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Abstract

Histone modifications are known to play an important role in the regulation of transcription. While individual modifications
have received much attention in genome-wide analyses, little is known about their relationships. Some authors have built
Bayesian networks of modifications, however most often they have used discretized data, and relied on unrealistic
assumptions such as the absence of feedback mechanisms or hidden confounding factors. Here, we propose to infer
undirected networks based on partial correlations between histone modifications. Within the partial correlation framework,
correlations among two variables are controlled for associations induced by the other variables. Partial correlation networks
thus focus on direct associations of histone modifications. We apply this methodology to data in CD4+ cells. The resulting
network is well supported by common knowledge. When pairs of modifications show a large difference between their
correlation and their partial correlation, a potential confounding factor is identified and provided as explanation. Data from
different cell types (IMR90, H1) is also exploited in the analysis to assess the stability of the networks. The results are
remarkably similar across cell types. Based on this observation, the networks from the three cell types are integrated into a
consensus network to increase robustness. The data and the results discussed in the manuscript can be found, together
with code, on http://spcn.molgen.mpg.de/index.html.
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Introduction

The study of gene regulation is traditionally based on DNA

sequence analysis, gene interactions and transcription factor

binding events. It has however over the past decade been

revolutionized by genome-wide maps of epigenetic marks,

specifically DNA methylation and histone modifications. Histone

modifications are post-translational modifications of the histone

proteins which form nucleosomes by wrapping about 147 base

pairs of DNA. These modifications can have effects on biological

processes including transcription, DNA repair, splicing, dosage

compensation and more [1,2], either by altering the chromatin

structure or by recruiting key proteins [1]. The observation of

different histone modifications co-occurring in different contexts

has raised the possibility of combinatorial effects and has led to the

histone code hypothesis [3], whereby combinations of histone

modifications have a biological meaning and lead to distinct

downstream effects.

In particular, there has been much evidence for a strong role of

histone modifications in the regulation of gene expression [4,5],

not only at promoters and enhancers, but also along the gene

body. Many authors have contributed genome-wide pattern

analyses of modifications around regulatory regions [6–10]. For

example, it has been found that acetylation marks generally co-

occur with active genes, whereas methylation marks can be

associated with active genes or repressed genes, depending on the

modified residue. Histone modifications can be clustered accord-

ing to their average level around promoters into two groups, one

group containing active marks and the other repressive marks [7].

Ernst et al. [9] used hidden Markov models to extract genome-wide

epigenetic states, many of which can be thought of as character-

izing the transcriptional process at various positions along the gene

body, or different kinds of enhancers, or splicing or heterochro-

matin, etc. Although it is still unclear whether they are causes or

effects of transcription, these observations clearly demonstrate a

connection between different combinations of histone marks and

different transcription states. For instance, it is well established that

promoters carry H3K4me3 and/or H3K27me3 and that actively

transcribed genes carry H3K36me3 [11], whereas enhancers are

marked by H3K4me1 and H3K27ac [11,12]. Histone modifica-

tions have even been successfully used to determine the presence of

regulatory elements such as promoters or enhancers [11,13–17].

Beyond these qualitative findings, a remarkable quantitative

relationship with mRNA expression levels has been demonstrated

in [18]. However, so far all of these studies deal with co-

occurrence but do not provide insights about associations between

histone modifications.

In this article, we are interested in building networks of histone

modifications. This is a problem that benefits from relatively few

variables (histone modifications) and many samples (genomic

regions of interest), allowing the use of rigorous statistical methods.

In such networks, nodes represent histone modifications, and

edges connections between them. The nature of these connections

depends on the construction method used to obtain the network.
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Other authors, again particularly in the context of promoters,

could capture associations using Bayesian networks (BNs) of

histone modifications [19–23]. They aimed at establishing causal

links: which modifications are required for the presence of another

one. However claims about causality in BNs are controversial [24–

27], especially in the presence of hidden confounding factors,

which occur quite frequently in biological systems. Additionally,

BNs do not allow cycles or feedback mechanisms, which seems

unrealistic in biological systems.

The ChIP-seq data currently available represents a summary of

the epigenome, averaged over many cells. For each histone

modification, the read counts represent the average frequency at

which it is found in the population of cells. This has three main

implications for the interpretation of the edges. Firstly, it is very

hard to make any claims about causality, as temporal information

is missing. Secondly, discretization of the read counts is less

plausible. Even if a histone modification is either present or absent

at a specific region in a specific cell, the read counts represent the

average over many cells, and discretizing these averages is no

longer meaningful. Thirdly, given that only an average picture is

available, it can safely be assumed that various states will be

represented in the data and will appear in the network. Being in

one particular state will mean highlighting relevant associations

and downplaying others, but all associations will be present in the

same network. In a way, we expect to infer the wiring of the circuit

as opposed to the flow in the circuit, i.e. the statics as opposed to

the dynamics. Edges can reflect co-occurence, mutual exclusivity,

or they can mean that two modifications occur sequentially as part

of the same pathway. We cannot distinguish between these

scenarios with the data at hand.

An observed correlation between two variables may either

reflect a direct association or an induced association that may be

due to a mutual association with a third variable. For example, if

the lack of sports generates both a drop in fitness and a bad mood,

a correlation between the variables fitness and mood will be

observed when, actually, they are only connected through the

variable sports and do not interact otherwise. The third variable

(here sports) is often referred to as confounding factor.

Confounding factors, which can be accountable for part of the

associations between other variables, are often presented as a

nuisance - experimental techniques for instance may lead to biases

that are undesirable confounding factors - however they need not

be. For example, expression level is a confounding factor of great

interest. In any case, looking at how apparent associations may be

explained away can be very insightful.

