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Abstract
Although there is no standard treatment protocol for inflammatory breast cancer (IBC), multi-
modality treatment has improved survival. In this study we profiled the NCI approved oncology
drug set in a qHTS format to identify those that are efficacious in basal type and ErbB2
overexpressing IBC models. Further, we characterized the sensitivity of an acquired therapeutic
resistance model to the oncology drugs. We observed that lapatinib-induced acquired resistance in
SUM149 cells led to cross-resistance to other targeted- and chemotherapeutic drugs. Removal of
the primary drug to which the model was developed led to re-sensitization to multiple drugs to a
degree comparable to the parental cell line; this coincided with the cells regaining the ability to
accumulate ROS and reduced expression of anti-apoptotic factors and the antioxidant SOD2. We
suggest that our findings provide a unique IBC model system for gaining an understanding of
acquired therapeutic resistance and the effect of redox adaptation on anti-cancer drug efficacy.
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1. Introduction
Cancer is a complex and heterogeneous disease, and increasingly large scale profiling efforts
have been undertaken at both the genetic and protein levels to help enhance our
understanding of this disease and the variability in molecular phenotype, including for
example, identifying genes critical to the growth of breast cancer subtypes [1]. More
recently, chemical biology or systems pharmacology [2; 3] approaches have been
undertaken to link drug treatment and tumor cell responses with the goal of identifying
signatures that predict drug sensitivity or clinical responses in patients [4; 5; 6; 7]. Drug
profiling on a collection of breast cancer subtypes revealed that therapeutic compounds
showed significant subtype specificity [8], and efficacy profiling was able to identify
relationships between compounds that were not apparent from gene expression profiling [9].

Inflammatory breast cancer (IBC), an understudied and relatively rare subtype of breast
cancer, is a distinct and highly aggressive form of locally advanced breast cancer (LABC).
Current data from the National Cancer Institute (NCI) Surveillance, Epidemiology and End
Results (SEER) program suggests that IBC accounts for 1-5% of all newly diagnosed breast
cancer in the United States annually, although many believe it is more common but difficult
to diagnose [10]. IBC is clinically distinguished by rapid onset of primary skin changes and
progression to Stage IIIb/IV within 6 months. IBC carries a guarded prognosis with 5-&10-
yr disease-free survival rates approaching 45% and 20% respectively compared to around
90% (5-yr) for non-IBC [11; 12; 13].

Despite the improvements gained from multidisciplinary management and anthracycline-
and taxane-based polychemotherapy regimens [14], women with IBC continue to have
worse survival outcomes compared with those with non-IBC LABC [15]. IBC has been
designated by the FDA as an orphan cancer and is a health disparity as it disproportionately
affects minority populations globally including African American and American Indian
women, and is more prevalent in young women of child bearing age. There shows no
standard IBC-specific treatment for patients with advanced disease, and enrollment in
clinical trials has been strongly recommended [16].

For IBC tumors with over-expression of epidermal growth factor receptors (ErbB1/EGFR
and ErbB2/HER2), ErbB1/2 targeting agents including trastuzumab (HER2 targeting) and
lapatinib (a dual ErbB1/2 tyrosine kinase inhibitor) have been approved for treatment.
Although the clinical response (CR) rate of patients receiving lapatinib monotherapy has
been remarkable (50% CR rate in ErbB2-overexpressing IBC patients [17]), a significant
number of patients do not respond to lapatinib, and acquired resistance is frequent [18; 19].
A recent study indicates that expression of surrogate markers ER, PR, and HER2 is
significantly associated with overall survival and loco-regional relapse outcomes in patients
with IBC of the triple negative (TN) subtype, consistently predicting the worst outcomes
[20]. Since endocrine and anti–HER2 therapies are ineffective in TN IBC, EGFR inhibitors
(gefitinib, erlotinib), an anti-EGFR antibody (cetuximab), and a c-KIT inhibitor (imatinib)
are in clinical trials; however, recent trial results with cetuximab have been disappointing in
TNBC patients with EGFR overexpression [21].

A major unmet clinical challenge in IBC is the rapid development of chemo- and
radiotherapy resistance. The efficacy of chemo- and radio-therapeutics is largely influenced
by optimal levels of cellular reactive oxygen species (ROS) which act on redox sensitive
oncogenic signaling pathways and induce cell death response to therapy in the cancer cells
[22]. We identified that IBC cells with acquired therapeutic resistance to lapatinib have
adapted to oxidative stress induced by lapatinib, resulting in insignificant accumulation of
ROS [23]. This results in inhibition of apoptosis and enhanced cancer cell survival. Further,
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we discovered that the therapeutically resistant IBC cells overexpressed X-linked inhibitor
of apoptosis protein (XIAP), the most potent mammalian anti-apoptotic/caspase inhibitor
[24; 25]. XIAP overexpression in these cells correlated with redox adaptation, in particular
increased expression of superoxide dismutases (SOD1/2), leading to enhanced ROS
detoxification activity [26].

Few profiling studies have looked more specifically at linking tumor cell drug responses to
drug resistance. In this study, we employed a high throughput (HT) approach to profile the
NCI Developmental Therapeutics Program (NCI-DTP) Approved Oncology Drug Set II in
inflammatory breast cancer models (SUM149, basal type and SUM190, ErbB2
overexpressing) established from IBC patient tumors [27]. To obtain pharmacological
information from the screening data, we employed a titration-based screening paradigm,
quantitative HTS (qHTS) where compounds were screened at multiple concentrations. The
primary objective of the current study was to characterize whether the development of
resistance to lapatinib also affects sensitivity to other chemo- and targeted drugs and
secondly, whether removal of lapatinib would have an impact on sensitivity to lapatinib and
other anti-cancer agents. Therefore, we also characterized efficacy of this drug set in
rSUM149, an isogenic derived line from SUM149 wherein a clonal population of cells was
selected for acquired resistance to lapatinib [25]. In addition, another isogenic derivative
was generated through removal of lapatinib from rSUM149 for an extended period of time
(rrSUM149/resistance reversal line), and we present data that this cell line regains sensitivity
to lapatinib and other anti-cancer drugs. Analysis of the parental and isogenic derived IBC
cell lines provides a unique model system for gaining an understanding of acquired
therapeutic resistance and the effect of redox adaptation on anti-cancer drug efficacy.

