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Abstract

Predicting the effects of mutations on the kinetic rate constants of protein-protein interactions is central to both the
modeling of complex diseases and the design of effective peptide drug inhibitors. However, while most studies have
concentrated on the determination of association rate constants, dissociation rates have received less attention. In this work
we take a novel approach by relating the changes in dissociation rates upon mutation to the energetics and architecture of
hotspots and hotregions, by performing alanine scans pre- and post-mutation. From these scans, we design a set of
descriptors that capture the change in hotspot energy and distribution. The method is benchmarked on 713 kinetically
characterized mutations from the SKEMPI database. Our investigations show that, with the use of hotspot descriptors,
energies from single-point alanine mutations may be used for the estimation of off-rate mutations to any residue type and
also multi-point mutations. A number of machine learning models are built from a combination of molecular and hotspot
descriptors, with the best models achieving a Pearson’s Correlation Coefficient of 0.79 with experimental off-rates and a
Matthew’s Correlation Coefficient of 0.6 in the detection of rare stabilizing mutations. Using specialized feature selection
models we identify descriptors that are highly specific and, conversely, broadly important to predicting the effects of
different classes of mutations, interface regions and complexes. Our results also indicate that the distribution of the critical
stability regions across protein-protein interfaces is a function of complex size more strongly than interface area. In addition,
mutations at the rim are critical for the stability of small complexes, but consistently harder to characterize. The relationship
between hotregion size and the dissociation rate is also investigated and, using hotspot descriptors which model
cooperative effects within hotregions, we show how the contribution of hotregions of different sizes, changes under
different cooperative effects.
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Introduction

Protein-Protein interactions are at the core of all biological

systems and the rates at which biomolecules associate and

disassociate are the major driving forces behind the complex

time-dependent signaling observed in many biological processes.

Ordinary Differential Equations (ODEs) are generally used to

model these processes [1–3]; however, ODEs are bottlenecked by

the limited availability of the relevant experimental rate constants

[4]. Therefore, the accurate calculation of the kinetic rate

constants holds significant application in our understanding of

complex networks involved in diseases such as cancer [5–7].

Kinetic rate constant prediction is also central to effective drug

design [8–10]; in vivo scenarios, where the concentration of a drug-

like ligand exposed to its target receptor is not constant, as usually

it is in vitro, the drug efficacy is no longer well described by the in

vitro measured dissociation constant, but rather depends on the

association (kon) and dissociation (koff) rate constants [8]. Whereas

the enhancement of the on-rate is limited by the diffusion rate

and several pharmacological factors, off-rate optimization is

independent of such factors and entirely dependent on the short-

range interactions between the bound monomers in question [8].

Hence the calculation and minimization of dissociation rate

constants becomes a critical objective in drug design optimization

[11]. At the other end of the spectrum, most disease causing

mutations which are not in the protein core, occur at the interface

regions and result in complex destabilization [12] and a number of

studies have shown that changes in the binding free energy are

largely the result of changes in the off-rate as opposed to minimal

changes in the on-rate [13,14]. While several aspects of

biomolecular association have been investigated [10,15–17], work

on dissociation rate is still very limited [18]. Moreover, up to the

analysis reported in this work, which attempts to calculate off-rate

variations upon mutations in a high throughput context,

calculation of dissociation rate constants has been limited to

wild-type complex studies [19,20].

The koff of a complex may be estimated using Molecular

Dynamic (MD) simulations starting from the bound structure and

allowing for dissociation to occur [21]. MD simulations typically

allow simulation times of ns to ms, which are below the time-scales
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necessary for natural dissociation. Although steered molecular

dynamics (SMD) simulations provide an alternative means to

estimate the dissociation of protein complexes [21–23], such

methods bias the dissociation process through a forced pathway in

the direction of the applied force, and computational complexity

limits their applicability. In our recent work, the wild-type kinetic

rate constants of a number of complexes were predicted, using

empirical scoring functions, with a number of molecular descrip-

tors, describing various aspects of protein-protein interaction [19].

Whereas many descriptors showed high correlations with the

association rate, particularly those calculated using the unbound

structures, significant correlations for the dissociation rate could

not be found.