Let us suppose we have two variables of interest X and Y . The

correlation coefficient is a powerful tool but it cannot distinguish

direct associations from those due to confounding factors. The

partial correlation coefficient was designed to remedy that very

problem [28]. The idea is to subtract from X and Y the

information contained in a control group of variables Z by linearly

regressing X (resp. Y ) against Z, and to keep the residuals XZ

(resp. YZ ). We then compute the correlation between XZ and YZ .

This correlation is called a partial correlation, written

Cor X ,Y Zjð Þ~Cor XZ,YZð Þ and is a measure of the correlation

between X and Y that remains after the explanatory power of Z is

taken out.

Let us assume we have a set of D variables X~ X1,:::,XDf g, and

we compute the correlation matrix C such that Cij~Cor Xi,Xj

� �
.

Let P denote the partial correlation matrix (PCM) that contains

the pairwise partial correlations, each using as control the

remaining variables, i.e. the matrix such that

Pij~Cor Xi,Xj X \fXi,Xjg
��� �

. Note that, in this framework, each

variable in turn is treated as a confounding factor, regardless of its

expected biological relevance. A property of partial correlations is

that P may be obtained by simply inverting, normalizing and

negating the correlation matrix C [29–32]. This procedure, that

we will use throughout the study, is a very fast alternative to the

linear regressions. It also shows the involvement of all variables in

the computation of Pij through the inversion step, as opposed to

Cij that is only computed on Xi and Xj .

It is common practice to recover the undirected network

connecting these D variables by simply building a fully

connected network and by removing all edges Xi{Xj for which

Pij~0 [29–32]. This rests on the theoretical grounds that the

variables are normally distributed and are linearly related,

therefore having Pij~0 is equivalent to having independence

between Xi and Xj conditioned on the other variables [29–32],

which is exactly the requirement for the absence of edge in an

undirected network. Such networks are therefore referred to as

graphical Gaussian models (GGMs) [29–32]. In case the true

network is Bayesian (i.e. directed and acyclic) then the GGM

will contain the original edges and will connect the parents of a

same child. GGMs provide a simple and efficient method,

whereby networks can be built in just a few seconds. They have

been successfully applied to infer gene regulatory networks, even

in the presence of small sample size, and a short review of these

applications can be found in [33].

In this study, we propose to focus on edges that represent direct

dependencies. We want to draw edges between histone modifica-

tions that are directly linked in a pathway or that act together, i.e.

whose association cannot solely be explained by confounding

factors. We build on GGMs, and put forward a robust method to

compute sparse partial correlation networks (SPCNs). To the best

of our knowledge, PCNs have not yet been applied to histone

modifications. In contrast to gene regulatory networks, here the

sample size is very large and the variables are few. Formally,

partial correlations require normal distributions. In our work this

need is overcome and outliers accounted for by rank-transforming

the input data. Sparseness is achieved via a cross-validation

Author Summary

Nucleosomes are protein complexes around which the
DNA is wrapped for compactness. They are made of
histone proteins that can be post-translationally modified
and these histone modifications can affect the expression
of surrounding genes. In the past decade, scientists have
developed a strong interest in the part of gene regulation
provided by epigenetics, i.e. those heritable characteristics
that are not based on the DNA sequence and that can
therefore be cell-type-specific, such as histone modifica-
tions. Striking patterns about the co-occurrence of
modifications have been discovered, leading to the
hypothesis that different combinations of modifications
lead to different effects. Different histone modifications
could act jointly to recruit certain proteins, or be required
sequentially, which is reflected in statistical dependencies
in measured data. The focus of this article is on building a
network that represents the global dependencies by
extracting direct associations of histone modifications.
We find that, although histone modifications patterns are
cell-type specific (modifications may not necessarily
appear at the same loci), the dependencies are to a large
degree cell-type independent, which is supported by a
large overlap of the inferred associations in the networks
built for different cell types. We are able to find meaningful
associations, both known and novel.

Undirected Networks of Histone Modifications
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scheme. Our SPCNs reveal edges that are symptomatic of direct

associations, mutual exclusivities, direct edges in a pathway,

indirect edges where the intermediate variable(s) are not available,

or collaborative work to produce a third variable.

Zhao’s group was one of the first to produce genome-wide

profiles for a large number of histone modifications, they did so in

CD4+ cells [6,7]. In the meantime, several other groups have

contributed to the Roadmap Epigenomics project [34], a database

that now contains data for varying numbers of histone modifica-

tions in different cell types. Based on this data, the cell types with

the largest number of histone modifications were chosen: CD4+,

IMR90 and H1. CD4+ cells are lymphocytes (white blood cells),

they are part of our immune system. IMR90 cells are fibroblasts

(cells involved in the synthesis of tissues’ external structure) in the

lung, and H1 cells are embryonic stem cells. 21 histone

modifications are available for all three cell types, we keep only

those. Histone modification data is obtained via ChIP-seq

experiments, so openness of the chromatin is a potential

confounding factor to include in the analysis via DNaseIHS,

which marks the hypersensitivity of the DNA to the enzyme

DNaseI. The relationship of histone modifications to mRNA levels

is of particular interest because of the role of histone modifications

in transcription, so mRNA data is included. We look at the

amounts of ChIP-seq reads for these 23 variables in the

[22000,+2000] around the transcription start sites (TSSs) of

known genes, and at the amounts of RNA-seq reads in the exons

of those genes. Antibodies can also play a role as confounding

factors (because of their cross-reactivity), and may also vary from

experiment to experiment. Antibodies are an interesting case

because, although they are not semantically ‘‘hidden’’ (we know

which ones are used and we know they can cross-react and act as

confounding factors), they are technically hidden since we do not

know how they cross-react as no data is available. However, we

can build a table of cross-reactions and look it up as a possible

source of explanation for links between histone modifications.