2. Materials and methods
2.1 Cell lines and reagents

SUM149PT and SUM190PT cells were obtained from Asterand Inc. (Detroit, MI). SUM
cell lines were cultured as per the manufacturer’s instructions and as described previously
[24; 25; 27]. SUM149 cells were routinely maintained in Ham’s F-12 supplemented with
5% fetal bovine serum (FBS), insulin (5 μg/ml) and hydrocortisone (1 μg/ml). SUM190
cells were routinely maintained in Ham’s F-12 supplemented with 0.5 g/L bovine serum
albumin (BSA), insulin (5 μg/ml), hydrocortisone (1 μg/ml), transferrin (5 μg/ml) and triido
thyronine (10 nM) as previously described [24; 27]. The lapatinib-resistant SUM149-derived
cell line (rSUM149) was generated as described previously [25]. Briefly, rSUM149 cells
were established by chronic exposure of parental SUM149 cells to increasing concentrations
of the lapatinib analog GW583340 (up to 20 μM) for >3 months. The rSUM149 cells are
routinely grown in the regular SUM149 media described above supplemented with 7.5 μM
GW583340. In order to generate the rrSUM149 cells (resistance reversal model), rSUM149
cells were transferred to regular SUM149 growth media without GW583340, and cells were
maintained in GW583340-free media for an extended period (~2 months) prior to use in this
study. Ham’s F-12 media and Hoechst-33342 dye was from Life Technologies (Grand
Island, NY). FBS was from Thermo Fisher Scientific (Hyclone Labs., Logan, UT). Insulin,
hydrocortisone, GW583340 and 3-[4, 5-dimethylthiazol-2yl]-2, 5 diphenyl tetrazolium
bromide (MTT) were from Sigma (St. Louis, MI).

2.2 Oncology drug library
The Approved Oncology Set II was obtained from the NCI-DTP (www.dtp.nci.nih.gov).
This set consists of 89 drugs provided in 96-well plate format (Supplemental Table S1) as 10
mM stock concentrations in DMSO. Compounds from this set were also resourced from
NCI-DTP as dry powders (5 mg) and dissolved in DMSO to give 10 mM stock
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concentrations for retesting. Compound plates are stored at −20°C. All drugs were registered
in ActivityBase (IDBS Inc., Guildford UK) with associated SD file data.

2.3 Dose response and intermediate drug plates
All drugs were serially diluted in DMSO in 384-well Greiner V-bottom polypropylene
plates (Greiner Bio-One, Monroe, NC). Briefly, a 10-point dose range was generated for
each compound from the Approved Oncology Drug Set II (10 mM stock concentration in
DMSO) by 2-fold serial dilution in 100% DMSO (5 μL final volume in each well) using a
Biomek® NX robotics workstation (Beckman Coulter Inc., Fullerton, CA) and P20 tips.
Each dose response plate contained 32 compounds in 10-point serial dilution and sufficient
volume to generate 8 replicate intermediate drug plates.

To generate intermediate drug plates, 0.5 μL of each compound serial dilution from a dose
response plate was spotted into columns 3 - 22 of dry Costar clear flat bottom 384-well
assay plates (Corning Corp., Corning, NY) using the Biomek® NX. Unless otherwise stated,
columns 1, 2, 23 and 24 were spotted with 0.5 μL of DMSO for use as controls. Unless
otherwise stated, 120 μL of Ham’s F-12 culture media was added to each well resulting in
10 final concentrations for each compound spanning 40 μM to 0.08 μM.

2.4 Automated qHTS cell proliferation assay
An automated method was used to measure cell proliferation by MTT [28] adapted from a
manual version of the assay previously described by us [29] in which cells were seeded into
a 96-well plates and all reagent additions made utilizing multichannel pipettors. For our
fully automated procedure, SUM149 or SUM190 cells were seeded at a density of 800 or
1000 cells per well respectively (40 μL) in columns 3-24 of clear 384-well tissue culture
plates using a Multidrop 384 (Thermo Fisher, Waltham, MA) bulk dispenser sterilized for
cell culture studies and cells allowed to adhere for 24 h. For qHTS drug screening studies,
media alone was added to columns 1 and 2 as minimum signal controls. All subsequent
aspiration or drug reagent addition steps were carried out using the Biomek NX workstation
which was equipped with a plate stacker, bar code reader, and wash station. Intermediate
dose response compound plates were generated separately as in Section 2.3 and then added
to the cell plates allowing dilution of compounds directly in 100% DMSO prior to adding
media and avoiding potential solubility issues with carrying out serial dilutions in aqueous
cell culture media. Culture medium was aspirated from the cell plates and the drugs from the
intermediate drug plate added (20 μL) to the cell plate. Cells were then incubated for a
further 72 h unless otherwise stated. To facilitate multiplexing of IBC cell lines, the same
cell culture media was used for the 72 h incubation of drugs with cells.

For our automated procedure, after treatment with drugs for 72 h, culture media was
aspirated using the Biomek NX and 8 μL MTT (5 mg/ml) added to each well using the
Biomek NX. Cells were incubated at 37°C for 4 h to allow formation of the colored
formazan product. The reagent was aspirated using the Biomek NX and 40 μl of DMSO was
added in each well using the Multidrop. Plates were incubated for a further 2 h and then
absorbance was read at 550 nm in a SpectraMax Plus 384 plate reader (Molecular Devices,
Sunnyvale, CA). Absorbance well data was saved in Microsoft Excel.

