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Abstract
Improved understanding of structure and function relationships in the human lungs in individuals
and sub-populations is fundamentally important to the future of pulmonary medicine. Image-based
measures of the lungs can provide sensitive indicators of localized features, however to provide a
better prediction of lung response to disease, treatment and environment, it is desirable to integrate
quantifiable regional features from imaging with associated value-added high-level modeling.
With this objective in mind, recent advances in computational fluid dynamics (CFD) of the
bronchial airways - from a single bifurcation symmetric model to a multiscale image-based
subject-specific lung model - will be reviewed. The interaction of CFD models with local
parenchymal tissue expansion - assessed by image registration - allows new understanding of the
interplay between environment, hot spots where inhaled aerosols could accumulate, and
inflammation. To bridge ventilation function with image-derived central airway structure in CFD,
an airway geometrical modeling method that spans from the model ‘entrance’ to the terminal
bronchioles will be introduced. Finally, the effects of turbulent flows and CFD turbulence models
on aerosol transport and deposition will be discussed.

CFD simulation of airflow and particle transport in the human lung has been pursued by a number
of research groups, whose interest has been in studying flow physics and airways resistance,
improving drug delivery, or investigating which populations are most susceptible to inhaled
pollutants. The three most important factors that need to be considered in airway CFD studies are
lung structure, regional lung function, and flow characteristics. Their correct treatment is
important because the transport of therapeutic or pollutant particles is dependent on the
characteristics of the flow by which they are transported; and the airflow in the lungs is dependent
on the geometry of the airways and how ventilation is distributed to the peripheral tissue. The
human airway structure spans more than 20 generations, beginning with the extra-thoracic airways
(oral or nasal cavity, and through the pharynx and larynx to the trachea), then the conducting
airways, the respiratory airways, and to the alveoli. The airways in individuals and sub-
populations (by gender, age, ethnicity, and normal vs. diseased states) may exhibit different
dimensions, branching patterns and angles, and thickness and rigidity. At the local level, one
would like to capture detailed flow characteristics, e.g. local velocity profiles, shear stress, and
pressure, for prediction of particle transport in an airway (lung structure) model that is specific to
the geometry of an individual, to understand how inter-subject variation in airway geometry
(normal or pathological) influences the transport and deposition of particles. In a systems biology
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– or multiscale modeling – approach, these local flow characteristics can be further integrated with
epithelial cell models for the study of mechanotransduction. At the global (organ) level, one would
like to match regional ventilation (lung function) that is specific to the individual, thus ensuring
that the flow that transports inhaled particles is appropriately distributed throughout the lung
model. Computational models that do not account for realistic distribution of ventilation are not
capable of predicting realistic particle distribution or targeted drug deposition. Furthermore, the
flow in the human lung can be transitional or turbulent in the upper and proximal airways, and
becomes laminar in the distal airways. The flows in the laminar, transitional and turbulent regimes
have different temporal and spatial scales. Therefore, modeling airway structure and predicting
gas flow and particle transport at both local and global levels require image-guided multiscale
modeling strategies.

In this article, we will review the aforementioned three key aspects of CFD studies of the human
lungs: airway structure (conducting airways), lung function (regional ventilation and boundary
conditions), and flow characteristics (modeling of turbulent flow and its effect on particle
transport). For modeling airway structure, we will focus on the conducting airways, and review
both symmetric vs. asymmetric airway models, idealized vs. CT-based airway models, and
multiscale subject-specific airway models. Imposition of physiological subject-specific boundary
conditions (BCs) in CFD is essential to match regional ventilation in individuals, which is also
critical in studying preferential deposition of inhaled aerosols in sub-populations, e.g. normals vs.
asthmatics that may exhibit different ventilation patterns. Subject-specific regional ventilation
defines flow distributions and characteristics in airway segments and bifurcations, which
subsequently determines the transport and deposition of aerosols in the entire lungs. Turbulence
models are needed to capture the transient and turbulent nature of the gas flow in the human lungs.
Thus, the advantages and disadvantages of different turbulence models as well as their effects on
particle transport will be discussed. The ultimate goal of the development is to identify sensitive
structural and functional variables in sub-populations of normal and diseased lungs for potential
clinical applications.

