Published online 4 July 2013

Nucleic Acids Research, 2013, Vol. 41, No. 16 el55
doi:10.1093/nar/gkt599

Identification of active regulatory regions from DNA

methylation data

Lukas Burger'?, Dimos Gaidatzis'2, Dirk Schiibeler'® and Michael B. Stadler'>*

"Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland, 2Swiss
Institute of Bioinformatics, Maulbeerstrasse 66, 4058 Basel, Switzerland and *University of Basel, Petersplatz 1,

4003 Basel, Switzerland

Received March 7, 2013; Revised May 23, 2013; Accepted June 15, 2013

ABSTRACT

We have recently shown that transcription factor
binding leads to defined reduction in DNA methyla-
tion, allowing for the identification of active regula-
tory regions from high-resolution methylomes.
Here, we present MethylSeekR, a computational
tool to accurately identify such footprints from
bisulfite-sequencing data. Applying our method to
a large number of published human methylomes,
we demonstrate its broad applicability and general-
ize our previous findings from a neuronal differenti-
ation system to many cell types and tissues.
MethylSeekR is available as an R package at www.
bioconductor.org.

INTRODUCTION

A critical step toward the understanding and modeling of
mammalian gene regulation is the genome-wide and
unbiased identification of regulatory regions. To this
end, large efforts have been undertaken in recent years
to map histone modifications as well as transcription
factor-binding sites across many cell types and tissues
(1-5). These studies have allowed cell type-specific anno-
tation of regulatory regions such as active promoters and
enhancers based on the presence of particular combin-
ations of chromatin marks (6). DNA methylation has so
far been mainly studied with a focus on CpG islands
(CGIs) and was found to change comparatively little
across cell types, thus containing little information about
tissue-specific regulatory activity (7,8). However, using
base-pair resolution whole-genome bisulfite sequencing
(Bis-seq), we have recently shown in mouse embryonic
stem cells (ESC) and neural progenitors (NP) that
outside of CGIs, transcription factor binding leads to
locally reduced DNA methylation levels in an otherwise
fully methylated genome, allowing for the genome-wide
identification of active and cell type-specific regulatory
elements from Bis-seq data (9).

Here, we present MethylSeekR, a computational
method for the identification of such footprints, imple-
mented as an R/Bioconductor package. MethylSeekR
builds on previously introduced ideas (9), but incorporates
several methodological improvements and extensions
that make it robust and generally applicable. The
method is based on a cutoff approach that identifies
hypomethylated regions as stretches of consecutive
CpGs with methylation levels below a fixed threshold.
To achieve high accuracy and sensitivity, MethylSeekR
incorporates important preprocessing and filtering steps,
and controls segmentation parameters via false discovery
rate (FDR) calculations. Applying the method to a large
number of human datasets (Supplementary Table S1), we
show that MethylSeekR generally allows for the identifi-
cation of active regulatory regions from Bis-seq data, thus
generalizing our findings in mouse to many other cell types
and tissues.

MATERIALS AND METHODS

Datasets and annotations used are described in the
Supplementary Material.

FDR calculation

To calculate the FDR for a fixed cutoff on methylation m
as well as on the minimal number of CpGs n per region,
we compared the segmentation of the original methylome
with the segmentation of a randomized methylome. To
construct the randomized methylome, we randomly
shuffled the methylation levels of all CpGs, destroying
the spatial correlation of methylation levels between con-
secutive CpGs. The rationale of this approach is that due
to noise one may encounter CpGs with reduced methyla-
tion, but these should not extensively cluster spatially. The
FDR calculation is only relevant for regions containing
few CpGs, as the likelihood of spatial clustering of
CpGs with reduced methylation by chance decreases
very rapidly with increasing numbers of CpGs. Because
unmethylated regions (UMRSs) contain by definition at
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least 30 CpGs, they are extremely unlikely to occur by
chance, and it is therefore only the low-methylated
regions (LMRs) that need to be assessed for their signifi-
cance. Thus, for the randomization, we only used CpGs
that do not overlap with CpG islands, which, if
unmethylated, correspond to UMRs (we do not directly
remove all CpGs overlapping UMRs, as it is undesirable
to make the FDR calculation dependent on the segmen-
tation of the original methylome, which also depends on m
and n). To make sure that all unmethylated CpGs in
UMRs overlapping CpG islands are removed, we extend
all CpG islands to a total length of 5kb.