2.5 High content image cytometry assay
For high content analysis of cell counts, live/dead and morphology, SUM149 cells were
seeded at 200 cells per well (40 μL) in clear 384-well tissue culture plates using the
Multidrop 384 and cells allowed to adhere for 24 h. Dose response plates were generated as
described in Section 2.3. Compounds were then added from the dose response plates directly
to the cell plates using a Biomek NX equipped with a 384-well Pintool head with 50 nL pins
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(VP Scientific, San Diego, CA). Two 50 nL dips were used from the 10mM stock of drug
giving a top dose of 25 μM. The plates were incubated for a further 72 h. After the
incubation period, Hoechst-33342 dye was added using the Biomek NX to the cell plates to
a final concentration of 10 μg/ml to stain the nuclei using a protocol adapted from Abraham
et al. [30]. All cell plates were centrifuged at 800 rpm for 1 min and then entire wells were
imaged using a BD Pathway 855 high-content imaging system (BD Biosciences, San Jose,
CA) with an Olympus UPlanASpo 10X/0.40 objective lens. Entire-well image montages
were analyzed using a customized pipeline based on the open source CellProfiler® software
[31] to automatically identify all cells. The whole plate was imaged classifying nuclear
morphology (nuclei count, size and intensity). After tabulation using the CellProfiler
software, data is exported to a relational SQL database for data analysis.

2.6 Measurement of reactive oxygen species
Cells were cultured in 6-well plates (Corning) in regular growth media until reaching 70–
80% confluence and then treated with GW583340 for 24 h. Cells were harvested and
incubated for 30 min with dyes to detect reactive oxygen species (ROS) [10 μM
dihydroethidium (DHE) and 10 μM carboxy-H2-DCFDA, Molecular Probes, Carlsbad, CA].
Cells were washed twice with 1% BSA/PBS and analyzed for fluorescence by flow
cytometry. At least 25,000 events were collected on a FACScalibur flow cytometer
(Beckton Dickinson, Rockville, MD) and analyzed using FlowJo software (Tree Star, Inc.,
Ashland, OR). High fluorescence was calculated by setting a gate on the control cells where
the peak reached a minimum, and all experimental samples were compared to this control
gate.

2.7 Western immunoblotting
Western immunoblot analysis was conducted as described previously [24]. Cells were lysed,
run on a 10 or 4-20% gel (BioRad, Hercules, CA), and transferred to a PVDF membrane.
Membranes were incubated with primary antibodies against XIAP (BD Bioscience, San
Jose, CA), cIAP1, cIAP2, survivin, Smac, SOD2, AMPK, p-AMPK (Cell Signaling
Technologies, Danvers, MA), catalase (Abcam, Cambridge, MA), Bcl-2, actin, or
glyceraldehyde–3–phosphate dehydrogenase (GAPDH; Santa Cruz Biotechnology, Dallas,
TX), overnight at 4°C.

2.8 Data analysis
To calculate percent relative cell proliferation, absorbance (Abs) values from the MTT assay
were normalized using the in-plate vehicle (DMSO + cells, columns 23 and 24) and no cells
(columns 1 and 2) control wells for maximum and minimum signal calculations
respectively. For each drug concentration, percent inhibition values were calculated using
the following relationship: relative cell proliferation (%) = {1- [(Abs - Avgmin)/(Avgmax-
Avgmin)]} * 100. Where Abs is the compound well absorbance signal, and Avgmin and
Avgmax are the plate-averages of the minimum and maximum signal controls respectively.
IC50 (concentration of half-maximal inhibition) values determined using a four-parameter
dose-response (variable slope) equation in GraphPad Prism 5 (GraphPad Software, San
Diego, CA). Heat maps using percent inhibition values were generated in Microsoft Excel
using conditional formatting. For the high content Hoechst assay, nuclei count data was
normalized to in-plate controls and IC50 values determined in GraphPad Prism 5. Z’ factor
was calculated using the method of Zhang et al. [32].
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3. Results
3.1 Validation of automated proliferation assay

For efficacy drug profiling, we have adapted and validated in 384-multiwell format an
automated proliferation screen based on the MTT assay [28] utilizing our previously
described manual procedures [24; 33; 34]. The automated cell proliferation assay was first
optimized for cell number and DMSO tolerance. SUM149 cells have a relatively short
doubling time of 14 h [25], making them amenable to this type of profiling [6]. For SUM149
cells, a density of 800 cells per well for the 384-well format was chosen based on cell
titration experiments (Fig. 1A). Doubling times for the lapatinib-resistant (rSUM149) [25]
and lapatinib resistance reversal (rrSUM149) [26] isogenic SUM149-derived cell lines were
comparable, and so the same 800 cells per well seeding density was used for these isogenic
cell lines. For the slower growing SUM190 [24], a seeding density of 1000 cells per well
was used. As all drugs to be screened were dissolved in DMSO and then diluted into cells
with the highest concentration of DMSO cellular exposure being 0.8%, we assessed the
tolerance of the cell lines to DMSO and observed no loss of proliferation up to
concentrations of 0.8% DMSO for the three SUM149-derived cell lines (Fig. 1B) and the
SUM190 cell line (data not shown). To validate the proliferation assay for screening in dose
response, replicate dose response curves were performed using lapatinib over multiple
experiments with the results for SUM149 shown in Fig. 1C. These assays were highly
reproducible with an average IC50 value of 11.6 ± 1.06 μM for lapatinib on SUM149 cells
(Table 1). To assess the robustness and reproducibility of the assay, Z’-factors [32] were
calculated for two independent experiments and determination of the values as >0.5 indicate
an acceptable assay for HTS (Table 1).

Representative lapatinib dose response curves for the parental and isogenic SUM149 and the
SUM190 cell lines are shown in Fig. 1D, giving the expected lapatinib sensitivity profile for
the parental and lapatinib-resistant cells comparable to previous reports [23; 24; 25; 26].
Further, the lapatinib efficacy data in rrSUM149 demonstrate that maintenance of the
lapatinib-resistant rSUM149 cells for an extended period of time in lapatinib-free media
causes reversal of lapatinib resistance.