AIRWAY STRUCTURE
Symmetric, asymmetric, and CT-based airway models

Symmetric tubular airway models based on Weibel’s symmetric model 1 have been widely
used to investigate pulmonary gas flow and particle transport in the human lungs. They
include single-bifurcation models 2, 3, double-bifurcation models 4, triple-bifurcation
models 5, and a 23-generation model 6. However, the human lung is asymmetric, having two
left lobes and three right lobes, and marked variability of adjacent child airway size at a
bifurcation. Kim and Iglesias 3 designed an asymmetric tubular single-bifurcation model by
specifying different branching angles for two daughter branches, which was later used by
Balásházy and Hofmann 7. van Ertbruggen et al. 8 constructed an asymmetric seven-
generation airway model based on the asymmetric model of Horsfield 9. That is, a tree
model with branching asymmetry and branch angles as defined from cast-based studies of
human airway morphometry, such that the spatial position of branches was anatomically
representative. Gemci et al. 10 further extended the spatial description by building a 17-
generation airway model based on the skeletonization of a human bronchial tree obtained by
Schmidt et al. 11 from in vitro CT image of an adult male lung excited at autopsy. Similarly,
Tian et al. 12 developed an airway model of up to 15 generations, based on the anatomical
human airway cast by Yeh and Schum 13. Limitations of these asymmetric models are that
they assume circular cross-sections, and are neither subject-specific nor representative of
specific sub-populations.

X-ray computed tomography (CT) remains an important non-invasive method in examining
lung structure and function, and for acquiring airway geometry and regional ventilation data.
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Airway models reconstructed from CT images can capture subject-specific geometrical
features of the airways, including cartilaginous rings in the proximal airways, non-circular
cross-sections and curved airway segments. CT-based airway models with various numbers
of airway generations are now used by an increasing number of groups 14–18. Due to the
spatial resolution of CT, these CT-based models are currently restricted to about 10
generations, and the various models in the literature vary in terms of their resolution and
therefore geometric accuracy. Obtaining a high-resolution CT-based model that is free of
artefact, planar at the inlets and outlets, and with a CFD-ready mesh geometry is generally
tedious and time consuming. This has limited the ability to generate large numbers of high-
resolution CT-airway models for CFD analysis. However, these high-resolution models are
extremely important for understanding the influence of inter-subject geometric differences
on the characteristics of air flow and its potential connection to mechanotransduction. For
example, in asthmatic lungs, there are local airway constrictions that increase airway
resistance and create local high-speed jet flow, theoretically resulting in high local shear
stress and high concentrations of irritants. This potentially accelerates airway remodelling
(e.g. by increasing airway wall thickness, rigidity and narrowing) in local regions, which
could subsequently further alter the flow and wall shear stress, forming a vicious cycle.

Modeling of the upper airways
Because of the complexity of the geometry of the upper airways (oral or nasal cavity to
larynx), most airway CFD studies neglect this region and instead initiate flow at the trachea.
Lin et al.15 demonstrated the importance of the upper airways in establishing a turbulent
laryngeal jet that influences the downstream flow and particle dispersion 19. Flow in the
upper airways tends to be transitional and turbulent. In order to properly capture the nature
of the flow in this region, explicit modeling of the upper airways is essential. Stapleton et
al. 20 built an average mouth-larynx upper airway model based on existing data in the
archival literature and the CT images of 10 human subjects along with the observation of 5
living subjects. Kleinstreuer and Zhang 21 and Xi and Longest 22 constructed an idealized
circular/elliptic model based on the anatomical data by Cheng et al. 23, whereas Lin et al.15,
Choi et al.24 and De Backer et al.18 used CT images to construct upper airway models.
While the exact geometry and flow characteristics are important for tracking e.g. particle
distribution, the effect of the upper airway can be approximated by including the larynx
geometry or a local constriction at the glottis to create a turbulent laryngeal jet on
inspiration 25. In the above studies the upper airways, including the glottis, are assumed
rigid. Some studies assume constant inspiratory flow conditions and some assume breathing
conditions. Yin et al.26 used the correlation between glottis opening, lung function and flow
rate by Stanescu et al.27 to estimate the time-varying glottal constriction. With inspiratory
flow rate in the range of 150–342 ml/s and air volume change of ~142 ml, they estimated
that the glottal cross-sectional area varies by ~9%, and glottal constriction ratio varies
between 55% and 59%. Given the convective nature of the flow, the turbulent intensity
would not change dramatically. On expiration, the change of the glottal area is even smaller
and would have little effect on the flow in the central airways because the glottis is located
on the downstream side of the flow.