Segmentation of partially methylated domains

Partially methylated domains (PMDs) are characterized
by highly disordered methylation, resulting in an average
methylation clearly below the genomic background level
(10,11). Because PMDs are generally large [mean length of
153 kb (10)], they do not need to be modeled at the single
CpG level, but can be characterized using summary stat-
istics in sliding windows containing several CpGs. Here,
we choose windows of 101 CpGs (sliding one CpG at a
time) and calculate a statistic that reflects the degree to
which the distribution of methylation levels resembles a
polarized distribution typically found in most mammalian
datasets, which favors either low or high methylation
levels, as in LMRs and UMRs, or the baseline methyla-
tion levels. In particular, we model the reads that cover
each CpG as being generated from a beta binomial distri-
bution (12), whereby, for a given CpG i, first the probabil-
ity of it being methylated f; is sampled from a beta
distribution,

P(fila) = S a =t

B(a, @)

followed by a sampling of 7} reads from a binomial model
with the chosen probability f;,

POLIT, f) = (37 )72 =y

T; is the total number of reads at CpG i, M; is the
number of reads without a C-to-T conversion (indicating
that the C was methylated) and B is the beta function,
defined as

1
Bx,y) = /0 £ pyldr

Here, we use a symmetric beta distribution chara-
cterized by a single parameter x = y = «. Distributions
with « < 1 favor methylation levels that are polarized
toward 0 and 100%; « = lcorresponds to a uniform dis-
tribution; and distributions with « > 1 are biased toward
intermediate methylation levels. If we assume that the
methylation levels of all CpGs in a given window are
drawn from the same beta distribution, defined by «, the
total probability of the data (i.e. all the reads covering
CpGs) in a window, assuming independence between the
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CpGs, can be written as

(i)

T;
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which evaluates to

Pl = [ () 2 ’*Z,( z - M+a)

where the product runs over all CpGs 7 in the window, and
B is the beta function. To characterize the distribution of
methylation levels, we determine for each window the pos-
terior mean of «. Because the integral over all as in the
expression for P(fila). cannot be calculated analytically,
we approximate the posterior by discretizing « in bins of
0.1 from 0 to 3 and calculate the posterior mean as

() ~ M where the o;s correspond to the

> P(Dley) /
discretized values of « Inspection of the « distribution in
different methylomes reveals that most methylomes have a
unimodal distribution with a mean clearly below 1, and a
small number of methylomes (imr90, ff, ads and
ads_adipose) have a bimodal or long-tailed distribution
with a significant fraction of windows with « > 1, which
are indicative of the presence of PMDs. For the latter
methylomes, we trained a two-state Hidden Markov
Model (HMM) with Gaussian emissions on the « values
via standard expectation maximization and predicted the
location of PMDs using the Viterbi algorithm, as imple-
ment in the R package mhsmm (13). We first trained the
HMM on the imr90 methylome, using starting values of
0.5 and 1.5 for the means and 0.1 as the variance of the
Gaussian distributions of the two states. For all other
methylomes, we used the trained values of imr90 as
starting values. In a post-processing step, we first
removed all predicted PMDs shorter than 101 CpGs and
fused all PMDs separated by <101 CpGs, as the reso-
lution of the approach is set by the window length of
101 CpGs.