Given the limited predictive ability of the current molecular

features for koff [19], instead of trying to characterize off-rate

mutations directly using such molecular features only, a different

approach is taken here, one which exploits the synergistic and

distributional information available in hotspot residues. Hotspots

refer to a subset of residues at the interface which are able to

significantly destabilize the binding free energy by more than

2 kcal/mol when mutated to alanine [24]. So far hotspot research

has mainly focused on their identification [25–35], residue-level

properties [24,36] and distributional properties [37–39]. However,

work on their practical application is still very limited [40]. Here,

the relationship between hotspot energetics and the dissociation

rate constant is investigated. We put to test the notion of whether

the DDGs of single-point mutations to alanine, as traditionally

trained upon and predicted by hotspot prediction algorithms, can

be used to quantify changes in Dkoff. The key point of interest here

is that mutations, such as those we would like to quantify the

changes in off-rate for, are not limited to single-point alanine

mutations, as are in hotspot prediction algorithms. Therefore, a

direct estimation of Dkoff using DDG will not suffice. To address

this, an unconventional approach is taken and computational

alanine scans of the interface pre- and post-mutation are

performed using hotspot predictor algorithms. Using the DDGs

of the single-point alanine mutations generated from these scans, a

set of 16 hotspot descriptors are designed and calculated. The

hotspot descriptors are then used as features to quantify off-rate

changes of single-point, and more importantly multi-point,

mutations to alanine and also non-alanine. A key advantage of

using such hotspot descriptors, is not only the fact that non-alanine

and multi-point mutations can now be characterized using single-

point alanine mutations, but higher-order or rather, global effects

of a given mutation can now be addressed. These include changes

in the size and distribution of hotregions (clusters of hotspots),

cooperative effects within hotregions and changes in localized

stability regions such as the core, rim and support regions. All of

which, as shown in this work, play varyingly important roles in the

determination of the off-rate of a given mutation.

Our results confirm that indeed, using hotspot descriptors, the

energies of single-point mutations to alanine can be used to

describe effects of mutations other than alanine and also multi-

point mutations. Machine learning models using such hotspot

descriptors show consistently higher predictive abilities in the fine-

grained and coarse-grained prediction of off-rate changes upon

mutation, than models without hotspot descriptors. We find that

hotspot descriptors tend to be broadly predictive for different

classes of mutations, whereas molecular descriptors can be highly

specific to small subsets of mutations. Our investigations also

highlight differences in the distribution of stable regions at the

interface for complexes off different sizes and interface areas and

show the effects of cooperativity, on the stability provided by

hotregions of various sizes.

Approach
In the first part of this work, sets of hotspot descriptors are

generated, where each set represents hotspot descriptors generated

from a particular hotspot predictor. The hotspot predictors tested

include; two hotspot prediction servers (KFC2 [30] and Hotpoint

[28]) and also two hotspot predictors developed in this work

(RFSpot and RFSpot_KFC2). The hotspot descriptors’ ability to

characterize changes in off-rate due to mutations is assessed on a

set of 713 experimental off-rates taken from wild-type and mutated

proteins in the SKEMPI database [41]. Experimental off-rates in

the dataset cover a range of Dlog10(koff) of 28.5 to 6.8, with koff

units of s21, and represent a diverse set of interactions as listed in

the Supplementary Information (Dataset S1). As a relative

performance measure, a benchmark set of 110 molecular

descriptors (Text S1) is also included in the analysis and compared

to the performance of the hotspot descriptors. The molecular

descriptor set consists of a complex and comprehensive set of

structure related descriptors characterizing various aspects of

protein-protein interactions and their energetics; a subset of which

have already proven to be successful in our previous work on

predicting wild-type protein-protein binding free energies and

kinetic rate constants [19,42] and therefore serves as a thorough

benchmark comparison. All descriptor analysis in the initial

section is independent of any machine learning models trained on

off-rate data. Rather, the aim here is to uncover the individual

predictive power of each descriptor in estimating off-rate

mutations. The Pearson’s Correlation Coefficient (PCC) is used

to evaluate fine-grain predictive ability, i.e. the ability to make

numerical predictions. On the other hand, the Mann Whitney U-

Test and several classification measures described in Materials and

Methods are used to evaluate the coarse-grain ability to detect

stabilizing mutations from neutral and destabilizing mutations.