For high-frequency oscillatory ventilation (HFOV) with an application to mechanically-
ventilated patients, Jan et al.28 studied flow structures experimentally in a model bifurcation
in the unsteady, viscous, and convective flow regimes excluding the effect of glottal
constriction. Choi et al.24 applied CFD to investigate flow structures and convective mixing
under HFOV condition in three different geometrical models: a straight tube, a single-
bifurcation tube model (without glottal constriction to mimic intubation), and a CT- based
human airway model.
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Multiscale subject-specific conducting airway models
Lin et al. 29 have established a method to create a fully resolved three-dimensional (3D)
mesh from the trachea to any terminal bronchioles of interest, allowing one to simulate fluid
and particle transport from the model entrance to the level of lung parenchyma. The airway
tree beyond CT resolution is generated by a volume filling method (VFM) developed by
Tawhai et al. 30, 31. The VFM takes the skeleton of the 3D CT-resolved central airway tree
in a human subject, then generates a tree to fill the entire volume within the subject’s
respective five lobes. The resulting airway trees are consistent with measurements from
airway casts9, 32 and imaging studies33, although they are only specific to the subject’s lung
lobe shapes and orientation of their central airways. With advances in scanners and image
processing algorithms, more detailed lung structures can be resolved and segmented, e.g.
higher-generation airways, sub-lobes and vessel trees. These data can be further used to
improve the modeling of peripheral airways.

Figure 1 demonstrates that a subject-specific entire 1D tree can be obtained from CT images
(see Fig. 1(a)) supplemented by the VFM. The entire 1D tree is marked by brown lines in
Fig. 1(b). One can choose the paths from the trachea to any regions of interest, e.g., marked
by the black lines in Fig. 1(b). Then by assigning airway diameters (based on average
morphometric values, length-to-diameter ratios, or rate of decrease with branch order), the
method can construct the corresponding 3D cylindrical baseline surface geometry as shown
in Fig. 1(c). The baseline geometry can further be geometry fitted to airway surface cloud
points obtained from CT image segmentation via numerical optimization 34 to recover more
detailed geometrical features of the airways. The entire 3D mesh in Fig. 2(a) enlarged in Fig.
2(b) is sub-divided into a number of sub-volumes, e.g. Fig. 2(c), with associated CT-based
airway measures and generation number. These sub-volumes with their corresponding
boundary faces shown in Figs. 2(d) and 2(e) greatly facilitate monitoring and quantifying
local transport and deposition of aerosols by generation and lobe. This sub-division
capability with embedded-structure information is a key feature needed for efficiently
dealing with large data sets for a population-level analysis. The local constriction at the
glottis, which is essential to generate the laryngeal jet on inspiration, can be modeled using
an average constriction ratio 23. Once the surface mesh and sub-volumes are identified and
defined, a CFD volume mesh can be generated automatically. The CFD mesh shown in Fig.
2(a) consists of about 1.7 million tetrahedrons and takes about 10 minutes to generate.

This airway modeling method enables generation of large 3D airways to small 3D airways
(thus, 3D-3D) as shown in Fig. 1(c)) by generation as well as by path, and large 3D airways
to small one-dimensional (1D) airways (thus, 3D-1D) as shown in Fig. 1(b). The 3D-3D and
3D-1D coupling approach not only allows high-fidelity CFD analyses in regions of interest,
but also reduces computational cost, as well as bridges airway structure to ventilation
function for subject-specific physiological BCs29 as discussed in the next section.