3.2 qHTS of NCI approved oncology drug library: identification of potent drugs with
efficacy on SUM149 and SUM190 cells

We first assessed the sensitivity of the parental SUM149 and SUM190 cells to the 89 drugs
in the NCI Approved Oncology set. Drugs in this set include both chemo- and targeted
therapeutics. Based on literature [6; 9; 35; 36; 37; 38], we grouped the drug Set into 12 drug
classes (Supplemental Table 2), including antimetabolites, alkylating agents, antineoplastic
antibiotics, platinum-based agents, alkaloids, taxanes, and kinase inhibitors; mechanism of
action was included if known. For our qHTS format, cells were incubated with the drugs in
10-point dose response for 72 h under standard culture conditions, and effects on cell
proliferation assessed by an automated MTT assay. Dose response curves were generated,
and IC50 values determined.

This qHTS strategy was first used to identify potent drugs that consistently demonstrated
IC50 values <15 μM for inhibition of proliferation in SUM149 (Table 2) and SUM190
(Table 3). The heat map profile for the dose response of the top 15 drugs on SUM149 is
shown in Fig. 2A. To generate the heat map, proliferation data was normalized to in-plate
controls. In addition to lapatinib, the 15 top drugs included antimetabolites, antineoplastic
antibiotics, anthracyclines, kinase inhibitors, an HDAC inhibitor, and a proteasome inhibitor
(Fig. 2A, Table 2). A representative proliferation heat map profile of the complete 89 drug
set screened in dose response against the SUM149 cells is shown in Fig. 3A. Dose response
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data in the heat map was grouped based on the drug classes/mechanism of action (from
supplemental 2). Data from the heat map profile of all 89 drugs on SUM149 cells (Fig. 3A),
reveals that alkylating (Fig. 3A, group 6) and platinum-based agents (Fig. 3A, group 8) were
generally ineffective at reducing SUM149 proliferation. Although not in the top 15 drugs for
SUM149 cells, gemcitabine, the vinca alkaloids and mTOR inhibitors rapamycin and
everolimus also demonstrated modest micromolar activity. A representative heat map profile
for all 89 drugs also tested in SUM190 cells is shown in Fig. 4. From a comparison of the
top drugs (Tables 2 and 3) and heat map profiles (Fig. 3A and Fig. 4), SUM190 cells were
generally less sensitive to this set of drugs when compared to SUM149, with the more
potent drugs that act on both cell lines having ~10-fold lower potency in SUM190 cells.

3.3 Confirmation of oncology drugs identified as having anti-proliferative activity
A number of approaches were undertaken to confirm the fifteen anti-cancer drugs identified
from our primary qHTS. Chemical interference by reducing compounds with tetrazolium
substrates has been reported ([39; 40] and references therein), resulting in the potential for
false positives. To rule out that the 15 drugs we identified as reducing SUM149 proliferation
were not directly interfering with MTT formation, parallel cell-free screens were carried out,
and in these we did not observe any conversion to a colored product (data not shown).

Compounds stored in DMSO can be subject to degradation, especially if they undergo
multiple freeze-thaw cycles. Hence, the approved oncology drugs were resourced from the
NCI-DTP as dry powders, fresh 10 mM drug stocks prepared in 100% DMSO, and the drugs
retested in the confirmation MTT assay (Table 2). In general, IC50 values were comparable
(<3-fold difference) between the primary qHTS MTT using the original DMSO drug plates
from NCI-DTP and the confirmation MTT assay using dry powders resourced from NCI-
DTP. One exception was bleomycin, with a ~15-fold more potent IC50 value observed from
the resourced dry powder, suggesting that the concentration in the DMSO plate may have
been significantly less than the supposed 10 mM stock value whether due to changes in
solubility or stability.

In the primary qHTS screens, four compounds including doxorubicin, bortezomib,
dactinomycin and plicamycin inhibited proliferation of SUM149 cells at all concentrations
tested (Fig. 2A). For the confirmation MTT assay, we retested these drugs over an extensive
20-point dose response range so as to observe full dose response curves (Fig. 2B) and
determine IC50 values (Table 2). Dactinomycin, plicamycin and bortezomib all had IC50
values in the 20-30 nM range and doxorubicin had an IC50 value of 700 nM. Together, these
studies confirmed and strengthened our previous findings from the qHTS system.

3.4 Secondary screen for drugs
As another assessment of the qHTS data, we also screened the 15 top drugs in an alternative
secondary assay using high-content imaging of nuclear count following Hoechst staining
[30; 41] as an alternative measure of cell proliferation [30]. Dose response data in Fig. 2C
and Table 2 show comparable potencies for the drugs in both assay formats, thus confirming
our initial qHTS screening results.

3.5 Lapatinib-resistant IBC cells are cross-resistant to multiple oncology drugs and regain
sensitivity in the resistance reversal model

We then sought to profile the drug panel in the resistant rSUM149 and in a resistance
reversal (rrSUM149) cell line. rrSUM149 is a unique isogenic cell line which was generated
by removing lapatinib from the rSUM149 culture conditions for a period of >2 months,
which allowed for selection of a population of cells that were resensitized to lapatinib
treatment (resistance reversal model). A comparative profile for all 89 drugs on parental
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SUM149 and the two isogenic cell lines rSUM149 and rrSUM149 is shown in heat map
format in Fig. 3.

We first assessed how the 15 compounds identified as having efficacy on the parental
SUM149 cells (Table 2, Fig. 3A) profiled on the resistant rSUM149 and resistance-reversal
rrSUM149 cells (Fig. 3B and 3C). Table 4 lists the most potent drugs identified from the
NCI-DTP oncology set affecting proliferation of SUM149 cells and the corresponding IC50
values in the rSUM149 and rrSUM149 cells. The five compounds that we previously
identified as inhibiting proliferation in SUM149 cells at all the qHTS concentrations tested
(doxorubicin, bortezomib, dactinomycin, plicamycin and daunorubicin) were as effective on
the rSUM149 and rrSUM149 cells (Table 4, Fig. 5A). In addition to those drugs, fludarabine
and vorinostat were highly potent even in the acquired resistance model as well (Table 4).