In the second part, the prediction of off-rates using machine

learning models is investigated. Here, several models using

both hotspot and molecular descriptors are built, and their

prediction patterns and anomalies highlighted. In order to uncover

Author Summary

Within a cell, protein-protein interactions vary considerably
in their degree of stickiness. Mutations at protein
interfaces can alter the interaction between protein pairs,
causing them to dissociate faster or slower. This may lead
to an alteration in the dynamics of the cellular networks in
which these proteins are involved. Therefore, the calcula-
tion and interpretation of mutants, which affect the rate of
dissociation, is critical to our understanding of complex
networks and disease. A key characteristic of protein–
protein interfaces is that a subset of residues are
responsible for most of the binding energy, such residues
are called hotspots and effectively represent the sticky
points of the interaction. In this work, we exploit both
hotspot energies and organization and use them for the
calculation of off-rate changes upon mutations. The
insights gained provide us with a clearer understanding
of the critical regions of stability and how they change for
complexes of different sizes. Moreover, we provide a
comprehensive map of the key determinants responsible
for the accurate characterization of different classes of
mutations, complexes and interface regions. This paves the
way for more intelligent computational-interface-design
algorithms and provides new insight into the interpreta-
tion of destabilizing mutations involved in complex
diseases.

Hotspots and Protein-Protein Dissociation Rates
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similarities in their predictions, the 713 off-rate dataset is

categorized into what we term as data regions. Such data regions

represent mutations that have a common physical property, or

come from a similar type of complex or region on the interface.

Mutations within a data region in turn might hold different

predictive difficulty than mutations in another. This data region

analysis enables us to identify current strengths in the prediction of

off-rates and conversely, mutations which are consistently harder

to characterize.

In the third part of this work, the use of specialized models

specific to different data regions is investigated. By doing so we are

able to identify descriptors of which their predictive value is highly

specific to subsets of mutations, regions on the interface, or types of

complexes. The specialized models are generated using a Genetic

Algorithm running Feature Selection (GA-FS) with either linear

(Linear Regression, LR) or non-linear (Support Vector Machines,

SVM) learning models.

In the latter sections, the effects of complex size and interface

area on the distribution of stability regions at the interface are

investigated. Issues related to cooperativity and conformational

changes, in the determination of off-rates, are also highlighted.

Results/Discussion

Hotspot descriptor generation
One of the main motivations behind this work is to explore the

use of currently available descriptors (physics-based and knowl-

edge-based potentials) and design a new class of descriptors

(hotspot descriptors) for describing changes in off-rates. On the

design of a new class of descriptors, our proposition is that

interface hotspots can be seen as the anchor points responsible for

the stable longevity of a complex. Namely, changes in the number

of hotspots, hotspot energies and their distribution across the

interface brought upon by structural mutations directly relates to

changes in off-rate. Our approach of using hotspot predictions and

subsequently hotspot descriptors for characterizing off-rates is

depicted in Figure 1. First a pre-mutation alanine scan is

performed; essentially this translates to using a hotspot predictor

of choice on each residue at the interface. This generates a

collection of single-point alanine DDGs that are then employed

differently depending on the hotspot descriptor in question (See

Table 1). For example if we are using Int_HS_Energy, then this

hotspot descriptor will sum all the energies of only the hotspot

residues. After all the hotspot descriptors for the wild-type complex

are calculated, the mutation in question is applied using FoldX

[43], such as the Arg to Leu mutation in Figure 1. Then, using a

hotspot predictor as in the wild-type scan, another computational

alanine scan is performed on the mutated interface. Again, all

single-point alanine DDGs are then fed into the hotspot

descriptors. Continuing with the example of Int_HS_Energy as a

hotspot descriptor, here the DDGs of only the hotspot residues on

the mutated interface are summed, and the final descriptor value

will be the change in the sum of the single-point DDGs to alanine

of all hotspot residues pre- and post-mutation. This value is then

correlated to DkoffLeuRArg.