LUNG FUNCTION
Boundary conditions

The distribution of flow in the airways is dependent on airway characteristics, such as
asymmetry of the bronchial tree or the heterogeneity of bronchoconstriction, as well as
expansion of the alveolar tissue. Regional tissue expansion is not uniform, due to non-
uniform material properties and gravitational deformation of the lung tissue establishing a
gradient of instantaneous tissue compliance. Accounting for such effects is however not
straightforward, and hence the majority of previous studies have adopted simplifying
assumptions for BCs at the ‘outlets’ of airway models. The common assumptions are
uniform pressure, mass flow, or velocity. Regardless of BCs mass conservation is
guaranteed, but the resulting regional/lobar ventilation (lung function) may not be
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physiological and subject-specific. For example, van Ertbruggen 8 used an asymmetric
Horsfield geometric model 9 that assumed uniformly distributed ventilation to impose mass
flow as a BC at each outlet in their CFD analysis. Ma and Lutchen 35 used a similar
Horsfield model to determine lobar flow division ratios in a CT-based airway model, and
assumed uniform velocity in all outlets of the same lobe to determine the mass flow to each
outlet. Corley et al.36 applied CFD and pharmacokinetic models to study airflow and
dosimetry in the image-based airways of rat, monkey and human. In their study, the inlets
were imposed a constant inspiratory flow rate, and the outlets were assumed a zero pressure.
They solved the convection-diffusion scalar transport equation for acrolein transport and
uptake, and 1D models for mucus, epithelium, and sub-epithelial layers with diffusive flux
BCs for air-tissue interface. Kabilan et al.37 coupled 3D CFD models with lower-order
ordinary differential equations (ODEs) that represent distal lung mechanics. Peripheral
airway resistance can also be evaluated by image data. For example, Wongviriyawong et
al.38 used positron emission tomography (PET) and CT images of non-asthmatic and
asthmatic lungs acquired at baseline and post methacholine challenge to estimate structural
and functional parameters. Their approach allows linking airflow obstruction and
heterogeneities in airway constriction and ventilation, and subsequently evaluating
peripheral airway resistance in sub-lobar units. More sophisticated approaches account for
local volume expansion. Recognizing that flow distribution to different regions of lung are
not uniform, De Backer et al. 39 imposed two different pressure values at the 3D CT-
resolved ending segments in the left and right lungs on steady inspiration to produce
heterogeneous flow partition to the left and right lungs. More recently, the same group (De
Backer et al. 18) has used lobar volume expansion between functional residual capacity
(FRC) and total lung capacity (TLC) to produce subject-specific lobar ventilation as BCs.
Limitations with this approach are that it is constrained to predicting ventilation for the same
posture in which imaging was acquired, and a single lobar ventilation BC does not explain
heterogeneous distribution of ventilation amongst sub-lobar bronchi. One alternative
approach is to use impedance of the downstream airways and tissue as BCs. For example,
Gillis and Lutchen40 proposed an impedance-based model of the human lung for prediction
of flow distributions that takes into consideration heterogeneous bronchoconstriction related
to impairments in the mechanical properties of the lung. Their model assumed an
asymmetrical branching airway system and predicted increased heterogeneity of ventilation
with increasing breathing frequency. Colletti et al.41 developed an asymmetric-tree
impedance-based model of the canine lung to study the effect of mechanical heterogeneity
on the distributions of flow and pressure in the injured lung. These models could be used to
provide BCs for CFD studies of diseased or injured lungs. In a more generalized and
predictive approach, Tawhai et al.42–44 developed a soft-tissue mechanics model that
predicts elastic deformation of the compressible lung tissue in any posture, to provide flow
or pressure BCs for a 1D tree airway model. Coupling of this method with airway CFD is
challenging, but would provide a comprehensive approach to studying flow distribution in
any posture. A limitation is that vertical imaging is not currently available to validate lung
shape change and regional strain in the upright posture. A further limitation is that the
nonlinear elastic properties of the lung tissue over large deformations remain poorly
described, and the effect of pathological changes on constitutive properties is not known in
any detail.

Image registration and regional ventilation
Image registration can be applied to register consecutive CT image volumes and study lung
tissue expansion and contraction of human subjects over multiple breathing cycles 45–47. In
registering two images, one image is used as the reference image and the other is the floating
image. The floating image is then transformed to match the reference image. The
registration process generates a pointwise voxel-by-voxel displacement field between the
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two images for various applications. Figures 3(a) and 3(b) show two volumetric scans
acquired with a CT scanner during breath-holds near FRC and TLC. The displacement field
between two lung volumes can be used to deform the conducting airway as color-coded in
red in Figs. 3(a) and 3(b), e.g. for breathing-lung simulation 48. Local lung volume change is
calculated using the Jacobian of the transformation field. The Jacobian measures local
volume expansion and contraction, which can be used in conjunction with CT number to
assess regional ventilation 46, 49 and regional lung tissue mechanics 50. Figures 3(c) and 3(d)
show the distribution of regional ventilation, exhibiting the property of heterogeneity. The
regional ventilation can be overlapped with the entire airway tree (e.g. Fig. 1(b)) to derive
flow rate fractions for parenchymal units that enclose terminal bronchioles. These fractions
can subsequently be used to determine subject-specific CFD BCs at the 3D ending airway
branches via tree connectivity and mass conservation 49. This BC is referred to as an image-
based BC. Recently Yin et al.26 extended the same technique to three CT images volumes to
account for non-linearity of lung mechanics. Regardless of two- or three-volume based
approaches, lung hysteresis can be modeled by a pre-determined pressure volume hysteretic
relationship, but it is not subject-specific. However, the registration has been applied to 4D
dynamic lung volumetric images45, which can capture subject-specific hysteresis and can
potentially provide BCs for CFD.

