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ABSTRACT

MiST is a novel approach to variant calling from
deep sequencing data, using the inverted mapping
approach developed for Geoseq. Reads that can
map to a targeted exonic region are identified
using exact matches to tiles from the region. The
reads are then aligned to the targets to discover
variants. MiST carefully handles paralogous reads
that map ambiguously to the genome and clonal
reads arising from PCR bias, which are the two
major sources of errors in variant calling. The
reduced computational complexity of mapping
selected reads to targeted regions of the genome
improves speed, specificity and sensitivity of
variant detection. Compared with variant calls
from the GATK platform, MiST showed better con-
cordance with SNPs from dbSNP and genotypes
determined by an exonic-SNP array. Variant calls
made only by MiST confirm at a high rate ð>90%Þ
by Sanger sequencing. Thus, MiST is a valuable al-
ternative tool to analyse variants in deep
sequencing data.

INTRODUCTION

Whole-exome sequencing (WES), mRNA-seq and whole-
genome sequencing are amongst several commonly used
techniques based on deep-sequencing that allow extensive
sampling of the genome to detect variants. WES samples
the exonic parts of the genome through physical capture
of the relevant sequences (1). This is a lower-complexity
alternative to whole-genome sequencing, as only 3–4% of

the genome is sampled and directs attention only to the
coding regions.
There are several software pipelines that analyse the

data from WES including GATK (2,3), Samtools (4),
Freebayes (5) and Bambino (6). Broadly, their approach
involves mapping the sequences to the reference genome
to generate BAM/SAM files. These alignment files are
subsequently analysed to infer variants and SNPs (7). In
contrast to the extant tools, MiST closely mimics the ex-
perimental technique, using exonic sequences as bait to
identify sequences that can potentially map to the exon.
A subsequent fine-mapping step, which aligns the selected
reads against the exonic regions, permits a more sensitive
and accurate identification of SNPs and variants. This
approach reduces the computational complexity and
allows for more sensitive mapping.
For WES data from one sample, we compared MiST

variant calls to those from GATK (2,3) and a genotyping
micro-array. We picked GATK due to its popularity. The
MiST calls exhibit greater concordance with the
genotyping array results and entries in dbSNP. The algo-
rithm and pipeline are described in the Material and
Methods section. We provide a detailed comparison of
the programs and highlight similarities and differences
for selected variants. We conclude by highlighting the
salient features in the discussion and justify the develop-
ment of an alternative variant-calling platform.

MATERIALS AND METHODS

Samples

We obtained genomic DNA from an anonymous subject,
M01_1. The sample was prepared and sequenced by
standard techniques, described below.
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Sample prep and sequencing

The samples were prepared using a capture kit from
Nimblegen (the first version) using standard procedures
recommended by the manufacturer. The process was
optimized to reduce clonality, by controlling the number
of PCR cycles used for amplification in various steps. The
sequencing data consists of paired-end reads from an
Illumina HiSeq run (usually 2� 100 nt, > 40 million
reads per sample). We used the hg19 version of the
human genome for the annotations, which consists of
120 000 exons (� 10 million nucleotides).

Exonic SNP arrays

The Infinium HumanExome BeadChip from Illumina,
which has 240 000 exonic markers and 700 000 genome-
wide markers, was used to genotype the sample.

Computational infrastructure

The hardware is built from off-the-shelf components. We
currently use a cluster of 10 nodes, each with two proces-
sors, four cores per node. Each node has 32 GB of RAM.
The nodes share a 10-TB storage, which holds data and
the results of the analysis. The nodes are connected to the
storage through a 10GB/sec switch. We have also run the
software on a single computer with 128-GB RAM, 6 TB of
disk space and four CPUs (AMD Opteron Processor
6220) with eight cores each.

Software platforms

We use MySQL databases and Apache webservers in-
stalled on the Ubuntu Linux operating system. Our
software consists of mostly custom-built mix of back-
end code written in Perl, C, C++and Python, and front-
end user-interfaces written in Perl, PHP, Python and
JavaScript.