Compared to the parental lapatinib-sensitive SUM149 cells, the lapatinib-resistant rSUM149
cells were also cross-resistant to multiple targeted- and chemo-therapeutic agents amongst
the top 15 potent drugs identified in SUM149 and some other lower potency drugs. These
were predominantly drugs from four of the classes (highlighted by bracket in Fig. 3),
including the taxanes (Fig. 3, group 1), a subset of the kinase inhibitors (group 2), vinca
alkaloids (group 3), and anti-aromatases (group 4). Several drugs showed shifts in their IC50
values from the parental to resistant SUM149 cells. From the initial top 15 drugs identified
for efficacy in parental SUM149 cells, RTK inhibitors, capecitabine, mitomycin,
mitoxantrone and bleomycin showed dramatically reduced potencies in rSUM149 in
addition to previously published lapatinib resistance (Table 4, Fig. 5B and 5C).

Interestingly, the data in Table 4 and Figure 5B heat maps show that the rrSUM149 regained
sensitivity and potency comparable to the parental SUM149 cells for not only lapatinib, but
also for other targeted- and chemo-therapy agents in the top 15 panel (Fig. 5C).

Comparative efficacy profiling of the approved oncology drug set in SUM149 parental and
isogenic models of acquired resistance and re-sensitization demonstrates that lapatinib-
resistant IBC cells are cross-resistant to multiple oncology drugs.

3.6 Mechanism of resistance reversal in the rrSUM149 cell line
To further characterize the resistance reversal model and understand their cross-
resensitization, we compared the rrSUM149 cells to rSUM149 and SUM149 cells using
several important factors associated with acquired resistance in the rSUM149 model.
Measurement of cytoplasmic superoxides and hydrogen peroxide-derived radicals at two
different time points during the generation of the resistance reversal model showed that after
one month of growth in GW583340 (research grade lapatinib analog)-free media, the
rrSUM149 cells (Fig. 6A and 6B respectively, “one month” gray bars) remained insensitive
to lapatinib-induced accumulation of ROS, similar to the rSUM149 model (Fig. 6A and 6B,
black bars) which is growing in lapatinib. However, following two months of growth in
lapatinib-free media, the rrSUM149 cells (Fig. 6A and 6B, “two months” gray bars) had
regained their ability to accumulate ROS at levels similar to the parental SUM149 cells (Fig.
6A and 6B respectively, white bars) following challenge with lapatinib.

We previously showed that SUM149 cells treated with lapatinib have increased
phosphorylation of 5–AMP-activated protein kinase (AMPK), a marker of oxidative stress,
but that rSUM149 cells, which are growing in lapatinib, show no increased p-AMPK
compared to SUM149 cells, indicating a partial loss of stress responsive signaling to
lapatinib [26]. Thus, we were interested to examine the phosphorylation status of AMPK in
the resistant reversal cell line rrSUM149 following lapatinib treatment. Following one
month of growth in lapatinib-free media, at which time the cells had not displayed any
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evidence of resistance reversal, the cells displayed very minimal increase in p-AMPK levels
in response to lapatinib treatment (Fig. 6C, Month One). However, after two months of
growth in lapatinib-free media, there was an approximately two-fold increase in AMPK
phosphorylation in the rrSUM149 cells following lapatinib treatment, indicating that the
cells are undergoing significant oxidative stress (Fig. 6C, Month Two).

Acquired resistance in rSUM149 was previously correlated with upregulation of XIAP
compared to parental SUM149 cells [25]. To further investigate the mechanisms behind the
reversal of resistance in rrSUM149 cells, we investigated the levels of XIAP as well as
several other anti-apoptotic proteins and Smac/DIABLO, a negative regulator of XIAP, in
the panel of SUM149, rSUM149, and rrSUM149. Data in Fig. 6D show that expression of
XIAP was upregulated approximately two-fold in rSUM149, similar to previous results, and
interestingly, XIAP expression in the rrSUM149 cells was reduced to levels comparable to
the parental SUM149 cells. Additionally, cIAP1 and Bcl-2 were both increased to some
degree in rSUM149 cells, further supporting their high degree of apoptotic dysregulation.
cIAP2 and survivin levels were unchanged in rSUM149 cells compared to SUM149, but
there was a decrease in all anti-apoptotic proteins examined in the rrSUM149 cells, either
returning to parental SUM149 levels or in some cases even lower (cIAP1/2, survivin).
Levels of Smac/DIABLO were unchanged across the panel of cell lines.

As there is a distinct difference in ROS accumulation across the cell lines (Fig. 6A and 6B)
and we have previously reported increased antioxidant expression in the rSUM149 cell line
[26], we examined the expression of SOD2 and catalase, two important intracellular
antioxidants. Catalase expression did not show any significant changes across the cell lines
(Fig. 6E). In contrast, SOD2 expression was significantly upregulated in the rSUM149 cells,
and expression was markedly decreased in the rrSUM149 resistance reversal model (Fig.
6E).

Together, these data indicate that rrSUM149 cells are more susceptible to ROS-mediated
cell death than the rSUM149 cells.

4. Discussion
IBC is characterized by rapid progression from onset of disease, therefore an early and
aggressive multimodal therapy is essential to improve outcome. IBC tumors are frequently
ErbB2- and EGFR-positive, and the use of trastuzumab in combination with lapatinib has
seen clinical success; however, de novo and acquired resistance to these agents due to
interplay between different members of the ErbB family is a significant challenge. In
addition, it is well recognized that there is a paucity of IBC cellular models. In the present
study we have characterized a novel isogenic-derived progression model of drug resistance
and reversal. A set of IBC cell lines (SUM149, rSUM149, rrSUM149 and SUM190)
representing either basal type or HER2 overexpression were profiled in a qHTS format to
identify approved drugs from the NCI-DTP 89 approved oncology drug panel that can act as
potent inhibitors of IBC cell proliferation.

High throughput profiling approaches have utilized a range of phenotypic endpoints such as
cytotoxicity, viability [9], survival [42], growth inhibition [2], and proliferation [8]. We
chose to use the MTT cell proliferation assay as the basis for the high throughput assay due
to its ease of automation, widespread use, and economical cost per well. Cell-based high
throughput assays screening compounds at single dose are typically highly variable and can
be prone to high false positive rates. To reduce this possibility, we chose to screen a dose
response of all compounds in the primary assay. Screening compounds in dose response
allowed us to minimize the false-positive and false-negative rates typically observed when
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screening compounds in a cell-based assay at a single concentration [43]. Further, we used
an alternative secondary assay based on bioimaging of Hoechst stained cells as an
orthogonal measure of cell proliferation [30; 41], and observed significant agreement
between both assay formats for inhibition values. Using this qHTS approach, we were able
to rapidly identify and confirm a subset of drugs with efficacy in these models.