Motif enrichments

Prediction of transcription factor-binding sites and the
calculation of motif enrichments were performed as in
(9). Cell type-specific LMRs were defined as all LMRs
that do not overlap with LMRs in any of the other
methylomes, using a reduced set of methylomes including
hl, hl_bmp4, ads_adipose, imr90, hspc and bcell.
Constitutive LMRs were identified as follows: we
determined all LMRs that overlapped with LMRs in at
least two other methylomes (using the same reduced set of
methylomes). Overlapping LMRs were fused, creating a
new segment containing all the nucleotides of the original
segments.

RESULTS

The typical CpG methylation pattern in mammalian
genomes (here H1 human ESCs) is shown in Figure la.
Most of the genome is fully methylated, sporadically
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Figure 1. Identification of regulatory regions from Bis-seq data. (a) Typical methylation pattern in mammalian methylomes (dots represent indi-
vidual CpGs, methylation levels averaged over three consecutive CpGs). UMRs (blue rectangles) and LMRs (red triangles) are identified as regions
with methylation levels <50% (dashed gray line). CGI: CpG islands. (b) The number of CpGs per hypomethylated region versus its median
methylation. The regions separate into two classes: CpG-rich, unmethylated UMRs and CpG-poor LMRs with residual methylation. (¢) Some
methylomes contain regions of highly disordered methylation (PMDs, orange bar, dots represent individual CpGs), which need to be identified and
masked for the identification of regulatory regions. Unsmoothed methylation levels are shown. (d) Workflow of MethylSeekR.

interspersed by short regions with reduced methylation,
evident as stripes in the profile. We have previously
shown that these regions belong to one of two distinct
classes: CpG-rich, completely unmethylated (UMRs,
blue rectangles) and CpG-poor, low-methylated regions
(LMRs, red triangles), corresponding to proximal and
distal regulatory sites, respectively (9). The basic principle
of MethylSeekR is to identify hypomethylated regions by
determining stretches of consecutive CpGs with methyla-
tion levels below a fixed cutoff (m) containing a minimal
number of CpGs (n). The identified regions are then
further classified as UMRs or LMRs based on their
CpG content. To achieve high accuracy and sensitivity,
the approach has to take into account the occurrence of
single-nucleotide variants (SNVs) as well as the statistical
sampling noise at individual CpGs. In addition, it needs to
estimate an FDR for the choice of appropriate values for n
and m, and has to be able to differentiate UMRs and
LMRs from PMDs (10).

Filtering of SNVs

In Bis-seq experiments, methylation levels of individual
CpGs are inferred as the fraction of aligned reads
without a cytosine (C) to thymine (T) mismatch (14). In
this context, SNVs that differ between the genome
sequence under study and the reference genome require
special attention (15). Cs in CpG context are hot-spots
for sequence variation (16) and, when mutated, can lead
to incorrect estimation of methylation levels. For example,

a heterozygous locus might be wrongly classified as par-
tially methylated, and a homozygous locus even as
unmethylated. The underlying genetic differences,
namely C-to-T mutations, cannot be discriminated from
the bisulfite-induced conversion of unmethylated Cs. This
problem can be solved if the genome sequence of the ex-
perimental system is known; either obtained by genome
sequencing or, in the case of high coverage methylomes,
by examination of the mismatch pattern in alignments to
the G on the opposite strand of the CpG under consider-
ation. Mismatches at the G at a higher frequency than
expected due to sequencing errors are indicative of single
nucleotide variations and allow identification of the prob-
lematic Cs (17). In the set of published human methylomes
analyzed here (Supplementary Table S1), since we do not
know the genetic background of the analyzed cell types
and due to the limited coverage, we at least partially cir-
cumvent this problem by removing all CpGs that overlap
with SNVs from dbSNP (18) (Supplementary Figure S1).