The pipeline

We motivate our method by using Geoseq to analyse
mRNA-seq data. Geoseq identifies reads with exact
matches to tiles from the query sequence. The graph in
Figure 1 shows matches to 25-nt tiles from the mRNA in
the reads. Variations from the reference sequence cast
shadows on the graphs as holes in the coverage. This
suggests that a fine mapping of reads that map to the
shadow can accurately estimate the allele frequencies in
the samples. The reads are searched for exact matches to
tiles from a chosen exonic region using Geoseq (8).
Smaller tiles will allow more mismatches, making it
more sensitive but increasing the computational cost for
aligning the reads. Empirically, we determined 25 nt to be
an optimum tile size (Table 1). Reads that map ambigu-
ously or to multiple locations on the genome are then
eliminated by the process depicted in Figure 2, and the
surviving reads are aligned to the exonic region using
BLAST (9). The alignments are analysed to remove
clonal reads and to infer variants and indels.
We split the sequenced reads into randomly assorted

groups (four or more) to parallelize the processing and
ensure the index files can fit on RAM. A file system on

ramdisk is used to store the data being processed, reducing
the file input/output (I/O) overhead, which can affect per-
formance. A relational database (MySQL) is used to store
tabular data, for rapid access to information, which is
used by browser-based tools for data filtering. The
variants are inferred from the alignments and annotated
for the effects on the protein (missense, nonsense, stop
codon etc.) using ANNOVAR (10). The variants are
marked with dbSNP and 1000 Genomes annotations.
SIFT (11) and SNAP (12) are used to determine coding
variants with deleterious effects.

The various steps in our pipeline depicted in Figure 3
can be grouped into the sub-categories listed below.

Reference sequence pre-processing

A reference set of exonic sequences is collected by first
starting with the sequences of exons of RefSeq mRNAs
from the human genome (hg19) and other exons from the
targets of the capture kit. Each exon is extended by 70 bp
on the 50 and 30 ends to capture reads that can reach into
introns. The extension is a function of the average insert
size, which is determined by the experimental protocol.
Overlapping exons are merged into super-exons. Each
exon is indexed for BLAST searches. The human
genome is indexed for BLAST as well as suffix-array
searches by Geoseq.

Fastq pre-processing

Reads containing ambiguous bases (usually marked as Ns)
or with stretches of poor sequence quality (any 16-nt
window with an average quality score <10) are removed.
If either of the reads in a read pair fails the quality check,
the pair is discarded. Each surviving read pair is then
concatenated into a single string. This set of concatenated
read pairs is split into four (or more) subsets and each
subset is indexed using the Geoseq suffix array indexer.
The splitting allows parallelizing the process and reduces
the size of the indices so they can fit into RAM on a single
processing node. We do not consider the quality scores
beyond this step.

Sequence retrieval and map filtering

For each of the reference exonic region, matching reads
are retrieved using Geoseq with 25-nt tiles (Table 1).

Matching reads are validated by identifying the ap-
proximate locus for each read pair and keeping only
those read pairs that originate within a window
(determined by the insert size) of the ends of the target
exon. The approximate location is determined as follows
(Figure 2):

. Up to four non-overlapping tiles (subsequences) with
the same length as the Geoseq word size are chosen
from each read in a pair. Tiles are discarded if they
contain stretches of mononucleotide or dinucleotide
repeats. The suffix-array index of the reference
genome is used to retrieve all mapped positions for
each tile.

. Tiles with greater than five potential mappings to the
genome are discarded. If no tiles remain, then the read
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pair is discarded. For the remaining tiles, a 500-nt
window around each of the mapping positions is
marked as the potential origin of the read pair.

. A match number is assigned to each window. The
match number is the number of tiles that map to the
window. The window with the maximum match
number is deemed to be the origin of read pair. If
multiple windows share the same maximum match
number, then the read pair is discarded.

. If the selected window does not contain an end of the
targeted exon, the read pair is discarded.

The surviving read pairs are split into their constituent
reads and placed consecutively in a fasta file.