Details about data collection and antibody can be found in

Materials and Methods.

Results

Sparse partial correlation networks (SPCNs)
We modify GGMs in two respects: first by rank-transforming

the input data, and second by enforcing sparseness via a cross-

validation scheme. A global view of the algorithm is shown in

Figure 1. Precision is favored over completeness: an edge is only

found in a network if it is strongly supported by the data.

Therefore interpreting edges is favored over interpreting the lack

thereof. Details about the computation of the PCMs, the p-values

and the q-values can be found in Materials and Methods.

Rank-transformation of the data. Most histone modifica-

tions data is multimodal (see Text S1 Section 4). This observation

could imply that discretizing the data is the solution. However

relationships between histone modifications go beyond mode

associations, they also exist within the modes, which discretized

data cannot account for. Results on discretized data are discussed

in Text S1 Section 5.4. Instead, Tto render PCNs less sensitive to

the distribution of the data and to account for outliers, data is

rank-transformed: for each data matrix of interest, and for each

variable in that matrix, the entries corresponding to the levels of

this variable in various genes are ranked and replaced by their

rank [35]. Rank data is uniformly distributed over ½1,NG�, NG

being the number of genes under consideration. However with so

many genes at hand it may be approximated with a very wide

Gaussian. By applying the rank-transformation, statistical power is

partly sacrificed for robustness. Rank-transformation provides a

reference transformation that can be used by anyone on any data,

which is useful as every lab has its own normalizing method.

Ranking may not always be a good idea, depending on how the

data looks like. But histone modifications have monotonic

relationships and, in this setting, ranking may lose the modes

but it does not change the existence or non-existence of the

relationships. What we measure in rank space is how close two

variables are from being a monotonic transformation of one

another, as opposed to a linear transformation. In our simulations,

PCNs on rank data perform well, as discussed in Text S1 Section

5. In fact, as shown in Figure 2b and Text S1 Section 5.3, there is

little difference with PCNs on numerical data, whether on

simulations or on real data, which shows that the underlying

structure is not modified. Again, this result stems from the

monotonic properties of histone modification data and may not be

extended to any dataset without caution. Indeed histone modifi-

cations data is not Gaussian, most distributions are multimodal

(see Text S1 Section 4). Upon rank-transforming the data, the

modes are lost. However here it is acceptable since the

relationships between variables go beyond mode associations,

which would then call for discretizing rather than ranking. Instead

relationships also exist within the modes.

Sparseness through cross-validation. Our dataset enjoys a

very large number of samples, therefore the q-values of all partial

correlation coefficients will be low and all entries in the PCM P
will be considered significant, regardless of their biological

relevance [36]. A classical significance threshold can therefore

not be used here. Instead, we use the prediction error to produce a

mask for P. The dataset is split between training and test set, and a

sparse partial correlation matrix Pi
t is computed on the training set

using a q-value threshold t. For each variable Xd , we take as co-

variables all of those that have a non-zero entry in the d th column

of Pi
t, and build a linear regressor for Xd on the training set using

as predictors the co-variables only. The predictions fXdXd of the

linear model on the test set lead to an estimate of the error:

ed (Pi
t)~

1
NG

PNT

n~1

Xd (n){fXdXd (n)
� �2

, where NT is the number of test

data points. The estimates for all of the D variables are then

averaged to give E(Pi
t)~

1
D

PD
d~1

ed (Pi
t). In case of limited amounts

of data, this approach would be self-sufficient as E would decrease

upon adding the first top edges to the point of overfitting, and

would then increase again. Therefore we would simply have to

pick the threshold that minimises E. However here, given the large

amount of data, E increases continuously with sparseness (as the

threshold t decreases), therefore we pick the lowest threshold t�

such that E(Pi
t) does not exceed the minimum error E(Pi

full) by

more than 10% of the difference between E(Pi
full) (minimum

error) and E(Pi
empty) (maximum error). This allows to obtain a

sparse matrix Pi
t� that performs reasonably well compared to the

full matrix. The operation is repeated using 10-fold cross-

validation (i.e. with i varying from 1 to 10). The 10 resulting

sparse matrices are then combined to produce a mask for P: to be

kept, an edge has to be found at least 7 times out of 10. Note that,

again due to the large amount of data, the 10 sparse matrices are

fundamentally very similar and setting the threshold to 5 or to 10

would make very little difference. It does help however to discard

aberrant edges that appear only once. In the case of reduced

amounts of data, the threshold would be more critical.

Undirected Networks of Histone Modifications
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Figure 1. Global view of the algorithm. The data matrix is rank-transformed, and the covariance matrix C is computed. C is then inverted,
negated and normalized as described in Materials and Methods to obtain the partial correlation matrix P. Cross-validation is performed to build a
mask M which is applied on P to give a sparse partial correlation network.
doi:10.1371/journal.pcbi.1003168.g001
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From correlations to partial correlations: Explaining away
‘‘Explaining away’’ in machine learning is ‘‘a common pattern

of reasoning in which the confirmation of one cause of an observed

event reduces the need to invoke alternative causes’’ [37]. We take

over this concept and translate it into our own context. A

connection between X and Y is explained away by Z when

Cor(X ,Y DZ) is negligible compared with Cor(X ,Y ), because we

assume that Z was the main cause of the apparent connection

between X and Y and that therefore the need to find further

causes is alleviated.