Data preprocessing

The accuracy of the estimated methylation levels at indi-
vidual CpGs is strongly dependent on the total number of
aligned reads. Many published methylomes have sequen-
cing depths of around 10-fold and thus a substantial un-
certainty in methylation estimates at individual CpGs, in
particular at CpGs with intermediate methylation levels
(Supplementary Figures S2 and S3). This problem can
be mitigated by averaging methylation levels over a fixed
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number of consecutive CpGs (19). We have previously
shown that most hypomethylated regions overlap with
DNase I hypersensitive sites (DHSs) (9) that are indicative
of transcription factor-binding sites (20). A comparison of
DHSs with hypomethylated regions as a function of the
number of CpGs they contain reveals that, given the
coverage constraints of typical published datasets, three
CpGs is the lowest resolution at which regulatory
regions can be inferred with high accuracy (Supplemen-
tary Figure S4). In the analyses presented here and as a
default in MethylSeekR, we thus smooth methylation
levels over three consecutive CpGs, demanding a
minimal coverage of 5 reads per CpG. This results in a
methylation read-out for 78-94% of CpGs in the datasets
analyzed in this study (see below).

Identification of hypomethylated regions

After removal of SNVs and smoothing, hypomethylated
regions are identified as stretches of CpGs with methylation
levels below a user-defined cutoff m containing a minimal
number of n CpGs. m and n are crucial parameters that
strongly affect the segmentation results. To choose suitable
parameter values, we estimate for each methylome an
FDR, defined by the number of identified segments in the
original methylome relative to the ones identified in a
randomized methylome, in which the methylation levels
of the CpGs have been shuffled (9,12). The randomization
destroys the correlation of methylation levels between
neighboring CpGs and is used to assess the frequency of
spatial clustering of hypomethylated CpGs by chance
(Materials and Methods). The relationship between FDR,
the number of identified regions as well as m and » is shown
in Supplementary Figure S5. It shows that there is a trade-
off between the two parameters, allowing for similar results
through various combinations of m and n. Furthermore, it
illustrates important differences between methylomes.
Some methylomes display larger variability of methylation
levels and in turn require more stringent parameter settings
(see below). For the analyses presented here, we set m to
50% and choose the smallest n that results in an FDR
<5%. With this choice of parameters, DHSs in both
mouse and human ESCs are recovered with high
accuracy and good sensitivity (Supplementary Figure S6).

Classification of hypomethylated regions into UMRs and
LMRs

Plotting median methylation levels against the number of
CpGs per identified region (Figure 1b, Supplementary
Figure S7) reveals a striking separation of the hypomethy-
lated regions into two classes, a class of CpG-rich and
unmethylated regions and a second one of CpG-poor
regions with low methylation levels between 10 and
50%, which correspond to the previously identified
UMRs and LMRs, respectively (9). The two classes of
segments differ in both methylation levels and CpG
content. Because CpG content more clearly distinguishes
the two classes (Supplementary Figure S7), it is used to
separate the identified regions into UMRs and LMRs, at a
cutoff of 30 CpGs (dashed line in Figure 1b).

PAGeE4 oF 7

Identification and masking of PMDs

In some methylomes, the typical methylation pattern
(Figure la) is interrupted by regions of highly disordered
methylation (Figure lc). Owing to their reduced average
methylation levels, these regions were termed PMDs and
shown to overlap with genomic regions that are in a tran-
scriptionally repressed state (10). Because PMDs can
cover up to 40% of the genome (10,11) and have hetero-
geneous methylation levels, they contain a large number of
CpGs with reduced methylation levels that would errone-
ously be classified as LMRs or UMRs. Therefore, they
need to be accurately identified and masked at the begin-
ning of the analysis. To this end, we developed an HMM,
which considers sliding windows of 100 consecutive CpGs
and classifies them based on the shape of the distribution
of methylation levels. In particular, the HMM identifies
PMDs by the divergence of their methylation level distri-
butions from the typical polarized distribution, which
favors high and low methylation as in the fully methylated
baseline methylation and UMRs or LMRs, respectively
(Materials and Methods).