Alignment of reads to genomic fragments

The fasta file of selected reads is aligned against the exonic
sequence, using the legacy engine (the option -V T) of
BLAST, to create an accurate alignment (Figure 4). The
alignments (Figure 5a) are processed to build a pile-up file
(Figure 5b) that annotates each base in an exon with
features such as number of reads aligned on the positive
and negative strands and mismatches with strand
information.

Variant calling

We used a low threshold on coverage and mutation
frequency for calling variants in a trio (parents and
child) to identify candidate variants. The use of a trio
allows for more robust identification of false positives in
the de novo calls by identifying potential parental contri-
butions. Using Sanger sequencing of the data from trios
(parents and child), we found that the false positives
predominated when the coverage was below 15 and/or
the minor allele frequency dropped below 0.3, which is
our threshold for variant calling. For each variant, as
the sequencing is independent of the strand, the contribu-
tions from the two strands are expected to be
equal. The imbalance in the contributions from the two
strands is measured by strand skew, defined as
absðreads+� reads�Þ=ðreads++reads�Þ where reads+ is
the number of reads on the plus strand. A strong differ-
ence in strand skew between the reference and variant
alleles is a good indicator of erroneous calls (Figure 5b).
Clonal reads are identified and removed at this stage for
calculating variant statistics, but are shown in the align-
ments (Figure 4). The reference exon id, coverage,
mutation frequency, mutant and reference alleles,
genomic position, and immediate 21-nt flank (10 nt on
either side of the variant) are recorded for each predicted

Figure 1. Motivation for the use of Geoseq in variant calling. When exact matches of tiles from mRNAs in the sequenced reads are plotted, SNPs in
the query sequence lead to gaps of the size of tiles in the matches. We see here examples of homozygous (top panel) and heterozygous (bottom panel)
SNPs. This suggests that alignment of reads that map to the gaps can identify SNPs and indels.

Table 1. The effect of tile-size on Geoseq results

Tile size Sequences
retrieved

System time
(in seconds)

15 7049 0.52
18 1135 0.54
20 74 0.51
21 32 0.52
25 14 0.52
28 14 0.48
30 4 0.5

The tile size determines the number of reads selected for further
analysis, which determines sensitivity, specificity and speed. Reads
were retrieved using Geoseq with different tile sizes for a 1158-nt-
long terminal exon from a variant of ASB10 (chr7:150883831-
150884989). There is a sharp transition in the number of reads retrieved
at a tile-size of 20; at lower tile sizes a majority of the retrieved reads
map to multiple locations on the genome. We picked 25 as an optimum
tile size based on an expected average of 1 variant per 100 nt in the
genome. The time to align the retrieved reads against the exons grows
linearly in the number of sequences.

Figure 2. Identification of potentially paralogous read pairs. Perfect
matches are found in the genome for tiles from each read in a pair.
A majority rule identifies the origin of the read pair. In this case region
B is identified as the origin of the read-pair which includes the target
exon shown below it. So, the read pair is selected for careful alignment
to the target exonic region. This process can distinguish between
pseudo-genes and their partner genes, as well as homologous genes
since, for most exons, at least one member of the pair will extend
into introns which evolve at a neutral rate and exhibit differences
specific to their genomic location.
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variant. Mappings of the 21-nt flank on the reference
genome are annotated to identify potential paralogous
variants.

Variant annotation

The position of the variant within each overlapping
RefSeq mRNA is recorded along with the specific
mRNA region (intron, UTR, CDS, etc). For CDS
variants, the effect of the mutation on the amino-acid
sequence is predicted using the known open reading
frame for each Refseq mRNA. We identify variants in
our list that occur in dbSNP, 1000 Genomes or private
collections to highlight the novel variants that are of
interest in most studies of rare genetic disorders. The
variants are identified by their flanking sequence, 10 nt
on each side. Variants and their host genes with known
disease/phenotype associations in dbGAP (13), OMIM
(omim.org), PhenCode (14), SNPedia (15) and
PharmGKB (16) are annotated. Missense variations are
checked against the Polyphen predictions made on the
UniProt protein database for severity of the mutation.
Variants are also checked for their effect on protein
function using a local installation of SNAP (12). These
annotations, used for filtering variants, are placed in a
database. The pipeline can also generate results in
commonly accepted formats for sequence variants and
alignments like Variant Call Format (VCF) and SAM/
BAM file formats.
The variants can be filtered based on coverage, gene