From our profiling efforts we have identified drug classes including antimetabolites,
antineoplastic antibiotics, anthracyclines, and a subset of kinase inhibitors to be potent in the
SUM149 cell line, a well-established model of basal type, EGFR-activated IBC [44; 45; 46;
47; 48]. In the ErbB2 overexpression SUM190 model, the top chemotherapeutics included
dactinomycin, doxorubicin, plicamycin and daunorubicin. Anthracyclines such as
doxorubicin are recommended for initial treatment of IBC patients [14]. SUM190 cells were
relatively less sensitive to the panel when compared to SUM149, with those drugs that act
on both cell lines having ~10-fold lower potency on SUM190 cells. It is known that
SUM190 cells proliferate at a much slower rate than the SUM149 cells (doubling times of
approximately 42 and 14-21 hours respectively) [49], which would make them inherently
less sensitive towards chemotherapeutic agents that target dividing cells such as the anti-
metabolites, alkylating agents, and topoisomerase inhibitors.

Additionally, we showed previously that XIAP, a chemoresistance factor, is an important
determinant of lapatinib sensitivity in SUM190 and SUM149 cells [25], and that XIAP
determined TRAIL sensitivity, with targeting of XIAP by the small molecule inhibitor
embelin or shRNA increasing the sensitivity of rSUM149 cells to TRAIL-induced apoptosis
[23]. Unpublished data from the same studies showed that SUM190, which expresses XIAP
at higher levels than SUM149 [24; 25], was highly resistant to TRAIL treatment, mimicking
its relative insensitivity to the drugs in this study compared to the SUM149-derived lines.
Similarly, Foster et al. [50] also showed that depletion of XIAP could overcome intrinsic
TRAIL resistance in two breast cancer lines BT20 and MDA-MB-468. Others have also
shown that XIAP can function as a chemoresistance factor for gemcitabine [51; 52],
cisplatin [53; 54], 5- fluorouracil [51], mitomycin C [54], and docetaxel [55] in a variety of
cancers. Thus, our data here support XIAP’s role as an important therapeutic resistance
factor which could contribute to the relative insensitivity of SUM190 cells observed in this
study.

A subset of the drugs tested were highly potent even in the acquired lapatinib-resistant
rSUM149 cell model and included dactinomycin, plicamycin, bortezomib, doxorubicin,
daunorubucin, fludarabine and vorinostat. Table 5 summarizes those drugs showing efficacy
on the resistant SUM149 cells along with corresponding mechanism of action. In contrast,
rSUM149 cells showed cross-resistance to a number of the drugs previously shown to act on
the parental cells, including RTK inhibitors (sorafenib, sunitinib and gefitinib), capecitabine,
mitoxantrone, and bleomycin. Our results profiling oncology drugs on parental and resistant
SUM149 cells suggests a mechanism of lapatinib-induced acquired resistance whereby the
cells become cross-resistant to other tyrosine kinase inhibitors.

The present study shows that long term removal of lapatinib, the primary drug against which
resistance was developed in rSUM149 cells, led to isolation of a population of cells
(rrSUM149) that are resensitized to multiple drugs (sorafenib, sunitinib, gefitinib,
capecitabine, mitoxantrone and bleomycin, Fig. 5C), behaving in a manner comparable to
the parental SUM149 cell line. Resensitization was accompanied by a decrease in expression
of anti-apoptotic proteins including XIAP, cIAP1, cIAP2, survivin, and Bcl-2 (Fig. 6D) as
well as the antioxidant SOD2 (Fig. 6E) and increased ROS accumulating abilities (Fig. 6A
and 6B).
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Additionally, the rrSUM149 cells regained the ability to activate AMPK, a cellular
metabolic regulator that also acts as a sensor for oxidative stress [56], in response to
lapatinib. Thus, the mechanistic phenotype of redox adaptation in the rSUM149 cells (Fig.
7) supports our current observations of cross-resistance to multiple drugs, which is also
commonly seen in patients; further, decreases in survival factors and antioxidant
mechanisms restored ROS accumulating capabilities in the rrSUM149 cell line, resulting in
resensitization of the cells to a wide variety of treatments (Fig. 7).

From these studies, it appears that non-mutational mechanism(s) involving the engagement
of pro-survival pathways and redox adaption play a role in the observed acquired resistance
to lapatinib and concomitant cross-resistance to other drugs. The reversibility of this state
back to a re-sensitized state after removal of drug is intriguing mechanistically. Recently the
idea of a drug-tolerant sub-population of cells (persisters) termed DTPs has been proposed
from other observations of acquired drug resistance [57]. The suggestion is that within a
heterogeneous cell population there exists a subpopulation of reversibly drug tolerant cells
that are dormant until dosed with high concentrations of drugs, after which a subset of DTPS
tolerate growing in the presence of drug indefinitely giving rise to drug-tolerant expanded
persisters (DTEPs) [57] – perhaps analogous to the rSUM149 cells in our isogenic model.
There is some evidence that these drug tolerant clones exist de novo and may share some
properties with cancer stem cells [57]. SUM149 cells show significant ALDH positivity [58;
59; 60], a characteristic associated with cancer stem cells, and thus may also contain a
subpopulation of DTPs. Hence, it may be possible to eliminate the emergence of drug-
tolerant cells in our SUM149 isogenic model by treatment of the parental cells with lapatinib
in combination with other drugs targeting the adaptive mechanisms described here. These
results strengthen the need for novel strategies to modulate cellular redox to prevent and
overcome drug resistance in IBC.