Hotspot descriptors and hotspot predictors
The motivations and calculation for each of the 16 hotspot

descriptors is detailed in Materials and Methods. In summary (See

Table 1); Int_HS_Energy, is the difference in the sum all the

energies of hotspot residues pre- and post-mutation. HSEner_Pos-

Coop and HSEner_NegCoop are identical to Int_HS_Energy except

that, in order to account for positive and negative cooperativity

effects between hotspots within a hotregion, the hotspot energies

are down-weighted and up-weighted accordingly to the size of

hotregion they are in. CoreHSEnergy, RimHSEnergy and SuppHSE-

nergy, are similar to Int_HS_Energy, except that changes in hotspot

energies are limited to the given region on the interface. Each of

the 6 descriptors also has its coarse-grain counterpart (No_HS,

HS_PosCoop, HS_NegCoop, CoreHS, RimHS and SuppHS), where only

hotspot counts instead of energies are used in the calculations.

Other hotspot descriptors include the change in the size of the

largest hotregion (MaxClusterSize), the number of hotregions

(No_Clusters), the spread of the hotspots at the interface

(AVG_HS_PathLength) and Int_Energy_1 that characterizes changes

in all single-point alanine mutations at the interface.

A number of hotspot predictors are investigated for the

generation of hotspot descriptors, and in total 6 sets of hotspot

descriptors are generated (See Table 2). These include hotspot

descriptors generated from available hotspot prediction servers,

KFC2a, KFC2b [30], RFHotpoint1 and RFHotpoint2 [28], along with

the hotspot descriptors generated from hotspot prediction algo-

rithms developed in this work (RFSpot, RFSpot_KFC2). Explanation

of each hotspot prediction algorithm, its features, and performance

comparisons can be found in Materials and Methods. In summary,

KFC2a and KFC2b are SVM hotspot prediction models developed

in [30] and use a combination of solvent accessibility and plasticity

features. RFHotpoint1 and RFHotpoint2 are random forest models

using the features from the original Hotpoint [28] hotspot

predictor, but re-trained on a larger dataset from SKEMPI (Table

S16 in Text S4). RFSpot is a random forest model that employs a

large set of molecular descriptors and RFSpot_KFC2 adds to this

feature set, features from the original KFC2a and KFC2b models.

The use of multiple hotspot predictors enables us to probe

consistencies and anomalies in the predictive abilities of the

hotspot descriptors.

Off-rate changes of single-point and multi-point
mutations can be explained using hotspot energies of
single-point alanine mutations

Contribution of kon and koff to the binding free

energy. Our novel approach of using the DDGs of single-point

alanine mutations to characterize off-rates is based on two

generalizations. The first one being that, the change in binding

free energy is mostly reflected through a change in the off-rate

rather than the on-rate. If this is so, any prediction algorithm

designed for DDGs, may to some extent also be used for the

prediction of Dkoff and vice-versa. For the 713 off-rate mutations

used in this work, the corresponding experimental values for DDG

and Dlog10(kon) are also extracted (see Dataset S1), and the PCCs

between them are shown in Table 3A. The correlations are

calculated for single-point alanine mutations, single-point non-

alanine, multi-point, and on all mutations. Namely, DDG, shows a

correlation of R = 0.83 with Dlog10(koff) (Scatter Plot in Figure 2A)

and R = 20.6 with Dlog10(kon). More notably is that the DDG of

multi-point and non-alanine mutations is strongly reflected

through a change in Dlog10(koff) (R = 0.96, R = 0.92 respectively).

Other lines of evidence also show that the change in binding free

energy is largely explained through a change in off-rate; Namely,

mutagenesis studies in [44,45] show that the increases in

dissociation rate constants were the dominant cause for a decrease

in binding affinity. Work on the related phenomenon of protein-

DNA binding shows that 78% of the variance of log2(koff) is

explained by the variance of information of the binding site

sequence as opposed to 49% of the variance of log2(kon) [46]. In a

somewhat similar line of reasoning, work on the enhancement of

the protein-protein association rate shows that mutations that

affect binding free energy, as a result of affecting the on-rate with

Hotspots and Protein-Protein Dissociation Rates
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no change in the off-rate, are found at surface-exposed sites and

located at the vicinity of, but outside, the binding site - as those

within the binding site are generally off-rate modulating [47]. With

this in mind, for the 713 off-rate mutation dataset, only 25% of the

mutants are located at the edges (Rim) or outside the binding site

(Surface), hence we also expect that the larger portion of mutants

in our data, to predominantly affect the off-rate, as is also

confirmed by the correlations in Table 3A.

Explaining off-rate changes using DDG energies from

single-point alanine mutations. Given this link between DDG

and Dlog10(koff) we can use DDGs as a starting point for the

prediction of off-rates. The second generalization being, that we

can do so using only hotspot energies from hotspot predictors.