name, skew, effect of variant (missense, nonsense), preva-
lence in child versus parents, pathways, diseases and SNP
associations to disorders. The raw data, such as coverage
over exons in a gene, alignments (Figure 4), pileup reports
(a synopsis of the full alignments, Figure 5) can also be

explored to develop a better understanding of the variants
and the underlying evidence.

RESULTS

We processed exome sequencing data from a sample with
GATK as well as MiST. The sample was also genotyped
on a Human Exome SNP array. The GATK pipeline was
the one implemented at the Yale Genome Center. We
compare and contrast our results with GATK as a
means to place them in context.

There are differences in variant calls made by the two
pipelines. We list them in different categories and give an
explanation for each one. A few caveats must be
emphasized in any such comparison. The first one is that
the performance of programs are best tuned by experts in
the program, thus comparisons can be faulted for not
having the optimal conditions. Another caveat is that all
tools, by their very nature, are moving targets and
undergo constant evolution with improvements being
added in response to reviews and reports from the field.
We are offering a snapshot view in this comparison.

We started out with >42 000 variant calls, containing
some poor-quality calls that were left in to assess the effect
of various filters (Figure 6). MiST stringently filters par-
alogous reads, avoiding those mapping to multiple
genomic locations. There are a number of dbSNP entries
that occur in these paralogous regions, which we believe
are erroneous calls. An example is rs2948677 with
coverage of 765 and a minor allele frequency of 0.31.
The 21-nt flank of this SNP (10 nt on either side) maps
to 35 locations on the genome. MiST excludes this, while
GATK calls this SNP. Our pipeline also corrects for
clonal reads, by removing them from consideration for
the calculation of coverage and calling variants
(Figure 4). Owing to these corrections, MiST calls often
have lower and more accurate coverage compared to
GATK (Figure 7).

We compare and contrast several features in GATK
and MiST:

(i) Total number of variants. MiST calls more variants
than the GATK pipeline, but this is a function of
the range of coverage and minor-allele frequencies
that are permitted. MiST has more in common with
dbSNP and the SNP genotyping array. Figure 6
shows the effects of applying various filters to the
calls from MiST and GATK. We now explain the
variants unique to each of the programs.

(a) Novel variant calls in GATK, but not MiST. The
final list from GATK had 96 heterozygous
missense calls not called by MiST. Most of
these were eliminated by the paralogous read
filter in MiST. For example, in the gene GGT1
(chr22 at 25023513), the flanks mapped exactly
to 5 locations on the genome. In another variant,
in JMJD8 (chr16 at position 733735), the reads
mapped to multiple locations. In both cases, the
coverage fell below threshold after removing
reads with multiple mappings.

Figure 3. A schematic of the workflow used by MiST. The first step
retrieves reads that can potentially match a targeted exonic region, and
the following steps remove reads that can match other locations on the
genome and align the reads to the exonic regions to call variants from
the reference sequence.
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(b) Novel variant calls by MiST but not GATK. We
initially pursued two such variants, (1) in the
gene NLRC3 (at chr16-3614094,C >T, aa
R282W) with a coverage of 45 and allele fre-
quency of 0.444. This was also detected on the
array with a B-allele frequency of 0.533
(Figure 5) and (2) in the gene PTCHD3 (at
chr10-27687638, G >A, R630Q, coverage of 33
and minor allele frequency of 0.363). This was
also detected on the array with a B-allele fre-
quency of 0.505. Both were confirmed by
Sanger sequencing. They were missed by
GATK due to incorrect reference allele
coverage which is inflated by the clonal reads.