In conclusion, we report the first description of drug efficacy profiles in IBC cells with
differential phenotypes by screening approved drugs that can act as potent inhibitors of IBC
cell proliferation. These studies have the potential to identify combinations and facilitate
their inclusion in clinical trials immediately. Our findings in addition to the currently
available database of IBC gene signatures facilitate a significant step toward better treatment
protocols for IBC, even if potential side effects and dosing regimens still need to be
identified for combination strategies.
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Fig. 1.
Optimization and validation of 384-well format proliferation assay. SUM149 cells were
seeded in 384 well plates and the MTT assay was carried out after 72 h as described in
Material and Methods. (A) Cell number titration. SUM149 cells were seeded at the indicated
cell numbers. Data from triplicate samples. (B) DMSO tolerance. Cells were seeded (800
cells/well) with the indicated concentration of DMSO included in the media and MTT assay
carried out for 72 h. For these experiments, in plate controls for minimum signal (Avgmin) in
columns 1-2 were no cells and no DMSO and for maximum signal (Avgmax) in columns
23-24 were +cells and no DMSO. The relative proliferation (%) was calculated using the
same relationship as in Materials and Methods. Mean and SD based on a minimum of three
independent experiments. (C) Sixteen replicate 10-point dose response curves for lapatinib.
SUM149 cells (800 cells/well) were incubated with the indicated concentrations of lapatinib
for 72 h. (D) Representative qHTS dose response curves for lapatinib on parental SUM149,
isogenic rSUM149, rrSUM149 and SUM190 cells. Data was analyzed in GraphPad Prism
5.0.
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Fig. 2.
Identification of top oncology drugs affecting proliferation of SUM149 cells. (A) Heat map
profile for proliferation inhibitory effects of the top 15 drugs from the NCI approved
oncology set on parental SUM149 cells. SUM149 cells were incubated with drugs in dose
response as a 10-point two-fold dilution series for 72 h and cell proliferation assessed by
MTT assay as described in Materials and Methods. For each concentration, percent
inhibition values were calculated and data normalized to vehicle and no cell control wells.
The heat map key indicates red for 100% inhibition through to green for 0% inhibition. Data
from a representative qHTS experiment is shown. (B) 20-point dose response curves for four
most potent drugs. Data from duplicate samples. (C) High content Hoechst staining assay for

Williams et al. Page 17

Cancer Lett. Author manuscript; available in PMC 2014 August 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



nuclei count. Nuclei count data was normalized and dose response curves for top 15 drugs
on SUM149 cells generated by non-linear regression using GraphPad Prism 5.
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Fig. 3.
Comparative efficacy profiling of the 89 oncology drugs against the parental SUM149 and
isogenic rSUM149 and rrSUM149 cells. Heat map profile for proliferation inhibitory effects
of the NCI approved oncology set. SUM149 (A), rSUM149 (B) and rrSUM149 (C). Cells
were incubated with drugs in dose response as a 10-point two-fold dilution series for 72 h
and cell proliferation assessed by MTT assay as described in Materials and Methods. Each
row represents dose response data for a single drug. For each concentration, percent
inhibition values were calculated and data normalized to vehicle and no cell control wells.
The heat map key indicates red for 100% inhibition through to green for 0% inhibition.
Outlier values are shown as grey. Drug names are listed on the vertical axis and grouped for
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drug class as detailed in Supplemental Table 2. A representative experiment is shown. Each
cell line was profiled versus the NCI Oncology set for a minimum of two independent
screens. Dose response curves were generated using GraphPad Prism 5.0.
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Fig. 4.
Efficacy profiling of the 89 oncology drugs against the SUM190 cells. SUM190 cells (1000
cells per well) were incubated with drugs in dose response as a 10-point two-fold dilution
series for 72h and cell proliferation assessed by MTT assay as described in Materials and
Methods. Each row represents dose response data for a single drug. For each concentration,
percent inhibition values were calculated and data normalized to vehicle and no cell control
wells. The heat map key indicates red for 100% inhibition through to green for 0%
inhibition. Drugs are listed in plating order and a representative experiment is shown. Cells
were profiled versus the NCI Oncology set for a minimum of two independent screens.
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Fig. 5.
Lapatinib-resistant IBC cells are cross-resistant to multiple oncology drugs. (A) Heat map
proliferation profile of five most potent drugs identified for SUM149 and corresponding
profile on rSUM149 and rrSUM149 cells. (B) Comparative heat map proliferation profile of
tyrosine kinase drugs on parental SUM149 and isogenic rSUM149 and rrSUM149 cells. (C)
Comparative IC50 values for drugs demonstrating cross-resistance and cross-resensitization.
Mean (bars) and SD (error bars) with IC50 values determined using GraphPad Prism 5.0.
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Fig. 6.
Reversal of resistance in rrSUM149 is mediated by enhanced sensitivity toward ROS-
mediated cell death. (A) Cytoplasmic superoxides as measured by flow cytometric staining
with DHE of (left to right) SUM149 parental cells (white bars) untreated and treated with
7.5 μM lapatinib, rSUM149 cells (black bars) growing in 7.5 μM lapatinib, and rrSUM149
cells following removal of drug for one or two months (gray bars) treated with 7.5 μM
lapatinib. (B) Hydrogen peroxide-derived radicals as measured by flow cytometric staining
with H2DCFDA in SUM149 parental cells (white bars) untreated and treated with 7.5 μM
lapatinib, rSUM149 cells (black bars) growing in 7.5 μM lapatinib, and rrSUM149 cells
following removal of drug for one or two months (gray bars) treated with 7.5 μM lapatinib.
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(C) Western immunoblot analysis of AMPK expression and phosphorylation in rrSUM149
cells treated with 7.5 μM lapatinib following one or two months of growth in lapatinib-free
media. (D) Western immunoblot analysis of basal XIAP, cIAP1, cIAP2, survivin, Bcl-2, and
Smac expression in untreated SUM149, rSUM149, and rrSUM149 cells. GAPDH was used
as a loading control. (E) Western immunoblot analysis of basal catalase and SOD2
expression in untreated SUM149, rSUM149, and rrSUM149 cells. GAPDH and β-actin
were used as loading controls.
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Fig. 7.
Schematic representation of drug sensitivity and tolerance in SUM149-derived models.
Cancer cells have inherently high levels of ROS due to oncogenic signals and altered
metabolism compared to normal cells. Presence of therapeutic insults/cellular stress can
cause further increase in ROS, which in the absence of adaptive mechanism is associated
with drug sensitivity and induction of cell death (SUM149). However, chronic stress leads to
redox adaptive mechanisms such as increases in survival factors and antioxidants/ROS
scavenging systems. These cells can suppress therapy-mediated ROS induction and/or
rapidly clear ROS, which selects for a phenotypically distinct drug tolerant subpopulation of
cells (rSUM149) that are drug tolerant due to their ROS protective mechanisms and
contributes to multidrug resistance. Drug tolerance in this population of cells can be
reversed by removal of the therapeutic stress for an extended period; loss of their redox
adaptive mechanisms renders the resistant reversal cells (rrSUM149) highly therapy-
sensitive.
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Table 1