When controlling for confounding factors, the partial correla-

tion coefficient Cor(X ,Y DZ) is substituted to the correlation

coefficients Cor(X ,Y ) and the difference can be very large.

Cor(X ,Y DZ) is generally smaller (in terms of absolute value) as it is

explained away by the control variables, but it can also be greater

as control variables tie X and Y together. For example, if X and

Y are independent co-parents of Z such that Cor(X ,Y )~0, they

become dependent upon conditioning on Z, such that

Cor(X ,Y DZ) may be different from 0. We would like to know

which variables are responsible for most of the change from

Cor(X ,Y ) to Cor(X ,Y DZ). Running an exhaustive search on

combinations of about 20 variables is neither possible nor

desirable. Instead we condition Cor(X ,Y ) on a single variable

Z. We repeat the operation for every possible Z in the dataset and

identify the Z� that leads to the biggest discrepancy between

Cor(X ,Y ) and Cor(X ,Y DZ�), i.e. the control variable that has the

highest impact on the correlation. The impact of all variables is

shown for some pairs in Text S1 Section 10.

Stability across cell types
It needs to be established that networks remain stable upon

using input data from different experiments or from different cell

types. To this end, we define an index of overlap between C

PCMs, based on the ranking of the entries which represent the

associations between pairs of variables. For each PCM Pl

(l[½1,C�), the pairs of variables fi,jg are ranked by increasing q-

values and the first k pairs (k[½1,NP~253�) are stored in a list.

The number of pairs that occur in all C lists divided by k is a

measure of the similarity between all the fPlgl[½1,C� when k pairs

are considered. Results are presented in plots where k varies from

1 to NP~253. The overlap expected at random depends on the

number of matrices being compared C and on the number of pairs

being examined k. It is easily computed, as seen in Materials and

Methods. For C~2, it follows a hypergeometric distribution, and

therefore p-values are directly available.

Expected variability across experiments. In order to

better assess the stability of the results across cell types, the

variability that can be observed across experiments needs

quantifying. To that end, H1 data from the ENCODE project

[38] was downloaded for each histone modification that was also

in the data previously described. The web addresses of the

experiments that were downloaded can be found in Text S1

Section 1.3. The variables common to all four datasets (CD4+,

IMR90 and both H1) were used to compute a PCM for H1

Roadmap data, and a PCM for H1 ENCODE data. The

variability between the two will give a good idea of the variability

of the data across experiments.

The procedure described above was applied on the PCMs

obtained for Roadmap and ENCODE data in H1 cells, the results

are shown in Figure 3a. On the x-axis is the number k of top pairs,

on the y-axis the proportion of these top pairs found in both lists.

The similarity is far from random: for the top 10 pairs, 8 are

common to both lists (hypergeometric test, pvalue~3:31|10{7).

It shall serve as a reliable baseline for what to expect when

comparing PCMs across cell types. In particular, it is nowhere

near 100% and indicates a high level of experimental noise.

Similar partial correlations across cell types. The next

step is to repeat the procedure for the PCMs obtained for the same

set of histone modifications in CD4+ and IMR90 cells. We

compared all pairs of PCMs (CD4+ vs IMR90, CD4+ vs H1

(Roadmap), CD4+ vs H1 (ENCODE), IMR90 vs H1 (Roadmap),

IMR90 vs H1 (ENCODE) and H1 (Roadmap) vs H1 (ENCODE)

on the same plot in Figure 3b. For the top 10 pairs, 5 are common to

CD4+ and IMR90, and to CD4+ and H1 Roadmap (hypergeo-

metric test, pvalue~4:94|10{3), 6 are common to CD4+ and H1

ENCODE, and to IMR90 and H1 ENCODE (hypergeometric test,

pvalue~3:81|10{4), and 7 are common to IMR90 and H1

Roadmap (hypergeometric test, pvalue~1:61|10{5). Although

the similarity across cell types is lower than within H1 (Roadmap

and ENCODE), it is in fact comparable. This shows that the signal

is stable across cell types, and that the variability can largely be

attributed to experimental noise.

Sonication-ChIP-seq, or MNase-ChIP-seq, may be biased and

cause fake links between histone modifications due to the common

approach to fragmenting DNA. MNase-seq (i.e. MNase digestion

of chromatin without ChIP) and Input represent data that can

account for these biases, and can be seen as ChIP-seq controls. To

check whether these ChIP-seq controls can explain some of the

gap between the variability across experiments and the variability

between cell types, MNase was added to the CD4+ dataset

(generated with MNase-ChIP-seq) and Input to the IMR90 and

H1 datasets (generated with sonication-ChIP-seq). The plot in

Text S1 Section 6.1 compares the overlap between two cell types,

in the presence and absence of ChIP-seq control. There is no

fundamental change.

Figure 3c shows the overlap of the matrices between the three

pairs of cell types, when using all the 23 variables (i.e. ignoring

ENCODE data). Here again, the overlap is clearly higher than

expected by chance for important edges: for the top 30 pairs, 14

are common to CD4+ and IMR90, and to CD4+ and H1

(hypergeometric test, pvalue~2:09|10{7), and 19 are common

to IMR90 and H1 (hypergeometric test, pvalue~9:53|10{14).

Moreover, Figure 3d shows the overlap between all three matrices.