Hotspot predictors, although being DDG predictors, are limited to

characterizing DDGs of single-point mutations to alanine, as the

definition of a hotspot requires. Therefore, if one were to use the

DDGs of a hotspot predictor directly to estimate Dkoff, it is not able

to predict the effects of multi-point mutations and non-alanine

mutations (which form 49% of the 713 off-rate mutations in our

dataset). The main motivation behind the hotspot descriptors

designed in this work is therefore to be able to map the effects of

multi-point mutations and non-alanine mutations into energies

involving only single-point alanine mutations, where the latter can

be predicted by off-the-shelf hotspot predictors. To assess this

Figure 1. Off-rate estimation using hotspot energies and organization. In this work we generate a set of hotspot descriptors for
characterizing off-rate changes upon mutation. The hotspot descriptors use single-point alanine DDGs from computational alanine-scans generated
using hotspot prediction algorithms, to predict changes in off-rate upon single-point and multi-point mutations to all residue types. To do so, for a
given wild-type complex structure, the interface is scanned for hotspots using a hotspot prediction algorithm. The single-point alanine DDGs from the
scan are extracted and stored. Next, the structural mutation in question is applied and the mutated interface re-scanned for hotspots. This generates
a new set of single-point alanine DDGs for the mutated interface. Note that the mutation in question may also affect the hotspot energies of other
neighboring residues which are not mutated. The two sets of DDGs are then used to generate a set of hotspot descriptors, where the final hotspot
descriptor value is the change in the descriptor’s value from mutant to wild-type. For example in the case of Int_HS_Energy, the final value is the
change in the sum of the DDGs, of all hotspot residues, pre- and post-mutation. Hotspots are also categorized into core, rim, support and hotregions.
This enables us to investigate and account for cooperative effects within hotregions and to identify differences in regions critical for stability, both on
complexes of different size and interface area.
doi:10.1371/journal.pcbi.1003216.g001
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proposition, we make use of a representative hotspot descriptor

Int_HS_Energy,

Int HS Energy~
XN

nHS~1

DDGnHS?Ala

0
@

1
A

MUT

{

XN

nHS~1

DDGnHS?Ala

0
@

1
A

WT
ð1Þ

where the effect of a mutation on the off-rate is calculated as the

change in the sum of the hotspot energies across the interface

pre- and post-mutation (See Figure 1). The PCC of Int_HS_Energy

with Dlog10(koff), Dlog10(kon) and DDG are shown in Table 3B.

Given that Int_HS_Energy is generated separately using 6 hotspot

prediction algorithms, all correlations presented are the average

over its 6 instances. Int_HS_Energy provides a reasonable starting-

point estimate of changes in both DDG and Dlog10(koff), where

the PCC of Int_HS_Energy with Dlog10(koff) (See Figure 2B) and

Table 1. Summary of hotspot descriptors.

Hotspot descriptor Description

Int_Energy_1 Change in Total Interface DDGALA Energy

Int_HS_Energy Change in Total Interface DDGALA Energy of Hotspots

No_HS Change in Number of Hotspots

No_Clusters Change in Number of Unique Hotregions

MaxClusterSize Change in Number of Hotspots in Largest Hotregion

AVG_HS_PathLength Change in Hotspot Coverage

CoreHSEnergy Change in Total DDGALA Energy of Hotspots in Core Region

CoreHS Change in Number of Hotspots in Core Region

RimHSEnergy Change in Total DDGALA Energy of Hotspots in Rim Region

RimHS Change in Number of Hotspots in Rim Region

SuppHSEnergy Change in Total DDGALA Energy of Hotspots in Support Region

SuppHS Change in Number of Hotspots in Support Region

HSEner_PosCoop Change in Total Hotspot DDGALA Energy Accounting for Positive Cooperativity in Hotregions

HS_PosCoop Change in Hotspot Counts Accounting for Positive Cooperativity in Hotregions

HSEner_NegCoop Change in Total Hotspot DDGALA Energy Accounting for Negative Cooperativity in Hotregions

HS_NegCoop Change in Hotspot Counts Accounting for Negative Cooperativity in Hotregions

doi:10.1371/journal.pcbi.1003216.t001

Table 2. Pearson’s Correlation Coefficient (PCC) of hotspot descriptors with experimental Dlog10(koff) for the 713 off-rate
mutations in SKEMPI.