The image-based approach to model airflow and particle transport in the human lung is
multiscale because of the coupling between airways and lung parenchyma via image
registration and between large and small airways via the 3D-3D and 3D-1D meshing
technique. 3D provides detailed solutions at a local level, e.g. accurate prediction of hot
spots where harmful/toxic particulate matter could accumulate, whereas 3D-1D multiscale
ensures realization of lung function at a global (organ) level, e.g. ventilation (flow
distribution) at different regions of the lung.

Coupling of structure and function
Yin et al. 49 compared the distributions of outlet velocity and static pressure for three BCs:
image-based BC, uniform velocity BC and uniform pressure BC. The distributions of outlet
velocity and pressure in Fig. 4(a) obtained from the image-based BC are more
heterogeneous than those of the uniform velocity BC in Fig. 4(b) and the uniform pressure
BC in Fig. 4(c). In particular, the image-based BC predicts much greater pressure drop at the
airways in the left lower lobe (LLL) and right lower lobe (RLL) shown in Fig. 4(a). In
contrast, the uniform velocity BC produces the greatest pressure drop in the right middle
lobe (RML), whereas the uniform pressure BC fails to capture the pressure variation at
different ending airways. Figure 4(d) compares the lobar distributions of air content
predicted by the three BCs against the measured values. The distributions predicted by the
image-based BC agree well with the measurements. In contrast, both uniform pressure and
uniform velocity BCs under-predicted the ventilation to the LLL and RLL, whereas the
uniform velocity BC over-predicted the ventilation to the RML.

The implication of the above BC study for regional deposition of particles is significant. For
example, Schlesinger et al. 51 used a hollow, silicone rubber cast of the human
tracheobronchial tree to study particle deposition in the human lung. The same model was
further used to study preferential particle deposition and its implication in bronchogenic
carcinoma 52. The clinical data for cancer sites 53 were adopted for comparison with their
experimental data. They found a close correspondence between the particle deposition
efficiency and reported cancer locations in the human lungs. However, their experimental
setup placed a hollow tree cast inside an artificial thorax chamber 51, which is equivalent to
the uniform pressure BC illustrated in Fig. 4. Thus, the lobar flow rate in their experimental
study depends on the specific airway cast geometry rather than parenchymal tissue
expansion/ventilation. Their tree cast had more branches (thus, higher flow resistance) in the
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lower lobes than the upper lobes, resulting in relatively more air, and subsequently more
particles, being transported to the upper lobes. This example highlights the importance of
accurate representation of BCs, which can only be achieved through coupling airway
structure and lung function.

TURBULENCE MODELS AND PARTICLE TRANSPORT
Turbulence models

Due to the glottal constriction, a laryngeal jet is formed at the glottis in the trachea on
inspiration 15 as demonstrated in Fig. 5. The jet flow could be transitional or turbulent,
depending on the Reynolds number (Re), and propagate deeper into the lungs29, 54, 55. There
are three major approaches to model turbulent flow: direct numerical simulation (DNS),
large-eddy simulation (LES), and Reynolds-Averaged Navier-Stokes (RANS) models. DNS
resolves all of the turbulent structures in the flow without using any turbulence model. LES
resolves only large-scale energy-containing turbulent structures in the flow, and uses a sub-
grid scale model to represent un-resolved small-scale turbulent eddies. RANS resolves only
the mean velocity field and parameterizes all turbulent structures. DNS is accurate, but is
computationally costly. LES is fairly accurate, and is affordable with today’s computing
technologies. RANS is inaccurate, but is computationally inexpensive. There are two
RANS-based approaches to predict particle transport. One approach is to use the mean
velocity fields alone, known as “mean flow tracking” (MFT). The other approach is to
generate random turbulent fluctuations based on RANS-predicted mean turbulent kinetic
energy (TKE), called “turbulent flow tracking” (TFT). MFT prohibits turbulent mixing of
particles, which is numerically equivalent to particle transport in steady laminar flow. Thus,
MFT depends on particle release location, which is against the nature of turbulent flow. On
the other hand, although TFT attempts to model turbulent mixing, it does not correctly
predict turbulent mixing because RANS-predicted mean TKE is inaccurate in both
magnitude and distribution. Nonetheless, because of its convenience and inclusion in a wide
range of commercial software packages, RANS has been widely used for pulmonary flow
simulations as well as studies of particle transport and deposition 56–59.