For the top 30 pairs, 10 are common to all cell types (106

simulations under the null model, pvaluev10{6). This confirms

the existence of a common core. The ChIP-seq controls were also

performed to see if the overlap could increase (see Text S1 Section

6.2), but no change was observed.

Figure 2. a) Network in CD4+ cells. Blue edges represent negative partial correlations, while red edges represent positive partial correlations. b)
Overlap with the CD4+ network built on numerical data. Numerical data means that the counts are taken to the log instead of being ranked,
so quantitative information is preserved. There is very little difference between the two networks. c) Consensus network. Blue edges represent
negative partial correlations, while red edges represent positive partial correlations. Bright edges (blue and red) represent edges that are common to
all networks, light edges (light blue and pink) are found in two networks out of three. Any blue means a negative partial correlation, while red or pink
means a positive partial correlation.
doi:10.1371/journal.pcbi.1003168.g002

Undirected Networks of Histone Modifications
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Network of histone modifications in CD4+ cells
We now turn to a detailed analysis of the CD4+ network. Note

that, the data containing 23 variables, the SPCN has NP~253
edges maximum. The resulting network is shown in Figure 2a, all

the partial correlation coefficients, their q-values and the mask are

given in Text S1 Section 7.

Looking at edges around mRNA, we find it is negatively

connected to H3K27me3 (a mark of repression) and positively to

H3K27ac (a mark of activation), H3K79me2 and H4K20me1

(marks of elongation), which have been, with the exception of

H3K27me3, found to be important in predicting expression in

CD4+ cells [18]. Interestingly, H3K36me3 has no link to mRNA,

in line with [18]. The scatter plots in Text S1 Section 9.1 confirm

the lack of relationship. Note that there is no standard correlation

either. The data for H3K36me3 is not abundant, very few reads

map to the regions of interest. This could come from H3K36me3’s

preference for exons [39]. Indeed exons are only a small part of

the studied region, as shown in Text S1 Section 3, so the lack of

connection to expression could be due to poor data, it is hard to

tell.

Expected connections are numerous, such as the negative link

between H3K27ac and H3K27me3. These two histone modifica-

tions are by nature mutually exclusive, and therefore need not be

explained by any other histone modification. The strong

connections between the various methylation states of H3K4,

with H3K4me2 in between, are explained by the fact that these

different methylation states are coupled by bidirectional links from

H3K4me1 to H3K4me2 and to H3K4me3. Alternatively, it can

be explained by antibody cross-reactivity, but it may not be

explained by any other histone modification. Connections between

DNaseIHS and H3K4me3 and H4K20me1 reflect the need for

open chromatin to have transcription.

Finding expected associations is a requirement, however it is

more interesting to find unexpected connections. H3K27me3 and

H3K9me3 are positively associated (see scatter plots in Text S1

Section 9.2). They have been thought to be mutually exclusive,

H3K9me3 encoding constitutive heterochromatin, H3K27me3

facultative heterochromatin. Both would act as repressors but as

Figure 3. Similarity between experiments and cell types. All plots have the same construction. The x-axis shows the number of top pairs that
are considered k. The y-axis shows the proportion of these pairs that are found in the two lists being compared (three lists for subplot d), as an
estimate of the similarity between partial correlation matrices. a) Similarity - within H1 cells - between Roadmap and ENCODE data, i.e. between
experiments, using variables available in all datasets only. For the top 10 pairs, the overlap is 80% (pval~3:31|10{7). b) Similarity between two cell
types and between experiments, using variables available in all datasets only. For the top 10 pairs, the overlap is 50% between CD4+ and IMR90, and
between CD4+ and H1 Roadmap (pval~4:94|10{3), 60% between CD4+ and H1 ENCODE, and between IMR90 and H1 ENCODE
(pval~3:81|10{4), and 70% between IMR90 and H1 Roadmap (pval~1:61|10{5). c) Similarity between two cell types for the 23 variables
used throughout the study. For the top 30 pairs, the overlap is 47% between CD4+ and IMR90, and between CD4+ and H1 (pval~2:09|10{7), and
63% between IMR90 and H1 (pval~9:53|10{14). d) Similarity between all three cell types for the 23 variables used throughout the study. For the
top 30 pairs, the overlap is 33% (pvalv10{6).
doi:10.1371/journal.pcbi.1003168.g003

Undirected Networks of Histone Modifications

PLOS Computational Biology | www.ploscompbiol.org 7 September 2013 | Volume 9 | Issue 9 | e1003168



part of two different processes (involving the PRC1/2 complex for

H3K27me3 and the HP1 proteins for H3K9me3), that have been

assumed mutually exclusive [40]. Clearly it is not the case here. It

has been found that SUZ12, which is part of PRC2 and involved

in setting H3K27me3, promotes H3K9 methylation [41], giving a

straightforward explanation for our finding. The negative edge

between H3K79me2 and H3K4me1 is puzzling given that they

are two marks associated with transcription, and that the trend is

mostly tue in active genes (see scatter plots in Text S1 Section 9.3).

However a possible explanation is that H2BK120ub1, which is

required both for the production of H3K4me2/3 and of

H3K79me1/2 [42], acts as hidden confounding factor.

Some expected edges exist albeit with an unexpected sign. In

particular, H3K4me3 and H3K36me3, associated with initiation

and elongation, are positively linked to the repressive mark

H3K27me3 (see scatter plots in Text S1 Section 9.4). In fact, for

high levels of H3K27me3, this trend already exists in the raw data.