Hotspot descriptor RFHotpoint1 RFHotpoint2 KFC2a KFC2b RFSpot RFSpot_KFC2 Mean PCC
Variance in
PCC

Int_Energy_1 20.312 20.312 20.472 20.432 20.182 20.289 20.333 0.105

No_HS 20.433 20.266 20.429 20.496 20.493 20.496 20.436 0.089

Int_HS_Energy 20.568 20.312 20.546 20.527 20.532 20.559 20.508 0.097

No_Clusters 0.101 20.069 20.075 20.272 20.284 20.285 20.147 0.159

MaxClusterSize 20.225 0.022 0.094 0.052 20.163 20.292 20.085 0.162

AVG_HS_PathLength 20.152 20.139 20.031 20.197 20.110 20.016 20.108 0.071

CoreHSEnergy 20.608 20.365 20.369 20.427 20.541 20.560 20.479 0.105

RimHSEnergy 20.415 0.020 20.100 0.000 20.367 20.329 20.198 0.194

SuppHSEnergy 20.153 20.162 20.617 20.489 20.385 20.465 20.379 0.187

CoreHS 20.413 20.281 20.232 20.476 20.342 20.440 20.364 0.095

RimHS 20.319 20.071 20.181 0.000 20.128 20.176 20.146 0.109

SuppHS 20.156 20.153 20.430 20.344 20.480 20.441 20.334 0.146

HSEner_NegCoop 20.487 20.282 20.475 20.260 20.414 20.514 20.405 0.109

HS_NegCoop 20.330 0.013 20.049 20.356 20.415 20.460 20.266 0.198

HSEner_PosCoop 20.278 20.192 20.218 20.437 20.573 20.444 20.357 0.150

HS_PosCoop 20.013 20.256 20.138 20.154 20.494 20.457 20.252 0.190

doi:10.1371/journal.pcbi.1003216.t002
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PLOS Computational Biology | www.ploscompbiol.org 5 September 2013 | Volume 9 | Issue 9 | e1003216



DDG are R = 20.51 and R = 20.53 respectively. The anti-

correlation confirms that an increase in wild-type to mutant

interface hotspot energies results in a lower off-rate and hence

more stable complex.

The strength of correlation at R = 20.51, and those achieved

by other hotspot descriptors which also use single-point alanine

DDGs to describe off-rate changes, is better understood in the

context of other descriptors for off-rate estimation. The absolute

PCCs with Dlog10(koff) for both the molecular (110 in total,

including physics-based energy terms and knowledge-based

potentials) and hotspot descriptors (including 6 sets of 16 hotspot

descriptors as generated using the 6 hotspot predictors) are

calculated (See Text S5, Table S1). At n = 713, all absolute

correlations of |R|.0.1 are highly significant with p,0.001. A

ranked list for both sets is superimposed and shows that hotspot

descriptors can explain changes in Dlog10(koff) with markedly

higher correlations than a diverse set of molecular descriptors

(see Figure 3A). One should also note that, this is only an

assessment of the raw predictive power of the descriptors. Once

such a hotspot descriptors are fed into machine learning models

and trained on off-rate data, their predictive power can be

combined synergistically with that of others to achieve correla-

tions as high as R = 0.79 with Dlog10(koff), as is shown in

subsequent sections.

Accounting for experimental conditions. It must be noted

that, as with the DDG values used to parameterize hotspot

prediction algorithms, the koff values in the SKEMPI data set are

taken from different sets of experiments and were thus measured

in a range of experimental conditions. Therefore, we performed

an assessment of how severely variations in experimental

temperature, ionic strength and pH can introduce noise into

log10(koff) and Dlog10(koff). Firstly, 635 of the 713 values come

from experiments reported to be performed in the 295–298K

range, and 72 values either did not have their temperature

reported, or were reported as ‘room temperature’ or ‘standard

conditions’, corresponding to the 293–298K range [41]. The

remaining six experiments were performed at 323K. Thus, only

0.8% of the data lies outside of a 5K temperature range.