To test the quality of MiST calls in an unbiased
manner using Sanger sequencing, we picked a
panel of 27 high-quality variant calls unique to
MiST, consisting of a mix of heterozygous and
homozygous SNPs (Table 2 and Supplementary
Table S1).
Twenty-three of them confirmed while two failed at
the PCR step and two failed to show the expected
alleles on sequencing (Supplementary Figure S1).

(ii) Coverage on calls. We expect lower coverage on
calls on average from MiST, compared with
GATK, due to the stringent handling of clonal/par-
alogous reads. This was confirmed by the distribu-
tion of coverage across variants common to both
platforms (Figure 7).

(iii) Transitions (Ti) versus transversions (Tv). The ratio
Ti=Tv is expected to be 2.0 for neutral SNPs. In
coding regions, this ratio has been empirically
shown to be closer to 3.0 (19). The majority of
the variant calls are common to the two
programs, which does not allow for major differ-
ences in these measures. For SNPs with high
coverage (>40) and frequencies in the range of
0.35–0.65, the non-synonymous SNPs exhibit a
ratio of 2.11 (GATK 2.22) and the synonymous
SNPs exhibit a ratio of 5.04 (GATK 6.06).

Performance comparison

We used MiST and GATK on the same sample using the
same computer to compare the performance of the two
pipelines. The analysis was performed on a Linux

Figure 4. Clonal reads arise from multiple sequencing of the same clone due to biased PCR amplification of the samples. Clonal reads are identified
more reliably with paired-end sequencing. The orange box shows a set of clonal reads that map to the same stretch of the genome with a few
mismatches within the reads. Even with poor sequencing quality, by requiring that at least three out of four ends of the pairs coincide, clonal reads
are reliably identified. The violet box shows clonal reads with one varying end due to poor sequence quality. The corrected coverage of the variant
shown in the figure (in red) is 8 (A-2/G-6), while the original coverage is 241 (A-201/G-40). Clonality causes a spurious increase in coverage, creating
erroneous variant calls, and an overestimation of the quality of capture and sequencing.
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computer (Ubuntu) with four 8-core CPUs (32 cores total)
and 128GB of RAM. A paired-end sample with 47 million
reads was analysed using both pipelines on 2721 genes
with a total of 25 034 exons. Variant calling using MiST
took a total of 5 h while GATK took 9 h.
The breakdown for various processes in MiST are as

follows: indexing reads for Geoseq (22min), identifying

reads targeting exonic regions (135min), removal of par-
alogous reads (74min), read alignments to exonic regions
and variant calling (63min).

Using GATK with the best practice variant detection
method suggested on their website, the time taken for dif-
ferent phases of variant detection method is as follows.
Phase I, the raw data processing, took 130min to

Figure 5. Only MiST detected the variant in gene NLRC3, R282W (chr16:3614094 on hg19), which was confirmed by Sanger sequencing. (a)
Alignment View and (b) Pileup View. In the pileup view, column 1 is the position relative to the start of the genomic fragment, column 2 is the
reference allele, column 3 gives coverage at that position, with the number of reads in forward and reverse directions (±) shown within parenthesis,
column 4 gives the coverage for the mutated allele and the non-reference allele in the reads are shown in column 5. The name of the file contains the
position of the fragment in the genome. MiST calls this SNP despite a strong skew (strand-bias) in the mutant allele because the reference allele also
shows a strong skew.
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generate alignments in a SAM file using BWA, 62 min for
sorting SAM and creating BAM using Picard, 33 min for
adding read groups to sorted BAM using Picard, 45 min
to mark PCR duplicates, 116 min to generate local realign-
ments around indels, 52 min for realignment and 58 min
for using Fixmate for paired-ends. Phase II took 56 min to
produce the RAW SNP calls.

DISCUSSION

MiST is a radically different approach to variant calling,
compared with other tools and approaches that are in use.
Having different approaches is useful, as a diversity of
techniques will lead to more robust variant calls through
the use of a wisdom of the crowds approach (20). Even in
experiments, different sequencing platforms (Complete
Genomics, Illumina HiSeq) and capture techniques
(Nimblegen, Agilent) (21) exhibit different variant calls
and biases.