Several studies have examined the suitability of RANS for airflow and particle simulation.
For example, Heenan et. al. 60 investigated both experimentally and numerically the velocity
field in an idealized representation of the human oropharynx during steady inspiration, and
found that RANS is not adequate to capture the flow structures. Jayaraju et al. 61 found that
LES and detached eddy simulation significantly improve the prediction of deposition of
particles of 5 µm and smaller in diameter over RANS using both MFT and TFT. Ma and
Lutchen 35 reported that the oral deposition predicted by MFT is more accurate than that of
TFT. In contrast, van Ertbruggen et al.8 compared the flow profiles and particle deposition
predicted by laminar and RANS models, and found insignificant difference between the two
models. They determined the critical Re in their model to be 8,000. Since the maximum Re
in their model was 2,500, they concluded that their flow was not turbulent. Their critical Re,
however, is over estimated because the critical Re for transition to turbulent flow in a
straight pipe62 is about 2,300 63. Furthermore, Dekker 64 studied experimentally the critical
velocities in 21 transparent plastic casts of human trachea, and reported a critical Re of 400,
and Vétel et al. 65 reported that the laminar flow through a smooth axisymmetric 75%
sinusoidal constriction becomes unstable at a critical Re of 400. It is noted that the airway
model used by van Ertbruggen et al. 8 did not include the upper airway or the glottal
constriction. Lin et al. 15 demonstrated that without including the upper airway in CFD
simulation the flow becomes laminar. In more recent studies, Darquenne et al. 66 used the
same airway model as van Ertbruggen et al. 8 along with a RANS model to study the
relationship between ventilation and transport of particles of size 0.5, 1 and 2 µm, and
Lambert et al. 19 studied particle deposition and hot spots for particles of 2.5, 10, and 30-µm
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in diameter and the left-right lung particle ventilation asymmetry using LES. Lambert et
al. 19 computed particle trajectories in the airways with the Lagrangian tracking
algorithm 67, 68. They found that deposition for 2.5 µm particles is most uniform, whereas
30-µm particles have the highest deposition rate and predominantly deposit in the oral
region. One limitation of the above studies is that they were based on static anatomic
conditions. Nonetheless, the left-right lung particle ventilation asymmetry predicted by
Lambert et al. agrees with the findings of Bennett69 and Möller et al.70 who studied in vivo
bolus inhalation using gamma camera imaging.

Particle transport by laminar and turbulent flows with different carrier gases
Sandeau et al. 71 used a RANS model to predict flow, pressure drop and particle deposition
for air and helium-oxygen mixtures in a human oral extra-thoracic airway model. They
found that the pressure drop and particle deposition in the model with helium-oxygen were
reduced compared with air. Miyawaki et al. 68 studied the effect of carrier gas properties on
distribution of 2.5 µm particles to the left and right lungs, thus the left-to-right-lung (L/R)
ratio using LES. They considered five different cases: helium (He), helium-oxygen mixture
(He-O2), helium with a flow ventilation ratio 2:3 to the left and right lungs (He23), air, and
xenon-oxygen mixture (Xe-O2). Except for the case with He23, the CT-measured air
ventilation ratio of 0.98 to the left and right lungs specific to this subject was imposed.
Given the same flow rate at the mouthpiece inlet in Fig. 6(a) but different gases, the Re
values at the trachea for He, He23, He-O2, Air, and Xe-O2 cases are about 190, 190, 460,
1300, and 2800, respectively. With increasing Re, the high-speed jet that formed at the
glottal constriction was more dispersed around the peripheral region of the jet and its length
became shorter. Figure 6(b) shows that in the laminar flow the distribution of particles in the
central airways depends on the particle release location at the mouthpiece inlet, whereas in
the turbulent flow the particles are well mixed before reaching the first bifurcation and their
distribution is strongly correlated with regional ventilation. The implication is that use of
RANS models to predict particle transport and deposition would depend on the particle
release location, and this is contrary to the nature of turbulent flow.

