatic analysis of several bacterial
genomes showed that in prokaryotes which synthesize GSH,
some lack GshA. This suggests that in certain organisms,
proline biosynthesis is partly diverted toward GSH produc-
tion via c-glutamyl phosphate (129). In yeast, it was found that
a specific mutation in PRO2 (GPR) is the only suppressor of

the GSH auxotrophy of the gsh1 (homolog of gshA in bacteria)
null mutant (120). The rescue of a GSH auxotroph by a pro2
mutant was due to a trace amount of GSH synthesis by wild-
type PRO1 and the PRO2 mutant enzyme (120). Whether
proline biosynthesis significantly contributes to GSH pools
during stress is not yet known, but these studies demonstrate
that c-glutamyl phosphate derived from the proline biosyn-
thetic pathway is a sufficient precursor for GSH synthesis.

ROS signaling

Overproduction of ROS is well known to cause intracellular
damage of biological molecules and to contribute to patho-
logical mechanisms. ROS (e.g., H2O2), however, is also an im-
portant physiological signaling molecule that triggers adaptive
and survival responses by regulating cell death, proliferation,
and apoptosis (36, 139). Various studies have shown evidence
that proline metabolism leads to increased endogenous ROS
(75, 84, 97, 123, 153). Thus, the wide array of effects reported for
proline on cellular processes may be due, in part, to the nu-
merous signaling roles of ROS as illustrated in Figure 6.

The first evidence for proline metabolic signaling via ROS
was provided by Phang’s group (30, 97). They have shown
that in mammalian cells, PRODH activity increases

FIG. 4. Proposed mechanisms by which proline metabolism mediates redox homeostasis and energy production via
NADP + /NADPH. (1) NADP + produced by proline biosynthesis may stimulate the pentose phosphate pathway (PPP),
thereby supporting energy production and the biosynthesis of key molecules such as nucleotides. NADPH is utilized for
reductive biosynthesis pathways and is critical for glutathione (GSH) and thioredoxin (Trx) antioxidant systems. (2) In plant
chloroplasts, NADP + produced from proline biosynthesis may replenish depleted NADP + pools caused by inhibition of the
Calvin cycle during stress. Maintaining adequate levels of NADP + for electrons transfer to the ETC would help minimize
ROS generation during stress. Dashed line indicates inhibition. GR, glutathione reductase; GPx, glutathione peroxidase;
GSSG, oxidized glutathione; GSH, reduced glutathione; TrxR, thioredoxin reductase; Trx-(SH)2, reduced thioredoxin; Trx-S2,
oxidized thioredoxin; NADP + , nicotinamide adenine dinucleotide phosphate; NADPH, nicotinamide adenine dinucleotide
phosphate reduced form; Glucose-6-P, glucose-6-phosphate; G6PDH, glucose-6-phosphate dehydrogenase.
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mitochondrial ROS production, leading to induction of in-
trinsic and extrinsic apoptotic cell death pathways (50, 76).
The PRODH1 gene, which encodes PRODH, is a p53-induc-
ible gene (PIG6) (100). Up-regulation of PRODH by p53 in-
creases mitochondrial superoxide (O2

� - ) production most
likely through complex III, leading to cytochrome c release
and caspase 9 activation (50, 75). Increased ROS levels due to
PRODH have also been implicated in activating apoptotic
pathways through the Ca2 + /calcineurin-NFAT cascade (76).
Phang and colleagues have also shown that PRODH is
activated by peroxisome proliferator-activated receptor c
(PPARc) with PRODH-dependent ROS being an important
mediator of apoptosis in cancer cells treated with PPARc li-
gands (31, 90, 96, 156). Furthermore, tumor growth is signif-
icantly inhibited by overexpression of PRODH in mice (77).
Recently, Phang et al., showed that the oncogenic transcrip-
tion factor c-MYC down-regulates PRODH expression
through miR-23b* and increases the expression of proline
biosynthesis enzymes (75). Altogether, the studies by Phang’s
group have implicated PRODH as an important tumor sup-
pressor protein (97).

ROS signaling stimulated by PRODH has also been impli-
cated in cell proliferation, survival, and autophagy (96–98,
153). Recently, proline and PRODH were found to extend
lifespan in Caenorhabditis elegans (153). In a C. elegans daf-2
mutant with impaired insulin and IGF1 signaling, knock-
down of PRODH significantly decreased lifespan (153).
Complementary to the effect of PRODH knockdown on life-
span, proline treatment extended the lifespan of wild-type
worms expressing PRODH. The mechanism by which
PRODH increased lifespan was shown to involve transient
ROS signals generated by PRODH via the mitochondrial ETC
(153). Increased mitochondrial ROS production by proline
metabolism has been proposed to activate the worm homo-
logues of p38 MAP kinase and Nrf2, leading to increased
expression of antioxidant enzymes and lifespan (153). In
tumor cells grown under hypoxic conditions, PRODH and
proline metabolism generate a protective effect that involves
ROS and autophagic signaling (74). Exogenous addition of
proline has also been shown to protect mammalian cells
against oxidative stress (69). PRODH was recently shown to
be essential for proline protection against oxidative stress
with the mechanism of protection involving activation of the
Akt survival pathway (70). Whether ROS mediates the effects
of PRODH on Akt is not yet known.

Increased endogenous ROS formation due to proline me-
tabolism has an important cell signaling role in plants as well

(123). In contrast to abiotic stress response described earlier,
PRODH1 expression has been observed to increase in Arabi-
dopsis on infection by a nonvirulant strain of P. syringae (13).
The increase in PRODH1 levels is dependent on salicylic acid
and is considered a part of the initial HR in infected tissues
(13). Interestingly, increased PRODH activity correlated with
the oxidative burst of the HR (13). Plants in which PRODH
expression was silenced exhibited increased susceptibility to
infection relative to wild-type plants. These results suggest
that PRODH may participate in the HR by helping to induce
cell death and to prevent pathogen growth in plants (13).