Although not reported in the SKEMPI database, most of the

rate constants were determined using surface plasmon resonance

or stopped-flow fluorescence in a relatively narrow range of

standard buffer conditions. Further, ionic strength and pH

predominantly affect the rate of association rather than the rate

of dissociation; electrostatic shielding and changes in protonation

state influence the long-range forces which drive protein

association, rather than the short-range forces which keep the

buried surfaces of the binding partners together. For instance, in

the M3-XCL1 complex, in which ionic strengths in the 0.2 to

1.5 M NaCl range were investigated, the rate of association

varied by over 70-fold, while the rate of dissociation varied by

less than 3 fold (Figure 2C and Table III of [48]). Similarly, in a

study of a VEGF-antibody interaction, varying pH in the 6.5–

8.5 range resulted in around 30% variation in dissociation rate,

while varying the ionic strength in the 10–1000 mM range

produced a two-fold change in koff [49]. Even assuming a large

three-fold standard error in koff, this would result in a standard

error of 3/ln10<1.3 in log koff [49]. Lastly and most

importantly, we make the assumption that though reference

states may change across experimental methods and studies,

within a given experiment the reference state is constant for the

experimental determination of the wild-type and its mutants,

which tend to be generated within the same experimental work.

Given that we train on values for Dlog10(koff) = log10(koff)
Mut -

log10(koff)
WT, any systematic variations associated with experi-

mental conditions are eliminated, and thus we believe that this

issue is less prominent for mutation prediction as it is for wild-

type. Given the above assessment, we believe that the noise

introduced by merging data from the different experiments that

make up the SKEMPI data set is significantly less than the

variation in Dlog10(koff) values which we are investigating and

span a range of 15.3.

Two-step complex dissociation. Complex association/dis-

sociation of two proteins A and B can be described using a two-

step reaction, where an encounter complex (AB*) is formed before

the final complex (AB) [50,51],

Figure 2. Relationship of off-rate changes upon mutation with
change in binding free energy and change in interface hotspot
energy. (A) The relationship between experimental values for
Dlog10(koff) and DDG for all the 713 mutations in the SKEMPI off-rate
dataset. (B) The relationship between changes in interface hotspot
energies, as predicted by RFSpot_KFC2 hotspot predictor, and change in
Dlog10(koff) for all the 713 mutations in the SKEMPI off-rate dataset.
Note that 50% of off-rate mutants in this dataset involve mutations to
non-alanine residues and include multi-point mutants. In turn
Int_HS_Energy characterizes these changes with the use of single-point
alanine DDGs as highlighted in Figure 1.
doi:10.1371/journal.pcbi.1003216.g002
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Both stable and unstable encounter complexes have been

suggested [50] and rate limiting steps may vary depending on the

complex in question [52]. In turn, experimental characterization

of these encounter states remains a major challenge [50]. In the

two-step model,

koff ~
k{1k{2

k{1zk2
ð3Þ

k21 represents the movement of proteins against an electrostatic

field [51]. However, from experiments on a wide range of

associating proteins, ionic concentration and hence long-range

electrostatic forces have been shown to have a minimal effect on

the off-rate [48,49,53], which suggests that in such cases, k21 is not

the rate-limiting step during complex dissociation. Here, k21..k2

and hence koff = k22. Therefore, for such cases, the breakdown or

stability of the final complex (AB) is the rate limiting step in

complex dissociation [51]. Under this assumption, which is the one

taken in this work, the encounter complex (AB*) need not be taken

into consideration.

Hotspot and molecular descriptors and fine-grained

detection of stabilizing mutations. The top 10 ranking

descriptors according to PCC with Dlog10(koff) from both the

hotspot and molecular descriptor sets are superimposed and are

presented in Figure 3B. The highest ranked descriptors all relate to

energetic changes in hotspots suggesting that changes in hotspot

counts is not sufficient to characterize changes in off-rate. The most

prominent being; the change in hotspot energies at the core region

(CoreHSEnergy) and the change in the total hotspot energies at the

interface (Int_HS_Energy). Given that these descriptors show up

when generated using different hotspot prediction methods,

indicates that they are insensitive to prediction biases of the hotspot

predictors generating them. Further analysis on the sensitivity of the

hotspot descriptors generated by each hotspot predictor is presented

in Text S2. Other descriptors which show high PCCs with

Dlog10(koff), include the change in total hotspot energy at the

interface on accounting for positive hotregion cooperativity

(HSEner_PosCoopRFSpot R = 20.57, see Figure 4C) and the change

in hotspot energies in the support region (SuppHSEnergyKFC2a

R = 20.62, see Figure 4A). Apart from the DARS atomic potential

(AP_MPS [54], see Figure 4B) designed for protein-protein docking

with |R| = 0.46, the top 10 molecular descriptors (Figure 3B

(black)) are dominated by coarse-grain statistical potentials.