Discussion and Conclusion
Bridging individual and population scales: Galbán et al.72 analyzed CT images of 194
chronic obstructive pulmonary disease (COPD) subjects to identify image-based biomarkers
that can detect COPD subtypes for individualized medicine, a paradigm built on individual-
and population-levels. Similarly, the Severe Asthma Research Program (SARP) studies73, 74

applied an unsupervised hierarchical cluster analysis to clinical variables of 1,644 patients74,
and selected three most discriminatory variables: baseline FEV1, maximum FEV1 and age of
onset, to identify five distinct classes of asthma. With this paradigm in mind, the ultimate
goal of the aforementioned development of a multiscale framework, which consists of
airway geometric modeling, image registration, CFD and hot spot prediction, is to identify
new sensitive structural and functional variables at local smaller scales for distinguishing
normal and diseased phenotypes. For example, airway structures could be classified into
sub-populations by gender, age, and normal/diseased state, e.g. based on airway dimensions
(men vs. women; normal vs. asthma), airway wall thickness (normal vs. asthma vs. COPD),
branching angles (normal vs. asthma) and branching patterns (trifurcation vs. double
bifurcations). Likewise, the registration-derived ventilation and CFD-predicted stress and
particle deposition, although heterogeneous, may exhibit similar characteristics in sub-
populations (normal vs. asthma vs. COPD). To achieve this goal of identifying sensitive
variables, these structural and functional variables must be accurate and detailed at local
smaller scales in a subject-specific sense. With sensitive discriminatory variables and
associated phenotypes established, one could start to interrogate which phenotype, and
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subsequently individuals belong to this phenotype, is more susceptible to environmental risk
factors.

Bridging organ and cellular/molecular scales: A critical pathway that bridges the above
mechanical model with lung biology is through the mechanosensing capability of the human
bronchial epithelial cells (HBE). As Fredberg and Kamm75 pointed out, the mechanical
force exerted on the lung to change lung volume can be transmitted from the organ level
down to the levels of tissue, cell and molecule. Airway defense is a multiscale process,
involving mechanotransduction to transmit oscillatory mechanical force from macro scale
(motion of lung, rib cage, diaphragm, and abdomen) to micro scale (airflow-induced shear
stress and tissue stress at a local level), and further translation to biochemical responses via
cell signaling to maintain the periciliary liquid (PCL) volume for mucociliary clearance.
Based on the HBE cell culture experiments, Tarran et al.76, 77 and Button et al.78, 79 found
evidence of the response of epithelial cells to mechanical force. Their studies suggest that
the rate of change of mechanical stress is an important stimulus for release of adenosine
triphosphate (ATP) into the extracellular PCL environment. ATP, along with its metabolite
adenosine, interact with airway epithelial purinergic receptors, to up-regulate transcellular
ion and water transports that increase PCL volume and ciliary beat frequency to accelerate
mucus transport. Namely, a key component in the airway-defense system is stress-mediated
ATP release. Therefore, accurate prediction of ATP release, which up-regulates cell
signaling and reaction to maintain PCL volume and hydration, relies upon accurate
prediction of stress that triggers its release in a location-specific and state-specific manner.
As compared with 1D models, the above 3D multiscale model can capture more realistic
local airflow-induced stresses in response to airway abnormalities, such as airway
constriction in asthmatics. Another example of the need for 3D models is demonstrated by
De Backer et al.80 who validated CFD-predicted hot spots with those detected by 3D
combined single photon emission CT (SPECT) and CT in six patients with mild asthma.
They used technetium 99m (99mTc) pentetic acid as radioaerosols having an average size of
1.32 µm, and found that the hot spots were associated with airway occlusion in both CFD
and SPECT/CT results. The interplay between hot spots and increased shear stress
associated with constricted airways, and between disturbed PCL water homeostasis (which
may subsequently weaken mucociliary clearance) and airway inflammation81 and
remodeling could be better understood if sensitive variables of various types and scales are
available.