MethylSeekR workflow

The complete workflow of MethylSeekR is summarized in
Figure 1d: CpGs overlapping SNVs are removed, and
PMDs are identified and masked. After smoothing of
methylation levels, the algorithm calculates the FDR for
various combinations of m and » as a guide to select ap-
propriate segmentation parameters. Finally, the algorithm
provides a list of all hypomethylated regions classified into
UMRs and LMRs. These regions can furthermore be used
as the basis for a differential analysis comparing two or
more methylomes (Figure 2).

Sequencing depth requirements

An important step in Bis-seq experiments is to determine
the average read coverage required to identify regions of
interest. To investigate to what extent the identification of
UMRs and LMRs with MethylSeekR depends on the
average coverage of the Bis-seq sample, we applied the
method to sub-sampled methylomes of two datasets with
coverage >30-fold and compared the identified regions
with the regions obtained from the full-coverage methy-
lomes (Supplementary Figure S8). This analysis revealed
that due to the stringency of our parameter settings, in
particular the requirement to use only CpGs with
coverage of at least 5 reads for segmentation, regions are
identified at high accuracy for an average genome-wide
coverage as low as 5-fold. However, lowering the
coverage comes at the price of a decreased sensitivity, in
particular a loss of short LMRs. Whereas a large fraction
of UMRs can be detected at a mean coverage as low as 5,
a coverage of at least 10-fold is required to identify the
majority of LMRs (~80%). A subsampling analysis can
only be used as a rough guide to estimate coverage re-
quirements, as it cannot take into account potential ex-
periment-specific sources of variation, such as varying
coverage distributions and noise levels. Nevertheless, we
believe that an average genome-wide coverage of at least
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Figure 2. LMRs are highly dynamic distal regulatory elements. (a) Methylation profiles for trophoblasts differentiated from H1 (hl_bmp4) and B
cells (beell) for the same locus as in Figure la. UMRs and LMRs are shown as blue rectangles and red triangles, respectively, and n indicates the
minimal number of CpGs required to identify a region. (b) Number of UMRs and LMRs identified in selected human methylomes: Hl ESCs (hl),
trophoblasts differentiated from HI (hl_bmp4), fetal lung fibroblasts (imr90), adipocytes differentiated from adipose-derived stem cells
(ads_adipose), hematopoietic stem and progenitor cells (hspc) and B cells (bcell). The regions have been grouped by the number of cell types
they exist in. (¢) Transcription factor motif enrichments for cell type-specific and constitutive LMRs. Only motifs with an enrichment >1.5 in at least

one cell type are shown.

10-fold is a good starting point for any high-resolution
methylome analysis. If SNVs need to be detected from
the same data, a coverage as high as 30-fold is recom-
mended (17).

Application of MethylSeekR to published human
methylomes

To our knowledge, MethylSeekR is the only available
software that identifies UMRs and LMRs from genome-
wide Bis-seq datasets and can therefore not be compared
with existing methods. We validated the accuracy and
robustness of MethylSeekR in two ways. Firstly, we
compared the identified regions with DHSs, which are
commonly used as a gold standard for transcription
factor binding. This analysis revealed that the large
majority of identified regions overlap DHSs (Supple-
mentary Figure S6). Secondly, we applied MethylSeekR
to a large number of published human methylomes
(10,11,21,22). These include methylomes of human

ESCs, induced pluripotent (iPS) cells, fibroblasts, adipose
tissue and cell types of the hematopoietic lineage (Supple-
mentary Table S1, segmentation examples for a represen-
tative set of methylomes can be downloaded from www.
fmi.ch/groups/gbioinfo). These datasets are diverse in terms
of cell type, coverage (Supplementary Figure S2), noise
level and presence or absence of PMDs. For example,
Figure 2a shows representative methylation profiles for
trophoblasts differentiated from H1 (h1_bmp4) and for
B cells (bcell). Clearly, the B-cell methylome shows
much more variability in background methylation levels
than the trophoblast methylome. In accordance with this,
a larger minimal number of CpGs per hypomethylated
region is required to keep the FDR <5%. Importantly,
whereas for our previously analyzed mouse ESC and NP
methylomes (9), which are devoid of PMDs and have low
noise levels, MethylSeekR identifies a highly similar set of
regions as our previously proposed method, many of these
human methylomes would have been difficult to analyze
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using our previous approach (see Supplementary Material
for an in-depth discussion).