This may indicate that some promoters cycle between the

repressed H3K27me3 state and the active H3K4me3/

H3K36me3 state. The cycling idea of epigenetic states is not

without precedent. It has been shown that the estrogen receptor

target TFF1 is cyclically methylated and demethylated [43,44]. In

some cells promoters are active (H3K4me3), in some cells they are

repressed (H3K27me3), and in some cells they may be bivalent

(H3K4me3 AND H3K27me3). All we measure is the population

average. If these fluctuations are stochastic, we expect no

correlation. However if promoters can move from being active

(H3K4me3) to being inactive (H3K27me3) in a regulated manner,

then we expect a positive correlation. This could be due to the cell

cycle, e.g. promoters get active during S-phase and are rendered

inactive thereafter [45]. When looking at the scatter plots in Text

S1 Section 9.4, the correlation seems to come from repressed

genes, and a little bit from bivalent genes, supporting this

hypothesis.

Another example is the negative link between H4K20me1 and

H4K5ac (see scatter plots in Text S1 Section 9.5), which seems at

first glance counter-intuitive because H4K20me1 is positively

linked to expression and acetylations are generally thought to be

associated with transcription. This apparent paradox can be

resolved by the following reasoning: H4K20me1 is mainly

associated with transcription elongation, while acetylations are

heavily enriched around the promoter. It has been shown in

Drosophila that H4K20me1 recruits the factor RPD3/HDAC1,

leading to the deacetylation of H4K [46]. Thus it seems that

H4K20me1 helps to prevent cryptic initiation in the transcribed

gene body.

Since mechanisms are to a large degree cell-type-independent,

the precision and robustness of the results can be increased by

integrating information from all available cell types. A SPCN is

created for each cell type. Figure 2bc shows the consensus network

which contains only those edges that are found in at least two cell-

type-specific SPCNs. Light blue edges show negative associations

that are found in two cell types, blue edges negative associations

found in all three cell types. Pink edges show positive associations

that are found in two cell types, red edges positive associations found

in all three cell types. It looks very similar to the CD4+ SPCN in

Figure 2a. Important associations such as mRNA-H3K27me3,

mRNA-H3K79me2, DNaseIHS-H3K4me3, DNaseIHS-H4K20me1

and H3K27ac-H3K27me3 are conserved across cell types. Surprising

connection such as H3K27me3-H3K9me3 and H4K20me1-H4K5ac

are also stable. The strong connection between H3K4me1 and

H4K20me1 is only found in CD4+.

Some of the edges that are common to all networks (marked in

bright red and blue) are of particular interest. The antibody table

in Text S1 Section 2 (see Materials and Methods) shows that there

is antibody cross-reactivity for H3K4’s various methylations and

for H3K79me1/2. The edges may reflect biologically meaningful

associations but may (also or instead) be due to cross-reactions.

H3K23ac’s antibody reacts with H3K14ac, H3K18ac’s with

H4K5ac, and H3K27ac’s with H3K9ac, which explains partially

these three connections. The group H2BK12/20/120ac remains

unexplained, however it is plausible that it may be the result of

unreported antibody cross-reactions. Other edges that may be

explained by antibody cross-reactivity are H4K5ac-H3K27ac and

H4K5ac-H3K18ac as well as H3K14ac-H3K18ac.

Effect matrix of histone modifications in CD4+ cells
The explaining away procedure was applied. Text S1 Section

10 shows some of the plots that are obtained for all the edges of

interest. Figure 4 summarizes the critical information into one

matrix. The colors give the magnitude of the differences between

Cor(X ,Y ) and Cor(X ,Y DZ). If zooming in is available, the

numbers on the lower part of the diagonal give the actual

difference, and the text on the upper part of the diagonal gives the

histone modification that has the most incidence on Cor(X ,Y ).

Partial correlations work in such a way that, in order to explain

the correlation between X and Y , it is sufficient that a control

variable Z explain X . The variable with the most impact then says

something about X regardless of Y . Symptomatic of this scenario,

the first explanatory variable is then often the same along the

column of the matrix corresponding to X . For example, in the

column associated with H3K27me3, H3K27ac is very often the

most influential variable. It can be assumed that H3K27ac

explains H3K27me3 and therefore leads to the loss of correlation

between H3K27me3 and other variables. H4K5ac seems to

explain H3K14ac. This may be due to antibody cross-reactivity, as

H4K5ac is often seen in H3K23’s column, and H3K14ac’s and

H3K23ac’s antibodies are known to cross-react.

An interesting example that shows how well this procedure

works is the pair H3K4me1 and H3K4me3. After glancing at Text

S1 Section 8.1 or after zooming into Figure 4, it can be seen that

the variable most responsible for the correlation is H3K4me2.

This makes a lot of sense biologically, as H3K4me2 is an

intermediate state of methylation. Another example is the

correlation between mRNA and H3K4me3, which seems to be

largely explained by H3K27ac. This maybe due to the fact that

H3K4me3 recruits the SAGA complex required for acetylation

[47] which puts H3K27ac, which in turn is predictive of mRNA

levels, as was seen in [18]. The relationship between H3K4me3

and H4K20me1 is fully explained by DNaseIHS. One possible

reason for this is that chromatin openness favors transcription,

thereby explaining H3K4me3. The role of H4K20me1 in HDAC

recruitment has been demonstrated in the context of chromatin

reassembly [46]. Thus it seems that transcription may lead to

higher histone turnover, which results in higher levels of

H4K20me1.

Similarly to the networks, a consensus effect matrix is shown in

Text S1 Section 8.4. It is surprising to see how well the effect of

partial correlation and the explanatory variables are conserved

across cell types. Indeed, out of 21 possible variables that are all

correlated, in most cases the same one comes out in at least two

cell types.