Assay validation statistics.

Expt. Lapatinib
IC50 ± SD (μM)

Z’-factor

1 11.5 ± 1.06 0.53

2 11.7 ± 1.26 0.53

IC50 value determination was performed on 16 replicates for SUM149 cells in two independent experiments.
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Table 2

IC50 values for oncology drugs tested on SUM149 cells in qHTS and confirmation MTT and Hoechst assays.

qHTS MTTa IC50
(μM)

Confirmation
MTTb IC50

(μM)

Hoechstc IC50
(μM)

Drug classd

Dactinomycin <0.02 0.027 <0.02 Antineoplastic
antibiotic

Plicamycin <0.02 0.028 0.12 r Antineoplastic
antibiotic

Bortezomib <0.02 0.029 <0.02 Proteosome
inhibitor

Doxorubicin <0.02 0.70 <0.05 Anthracycline

Daunorubicin <0.02 0.25 0.04 Anthracycline

Fludarabine 2.1 ± 1.1 0.48 0.45 Antimetabolite

Mitoxantrone 2.5 ± 0.6 3.08 0.20 Anthracenedione
antineoplastic

antibiotic

Sorafenib 4.5 ± 0.4 3.93 8.69 Kinase inhibitor

Sunitinib 5.0 ± 0.8 5.55 6.10 Kinase inhibitor

Gefitinib 6.2 ± 2.3 7.27 14.10 Kinase inhibitor

Vorinostat 8.9 ± 4.9 2.44 2.02 HDAC inhibitor

Lapatinib 9.0 ± 0.3 10.85 6.73 Kinase inhibitor

Mitomycin 9.1 ± 0.4 1.61 0.53 Antineoplastic
antibiotic

Bleomycin 13.8 ± 2.0 0.82 0.30 Antineoplastic
antibiotic

Capecitabine 15.0 ± 9.5 17.51 >20 Antimetabolite

aIC50 values derived from qHTS screen of complete approved oncology drug set (89 drugs originally obtained from NCI DTP in plate format).

Average and SD values derived from minimum of three independent experiments. The approved oncology drugs were resourced from the NCI DTP

as dry powders and retested in MTTb and Hoechstc assays as described in Materials and Methods. dSee supplementary Table 2 for full listing of
drug class and mechanism of action for the approved oncology drug set.
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Table 3

IC50 values for oncology drugs tested on SUM190 cells in qHTS.

qHTS MTT IC50
(μM)

Drug class

Dactinomycin 0.2 Antineoplastic
antibiotic

Doxorubicin 0.26 Anthracycline

Plicamycin 0.42 Antineoplastic
antibiotic

Daunorubicin 0.47 Anthracycline

Fludarabine 0.9 Antimetabolite

Mitomycin 1.6 Antineoplastic
antibiotic

Sorafenib 3.5 Kinase inhibitor

Lapatinib 6.1 Kinase inhibitor
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Table 4

MTT assay IC50 values derived for qHTS screen data for oncology drugs on parental and isogenic SUM149
cells.

Primary IC50 ± SD (μM)

SUM149 rSUM149 rrSUM149

Fludarabine 2.1 ± 1.1 1.7 ± 0.8 1.4 ± 0.9

Mitoxantrone 2.5 ± 0.6 11.4 ± 1.3 3.8 ± 3.4

Sorafenib 4.5 ± 0.4 14.6 ± 3.1 78 ± 16

Sunitinib 5.0 ± 0.8 >25 7.05 ± 6.3

Gefitinib 6.2 ± 2.3 >50 28

Vorinostat 8.9 ± 4.9 6.2 ± 0.6 2.75 ± 2.1

Lapatinib 9.0 ± 0.3 >50 9.1

Mitomycin 9.1 ± 0.4 18.5 ± 0.8 6.2 ± 0.4

Bleomycin 13.8 ± 2.0 >50 9.5

Capecitabine 15.0 ± 9.5 >50 26 ± 1.4

Doxorubicin, bortezomib, dactinomycin, plicamycin and daunorubicin all had IC50 values <0.2 μM on all three isogenic cell lines.
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Table 5

Top Drugs from NCI Approved Oncology Set with efficacy on lapatinib-resistant rSUM149 cells

Drug Name Type Mechanism of action

Dactinomycin Chromopeptide
antineoplastic antibiotic

Intercalates DNA; causes single-
strand DNA breaks, possibly via
a free-radical intermediate or an
interaction with topoisomerase II.

Plicamycin Antibiotic Intercalates DNA

Bortezomib Dipeptide boronic acid
analogue

Proteasome inhibitor

Doxorubicin Anthracycline Intercalates DNA; inhibits
topoisomerase II; forms oxygen
free radicals

Daunorubicin Anthracycline Inhibits topoisomerase II

Fludarabine Fluorinated nucleotide
antimetabolite analog

DNA synthesis inhibitor

Vorinostat Synthetic hydroxamic
acid

HDAC inhibitor

Mitoxantrone Anthracenedione
antibiotic

Intercalates DNA; inhibits
topoisomerase II;

Mitomycin C Antineoplastic
antibiotic

Generates oxygen radicals,
alkylates DNA, and produces
interstrand DNA cross-links
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