In accordance with previous studies (10,11), we found
clear evidence for PMDs in four methylomes (IMR90,
foreskin fibroblasts, adipose-derived stem cells and adipo-
cytes, Supplementary Figure S9). After filtering of PMDs,
we identified between 50 000 and 100000 hypomethylated
regions per methylome, with a stable number of UMRSs
and a larger more variable number of LMRs (Figure 2b,
Supplementary Figure S10, identified PMDs, UMRs and
LMRs can be downloaded from www.fmi.ch/groups/
gbioinfo). A comparison of the identified regions in
ESCs and iPS cells demonstrated good reproducibility
and showed that both UMRs and LMRs are conserved
in pluripotent cells (Supplementary Figure SI11).
Overlapping hypomethylated regions with genomic anno-
tations revealed that UMRSs correspond mostly to pro-
moters, while LMRs lie in intergenic or intronic regions
distal to transcription start sites (Supplementary Figures
S12 and S13). Sequence conservation analysis revealed
that both UMRs and LMRs are more conserved than
their surrounding regions (Supplementary Figure S14),
suggesting that they represent regulatory regions. In ac-
cordance with our previous work, UMRs are mostly
stable across tissues (Figure 2b, Supplementary Figure
S15), whereas LMRs are highly dynamic (Figure 2b,
Supplementary Figure S16).

To further characterize LMRs, we performed a motif
enrichment analysis using 130 weight matrices from the
Jaspar database (23). In accordance with our previous
findings (9), this revealed enrichments for cell type-
specific transcription factor (TF) motifs in cell type-
specific LMRs, such as Pou5fl and Sox2 in H1 ESCs
(24), AP-2alpha (TFAP2A) in trophoblasts (hl_bmp4)
(25), C/EBP-alpha (CEBPA) in adipocytes (26), PU.1
(SPI1) in the hematopoietic linecage (27), and enrichment
for constitutive TFs such as CTCF in constitutive LMRs
(Figure 2c).

DISCUSSION

We here present MethylSeekR, a computational method
for the robust identification of regulatory regions from
Bis-seq data. MethylSeckR takes as input a table with
genomic coordinates and methylation states for individual
CpGs and an optional table with known SNVs. It then
filters CpGs overlapping SNVs, identifies and masks
PMDs, calculates FDRs that allow a straightforward
setting of segmentation parameters and finally identifies
both proximal and distal regulatory regions (Figure 1d).
The algorithm is implemented in an easy-to-use and fully
documented R package that describes in detail each step
of the analysis and produces several control plots
(Supplementary Figures S5, S7 and S9) to facilitate the
interpretation of the results and to avoid potential
pitfalls in the analysis.

By analyzing a large number of published human
methylomes, we demonstrate that MethylSeekR reliably
identifies UMRs and LMRs, corresponding to proximal
and distal regulatory regions, across many cell types and
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tissues, irrespective of the presence of PMDs or differences
in noise levels. While regulatory regions can also be
identified on the basis of DNasel hypersensitivity or
histone modifications, measuring DNA methylation is ex-
perimentally easier and does not require such high
amounts of fresh starting material. For the study of rare
cell types, DNA methylation profiling and analysis may
thus currently be the only feasible approach for the experi-
mental identification of regulatory regions. We believe
that our method will greatly facilitate the analysis of
such datasets and will make Bis-seq data a valuable
source for the identification of active regulatory regions.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online,
including [28,29].
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