Discussion

We put forward SPCNs, a fast and robust tool, to construct

undirected networks of histone modifications. By definition SPCNs

can handle continuous data. Moreover they contain all relevant
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links, and allow for cycles and symmetric relationships. Edges in a

SPCN may be seen as controlled associations, where the link

between two variables is only established after controlling for

potential confounding factors (the other variables at hand). We

believe they are the perfect tool for our purposes. The algorithm is

designed to maintain a high precision level in the reconstruction of

the networks. To be present, an edge must appear in 7 out of 10

sub SPCMs, i.e. be highly supported by the data. Some edges may

be missed, and the lack of edges must be carefully interpreted,

however given that only 10% of the maximal drop in performance

is allowed, we believe that most contributing edges are recovered,

and that the lack of edges mainly corresponds to the lack of

relevant associations.

We used the availability of data from different experiments and

different cell types to our advantage and quantified the variability

that could be expected. Firstly, it is interesting to note that the

variability across experiments, for the same cell type, is not low.

This tends to show that biological data is difficult to reproduce,

that results should be interpreted with care, and that evidence may

not be overwhelming even though a phenomenon is true. Here,

the cell type is the same so it is true that the mechanisms should be

the same, yet the evidence is not as high as one might have

expected. Secondly, the variability across cell types is marginally

higher than the one across experiments, showing that the networks

are stable across cell types, and that the variability is mostly due to

experimental noise. This last observation is a significant result.

Histone-modifications-related mechanisms are often assumed to

be the same in all cell types, but it is not systematically checked.

Our simulations show that meachanisms are strikingly similar

across cell types, almost as similar as two different experiments in

the same cell type.

Gathering information on antibody cross-reactivity was difficult

but it proved insightful as it revealed important biases in the data.

In particular, different methylation states, such as H3K4me1/

H3K4me2/H3K4me3 or H3K79me1/H3K79me2, are difficult

to distinguish. The edges between such histone modifications may

be biologically relevant or/and due to antibodies’ lack of

specificity, probably both, it is impossible to tell with the data at

hand. A similar phenomenon was observed for acetylations. This

ought to be a warning for the community. Antibodies are too

trusted in many ChIP-seq studies. Instead cross-reactivities should

be documented and biases reported when appropriate. In fact,

cross-reaction studies are missing for many antibodies, and biases

may be more important than we think.

The SPCN gives a global view of the associations between

histone modifications, however this view assumes a closed

environment containing only the variables in the network. This

is an intrinsic limitation of the method. If the set of variables is

increased, the new network will not necessarily contain the

previous one, all edges might be affected. How much they might

be affected depends on the relevance of the variables that are

introduced, and on the number of these variables. This makes the

network very hard to test experimentally, as the presence of other

variables in the cell will make the network by definition obsolete.

However such assumptions are not new in biology, where subsets

of variables are often chosen, and consequently studied as if they

were isolated from the rest of the world.

The effect matrix on the other hand gives a detailed view of

what partial correlation does. It shows the difference between the

correlation and the partial correlation conditioned on all other

variables. In particular, it allows to see which variable causes the

highest difference between Cor(X ,Y ) and Cor(X ,Y DZ). This is of

high biological interest, not only because it identifies potential

hidden interactions, but also because such effects can be in

principle verified experimentally.

Associations of histone modifications are interesting as a first

step to understanding their relations. However their connections

are not physical and therefore remain abstract. Edges in a SPCN

are as direct as possible given the variables at hand, but they can

most probably be explained away by enzymes or proteins that float

around and provide a physical interface for histone modifications,

in particular chromatin modifiers. The next step is therefore to

include data for such proteins. Ram et al. have now produced data

for chromatin regulators [48]. Including them in the network and

particularly in the effect matrix would allow to gain much deeper

insight into the physical mechanisms. Further steps should also

include transcription factors, and various genomic regions, such as

proximal promoters and enhancers.

Materials and Methods

Data
Data collection. We downloaded the hg19 coordinates of all

Refseq annotated TSSs from the UCSC database, and created a

region of [21000,+1000] around each annotated gene, i.e. 1000

base pairs before the TSS and 1000 base pairs after the end of the

gene. All regions that overlapped were then grouped into one

cluster. If this cluster contained two or several non-overlapping

regions, these were extracted, otherwise the region with most

counts was chosen as cluster representative. Moreover, annotated

TSSs with a gene shorter than 2000 bp were removed. After

filtering, we were left with 13033 annotated TSSs. We took a

region of [22000,+2000] around those TSSs. After filtering away

genes with no or very little DNaseIHS, 12757 genes were kept for

CD4+ data, 12823 for IMR90 data, and all 13033 for H1 data

(details in Text S1 Section 3).

The list of the 25 variables available (histone modifications and

others) can be found in Text S1 Section 1.1. Unless specified, we

use as variables the ones that are common to all cell types (23

variables, see column ‘‘used’’ in the table). Most histone

modification data was downloaded from Zhao’s group [6,7] and

from the Epigenomic Roadmap website [34]. The exact origin of

all the data can be found in Text S1 Section 1.2.

Read counts and normalization. The data matrices were

filled in by computing the levels of each variable around each gene

in each cell type. For mRNA, the total number of RNA-seq reads

found in the gene’s body was computed and normalized by the

spliced transcript’s length, which was different for every gene. For

all other variables, the total number of ChIP-seq reads found in

the [22000,+2000] region was computed and, for symmetry,

normalized by the region’s length (4000 base pairs).