Exogenous proline application has also been shown to lead
to increased mitochondrial ROS in Arabidopsis, especially in
p5cdh mutant plants (84). The higher levels of ROS in p5cdh
plants were suggested to be due to increased proline-P5C
cycling, resulting in more flux through the mitochondrial ETC
(84). The increased ROS production resulting from exogenous
proline addition is proposed to contribute to proline toxicity
that is often observed with plants treated with high levels of
proline (123). P5CDH was proposed to be an important regu-
lator of ROS production in plants by controlling flow through
the proline-P5C cycle to avoid overproduction of mitochon-
drial ROS. Consistent with this, the expression of P5CDH is

FIG. 6. Proline metabolism and ROS formation. PRODH
activity leads to ROS formation in mitochondria by coupling
proline oxidation to reduction of the ETC. Increases in
PRODH and P5CR activities along with down-regulation of
P5CDH are predicted to increase proline-P5C cycling and
ROS levels. ROS levels flucuate according to changes in
proline metabolism and activate diverse signaling path-
ways, thereby enabling proline to influence different cellular
processes.

FIG. 5. Formation of c-glutamylcys-
teine from the proline biosynthesis
pathway. Lack of NADPH dehydro-
genase activity in GPR allows cysteine
to react with c-glutamyl phosphate
and to generate c-glutamylcysteine.
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down-regulated by 24-nt SRO5-P5CDH natural silencing
RNAs during salt treatment, leading to an increase in ROS
production (12, 131). Furthermore, it was found in flax (Linum
usitatissimum) that reduced expression of the flax homologue of
Arabidopsis P5CDH, FIS1, resulted in increased sensitivity to
exogenous proline and higher levels of H2O2 (8, 105).

Conclusion

The ability of proline to protect different organisms during
stress involves a plethora of molecular mechanisms, each of
which contribute differently according to the physiological
and metabolic contexts. Deciphering the mechanisms of how
proline influences stress response and redox homeostasis is
also complicated by the fact that proline is a proteinogenic
amino acid. Thus, the effects of proline metabolism during
stress need to be carefully distinguished from potential im-
pacts on protein synthesis that may perturb normal cellular
processes and cell survival.

The mechanisms by which proline abates stress can be di-
vided into two general strategies. One strategy is for the or-
ganism to accumulate proline via up-regulation of proline
biosynthesis with proline serving as an osmolyte, a chemical
chaperone, and a direct scavenger of OH� or 1O2. A second
strategy depends on active proline metabolic flux and linkages
to other metabolic pathways. Proline metabolic flux leads to
cell protection by helping maintain cellular energy and
NADP + /NADPH balance, activating signaling pathways that
promote cell survival, and contributing to other pathways such
as the tricarboxylic acid cycle and GSH biosynthesis.

Figure 6 shows that the ability of proline metabolism to
influence various signaling pathways resulting in either cell
survival or cell death may be mediated by ROS. Proline me-
tabolism feeds electrons directly to the ETC via PRODH,
which leads to superoxide anion formation and H2O2. The
amount of ROS generated depends on the availability of
proline and the level of PRODH activity in the mitochondria.
Low ROS generation (i.e., constitutive PRODH expression)
would be predicted to lead to protective effects such as acti-
vation of Nrf2 and lifespan extension as found in C. elegans.
High ROS generation due to increased PRODH expression
would lead to apoptosis and cell death and contribute to
physiological processes such as the HR in plants. Mitochon-
drial ROS production linked to proline would depend not
only on PRODH but also on the activities of P5CR and
P5CDH. An increased ratio of PRODH/P5CDH activity, for
example, would be predicted to increase proline metabolic
cycling with P5C being converted back to proline via P5CR
and NADPH. Thus, proline metabolic flux determined by the
activities of PRODH, P5CR, and P5CDH will have a profound
impact on ROS-mediated signaling and ultimately, cell fate. In
the future, it will be important to understand not only the
regulation of proline metabolism, but also how the activities
of these key enzymes are correlated with cell survival and cell
death. Potentially, this cycle could be exploited to further
improve plant stress behavior and as Phang has already
suggested, as a novel target of cancer therapy (97).
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Abbreviations Used

ABA¼ abscisic acid
ASC¼ ascorbate
ATP¼ adenosine triphosphate
ETC¼ electron transport chain
FAD¼flavin adenine dinucleotide

GK¼ glutamate kinase
GPR¼ c-glutamyl phosphate reductase
GPx¼ glutathione peroxidase;
GSA¼ c-glutamate semialdehyde
GSH¼ glutathione

GSSG¼ oxidized glutathione
H2O2¼hydrogen peroxide

HR¼hypersensitive response
NADP+¼nicotinamide adenine dinucleotide

phosphate
OAT¼ ornithine-d-aminotransferase
P5C¼D1-pyrroline-5-carboxylate

P5CDH¼P5C dehydrogenase
P5CR and PYCR¼P5C reductase

P5CS¼P5C synthetase
PPARc¼peroxisome proliferator-activated

receptor c
PRODH¼proline dehydrogenase

put¼proline utilization
PutA¼proline utilization A
ROS¼ reactive oxygen species

TEMPO¼ 2,2,6,6-tetramethylpiperidine-1-oxyl
Trx¼ thioredoxin

TrxR¼ thioredoxin reductase
Trx-S2¼ oxidized thioredoxin

Trx-(SH)2¼ reduced thioredoxin
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