The process outlined in the article is easy to implement
and provides a different viewpoint to SNP calling. The
software allows users to explore the data generated at
every step, as they are available in plain text formats.

MiST is more sensitive and computationally efficient.
This effective technique is well-suited for other datasets
such as targeted resequencing and mRNA-seq.
MiST does not use quality scores, except to filter out

reads that have stretches of poor quality nucleotides, as
they are inaccurate, difficult to correct and change with
instrument upgrades. At the coverage required for variant
calling (�15), it is highly unlikely that a genomic location
will show the same error more than once in non-clonal
reads (the probability of Q30 bases from two reads
having a coincident error is <1 in 10 000, and even
smaller if multiple reads are considered). This improves
computational efficiency.
MiST carefully weeds out paralogous/repeat mapping,

reducing a major source of error in variant calls. It also
carefully corrects for clonal reads, not just considering
exact matches, but also using mapping to identify clones

Figure 6. Comparison of MiST and GATK. Each box has three sets of
numbers, from left to right they are variant calls, (i) unique to MiST,
(ii) common to both platforms and (iii) unique to GATK. Filters are
applied to remove calls occurring in public databases like dbSNP (17),
1000 Genomes (18) and a collection of already known private variants.
MiST called 14 808 variants from dbSNP and 1000 genomes as opposed
to 7468 variants by GATK. MiST had more variants in common with
the exonic genotyping array, compared with GATK. In the box shaded
orange, of the 96 calls unique to GATK, 25 calls map to multiple
locations, 35 calls were far from exonic boundaries, 6 calls were
eliminated by MiST for arising in low complexity regions such as a
run of T’s, 14 calls were eliminated by MiST due to clonality correc-
tions. In addition, there were 16 calls private to GATK (7 in UTRs,
and 9 synonymous calls) that were not called by MiST, because the
exons are not present in RefSeq.

Figure 7. A comparison of coverage between the MiST and GATK
pipelines. The graph shows density distributions of coverage over
variants that have been called by both platforms. The total area
under each curve is 1. As seen from the graph, MiST has, on
average, lower coverage per variant compared with GATK, due to
more stringent removal of artifacts arising from clonal reads as well
as reads that map to multiple locations.

Table 2. A mix of heterozygous and homozygous SNPs called by

MiST but missed by GATK were selected for confirmation by Sanger

Sequencing

Class Total PCR
fail

Sanger
fail

Sanger
Success

MiST 19 2 1 16
MiST+Array 8 0 1 7

They also exhibited a range of effects (missense, nonsense, non-coding
etc.), and some were also part of the panel targeted by the genotyping
array. The detailed breakdown is given in Supplementary Table S1.
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in poor-quality reads as shown in Figure 4. The accuracy
of MiST calls is attested to by the comparisons with
GATK. MiST does not require specialized hardware and
is suitable for small-scale applications.
MiST is well-suited for studies involving limited areas of

the genome, even if the data are from whole-genome
sequencing. MiST does not provide any advantage in
cases such as cancer-genome sequencing, where mapping
to the whole genome is essential. In genomic regions with
high variability, such as areas of kataegis (22), traditional
local alignment methods using algorithms such as Smith–
Waterman will be more suitable. To determine the suit-
ability of MiST for their needs, researchers will need to
compare its results with those from several tools on a rep-
resentative set of data, as tools are constantly evolving and
tend to differ in their areas of excellence.

CONCLUSION

MiST is an alternate approach that is efficient and sensi-
tive for variant detection in deep sequencing datasets.
MiST works well on both single and paired-end data
from whole-exome capture and sequencing. MiST is easy
to implement and can be tailored to changes, such as
insert sizes, in the experimental protocol. MiST adds a
novel method to the variant calling marketplace,
allowing investigators to compare and contrast the
results with other more commonly used platforms.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Table 1 and Supplementary Figure 1.
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