Antibody cross-reactivity. Data for antibody cross-reactiv-

ity is not available, however some of these cross-reactions are

reported in the literature. For each individual experiment, we

looked up in [49] which antibody was used and we tracked

Figure 4. Effect matrix in CD4+ cells. The color code represents the difference between the partial correlation coefficient
Cor(X ,Y Dall other variables) and the correlation coefficient Cor(X ,Y ). The difference Cor(X ,Y Dall other variables){Cor(X ,Y ) is given in the
lower cell of the corresponding pair. The variable Z that has the largest effect Cor(X ,Y DZ){Cor(X ,Y ) is written in the upper cell of the
corresponding pair.
doi:10.1371/journal.pcbi.1003168.g004
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potential cross-reactions. We used the information supplied in

[50,51] to build a table profiling the antibody’s specificity for

modifications of interest. The table and the procedure to obtain it

are in Text S1 Section 2.

Sparse partial correlation networks
Computation of the partial correlation matrices. In

practice, for a dataset of interest, the inverse L of the covariance

matrix is computed. This matrix is then normalized row-wise and

column-wise so that its diagonal is 1, and negated to obtain the

PCM P. In other words Pij~{
Lijffiffiffiffiffiffiffiffiffiffiffiffi
LiiLjj

p . The PCN is the

graphical version of P, i.e. an edge is drawn between the variables

Xi and Xj if and only if the entry Pij is significantly different from

0. The SPCN is a sparse version of P, where entries (edges) are

masked via the cross-validation scheme detailed in Section

‘‘Sparseness through cross-validation’’.
Computation of the p-values and q-values. A z-statistic is

easily available for each entry in P using Fisher’s z-transform for

correlation coefficients [52], where the degrees of freedom have

been updated to take into account the number of control variables:

z (Cor(X ,Y DZ))~
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NG{DZD{3ð Þ

p
log

1zCor(X , Y DZ)

1{Cor(X , Y DZ)

� 	
.

This z-statistic follows approximately a canonical normal distribu-

tion (mean 0 and variance 1), from which p-values are straightfor-

ward to compute. If D is the number of variables in the model, all of

the NP~D(D{1)=2 possible edges are tested, so the p-values are

corrected for multiple testing using Benjamini-Hochberg’s method.

It has the effect of controlling the false discovery rate (FDR, the

proportion of called positives that are real negatives) instead of the

false positive rate (FPR, the proportion of real negatives that are

called positives). Setting a threshold t on the q-values now ensures

an FDR of t.
Obtaining a sparse PCN. A few authors [53–55] have

developed algorithms to optimize a regularized objective function,

where the main term is the goodness-of-fit of a multivariate

Gaussian with covariance L{1, and the regularization term is a

penalty on the number of entries in L. The optimal L is then

normalized to give the PCM P. These algorithms follow the

principle of LASSO for linear regression by using the L1-norm

which imposes sparseness. These methods are very appealing

however they also assume normality, and they are not designed to

retrieve a real network, so they can change the structure if that

helps improving the objective function. Indeed on our simulations,

LASSO-type methods did not perform better than a simple

threshold on the q-values, be it on numerical data or on rank data

(see Text S1 Section 5.4). Through cross-validation, we obtain 10

sparse matrices, each with a different threshold. These 10 matrices

are combined to produce a mask for the original PCM P.
The variable mRNA. As mentioned in introduction, the

relationship of histone modifications to mRNA levels is of

particular interest. Because a large region around the TSS had

to be considered for computational purposes, we were afraid to

lose interesting signals that perhaps happen in very localized

regions (for example at the TSS) and not along the gene body,

hence not giving a very high correlation compared to associations

of histone modifications. To pick these associations up, if the

mRNA node has fewer than 4 connections returned, the

connections are completed (up to 4) using partial correlations of

lower significance.

Computation of the expected proportions and p-values
for the overlap figures

With two lists of k selected pairs from a pool of NP pairs, the

number of common pairs follows a hypergeometric distribution with

equal number of white balls and drawn balls (k) and with a total

number of balls of NP, and a hypergeometric test is appropriate to

compute p-values. The probability p(xDk,NP) for x pairs to appear

in the two lists is obtained through the hypergeometric distribution

with x successes (white balls) in k draws from a finite population

of size NP containing k successes (white balls), so

p(xjk,NP)~H(xjNP,k,k)~
k

x

� 	
NP{k

k{x

� 	

NP

k

� 	
. The ex-

pected number of same pairs in the two lists is therefore

E~Ex½x�~
Pk

x~0

H(xDNP,k,k) x~
k2

NP

, so the expected proportion

is
E

k
~

k

NP

, i.e. a straight line. The p-value is then given by the

hypergeometric test: pvalue(xDk,NP)~
Pk

y~x

H(yDNP,k,k). The ap-

propriate call in R is pvalue~1{phyper(q~x{1,
m~k,n~NP{k,k~k).

With three lists, things are more complicated. The probability p
for a pair to appear in the three lists is obtained through a

Binomial distribution with number of trials 3 and probability
k

NP

,

so p~
k

NP

� 	3

. The expected number of pairs common to the

three lists is E~NP|p~
k3

NP
2
, the expected proportion is

therefore
E

k
~

k

NP

� 	2

, i.e. a quadratic curve. For an observation

x, the p-value is computed by simulating 106 intersections between

three lists containing k pairs sampled randomly from ½1,NP� with

replacement, and by counting the proportion of times the length of

these intersections was at least as high as x. If the result is 0, 10{6

is reported as upper bound.
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