Other important factors: Although this review is focused on conducting airways, there is a
large body of literature on the respiratory airways that is very important in understanding
lung physiology and pathophysiology. To name a few, Tsuda et al.82, 83 studied chaotic
mixing of fine/ultrafine particles deep in the pulmonary acinus. Kumar et al.67, 84 studied the
structure and function of the respiratory airways and acini, and found that steady streaming
is a key mixing mechanism in acinar flows. Kumar et al.85 further presented a registration-
based multiscale method to obtain a deforming geometric model of mouse acinus based on
multi-resolution micro-CT images, which forms a useful tool in tissue mechanical and fluid
dynamical studies. Coupling of conducting and respiratory airways for CFD requires some
strategies, for example, a multi-stage approach that allows performing CFD analyses in
these airway models separately, but mass and flow variables are continuous at joint
boundaries. The inflammatory response of the human lungs at cellular and molecular levels
involves a variety of mechanisms as reviewed by Moldoveanu et al.81. Coupling of the
multiscale framework with these mechanisms is essential in understanding lung functions
from the perspective of systems biology. It is also worth noting that for enhancement of
pulmonary inhaled pharmaceutical drug delivery, Longest et al.86 proposed a method that
combines drug aerosols and hygroscopic excipients to reduce extrathoracic drug loss, but
allow growth of particle size for potential targeted drug delivery. For accurate prediction of
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hygroscopic particle growth, the thermodynamics, heat and water concentration for the
temperature and humidity distributions in the human lungs must be taken into consideration.
Under normal conditions the nose heats and humidifies inspired air to close to body
temperature and saturated with water vapor, then recovers a large proportion of heat and
moisture during expiration. The bronchial airways provide any deficit in heat and moisture
when air at less than body temperature and saturated enters the lung, for example, during
mouth breathing, breathing at high minute ventilation, or when the normal airway is
bypassed by an endotracheal tube. Humidity is supplied to the inspired air from the PCL and
mucus. Tawhai and Hunter87 developed a mathematical model of coupled airway heat and
water vapor transfer to predict airway humidity and to study dynamic changes in the PCL
throughout the airway tree, which can be further implemented into the 3D computational
framework.

In summary, with reduced computational time for image processing, image registration,
airway meshing and CFD due to advances in image processing algorithms, computer
architectures and parallel computing algorithms and with increased image resolution in
space and time due to advances in imaging technologies, the multiscale framework enables
building large databases based on sensitive image-based and CFD-derived structural/
functional variables for phenotyping. With the assistance of statistical analysis and
classification, one could begin to interrogate and identify sensitive variables in sub-
populations along with genotypes for early detection of lung disease, moving toward the
goal of establishing precision medicine.
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Figure 1.
Mesh generation process: (a) CT image, (b) 1D tree where the black solid lines are paths of
interest to the LUL and RLL, (c) 3D geometry generated along the black lines in (b).
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Figure 2.
The 3D CFD grid: (a) 3D geometry, (b) computational grid in terminal airways, (c) airway
segment volume, (d) airway segment wall, (e) cross-section.
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Figure 3.
(a) Reference (TLC) image and (b) floating (FRC) image for one subject. Red, airway tree;
blue, vessel tree; cyan, lobes; green spheres, the landmarks at the bifurcations of the vessel
tree. Registration-derived heterogeneous regional ventilation: (c) side view, (d) front view.
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Figure 4.
Top panel: outlet velocity vectors (pink) and pressure contours for the three different outlet
BCs: (a) image-based BC; (b) uniform velocity BC; and (c) uniform pressure BC. (d) Lobar
distributions of flow rate ratio for the three different outlet BCs. 49
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Figure 5.
Contours of speed of inspiratory air in a vertical plane at the middle of the airway model
(side view). The velocity vectors at the outlets are displayed in pink. The Re in the trachea is
1,380.
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Figure 6.
(a) Side view of a CT-based airway model. The rm is the radius of the mouthpiece. (b) The
left to right lung (L/R) particle ratio as a function of the particle normalized release location
at the mouth piece in (a) (the shaded area). rc=(ri+ro)/2. He, helium; He23, helium with a
ventilation ratio of 2:3; He-O2, helium-oxygen; Xe-O2, xenon-oxygen mixture. 68
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