Hotspot and molecular descriptors and coarse-grained

detection of stabilizing mutations. Understanding and pre-

dicting the consequences of mutations on protein-protein interac-

tions is a precursor to two important endeavors in biology. At one

end of the spectrum, destabilizing mutations at protein-protein

interfaces are a hallmark of many cancers and other complex

diseases [12]. At the other end, the identification of stabilizing

mutations is central to computational protein design strategies [8–

10,40]. To assess the discriminatory power of the hotspot and

molecular descriptors, the dataset is partitioned into (Dlog10(koff)

,21), representing the stabilizing portion of the dataset, and

(Dlog10(koff).0), representing the neutral to destabilizing portion of

the dataset (referred to as CDS1 –Classification Dataset 1).

Another dataset which removes the neutrals, as detailed in

Material and Methods, is also used (referred to as CDS2). For an

unbiased assessment of descriptor discrimination ability, a number

of discrimination performance measures are calculated; the Mann

Whitney U-Test (Figure 3C, E and Table S8 in Text S5), the

Matthew’s Correlation Coefficient (MCC) (Figure 3D, F), the Area

Under the Curve (AUC) (Table S9 in Text S5) together with a

number of classification performance measures (Table S4, Table

S5) as described in Materials and Methods.

Similar to the correlations with Dlog10(koff) (Figure 3 A, B),

the changes in hotspot descriptors show better discrimination

abilities than changes in molecular descriptors (Figure 3C–F).

This confirms that stabilizing mutations of multi-point and non-

alanine nature, may be also be detected using simply the energies

of single-point alanine mutations. Therefore, the more destabiliz-

ing are single-point mutations to alanine on the mutated

interface, compared to the wild-type interface, the more stable is

the interaction as a result of the mutation in question. Scatter

plots of representative hotspot and molecular descriptors (HSE-

nerPosCoopRFspot and CP_TB [55], see Figure 4C, D) which do well

on both CDS1 and CDS2 highlight a tendency to underestimate

stabilizing mutations. For both CDS1 and CDS2, the positive

cooperativity descriptors HSEner_PosCoop/HS_PosCoop dominate

the ranked lists (Figure 3C–F) and RimHSEnergy/RimHS

for CDS1 (Figure 3D). For example RimHSEnergyKFC2a achieves

a TPR/FPR/MCC of (0.52/0.09/0.51) on CDS1 where

neutrals are present. In turn, HSEner_PosCoopRFSpot achieves a

TPR/FPR/MCC of 0.58/0.05/0.62 for the detection of stabiliz-

ing mutants on CDS2. Given that HSEner_PosCoopRFSpot supersedes

Int_HS_Energy (additivity within hotregions assumption) and

Table 3. Relationship between experimental DDG, Dlog10(koff), Dlog10(kon) and change in interface hotspot energy (Int_HS_Energy)
for 713 mutations in SKEMPI.

A DDG Single-point alanine Single-point non-alanine Multi-point All 713 mutations

Dlog10(koff) 0.57 0.92 0.96 0.83

Dlog10(kon) 20.56 20.65 20.65 20.60

B Int_HS_Energy Single-point alanine Single-point non-alanine Multi-point All 713 mutations

Dlog10(koff) 20.33 20.34 20.62 20.51

Dlog10(kon) 0.12 0.08 0.22 0.17

DDG 20.48 20.29 20.57 20.53

(A) Shows PCC between experimental DDG with the respective Dlog10(koff) and Dlog10(kon) for single-point alanine, single-point non-alanine, multi-point and all 713
mutations. (B) Shows PCC between Int_HS_Energy with the respective DDG, Dlog10(koff) and Dlog10(kon) for single-point alanine, single-point non-alanine, multi-point
and all 713 mutations. Experimental values for the 713 mutations used here are extracted from SKEMPI [41] and are presented in Dataset S1.
doi:10.1371/journal.pcbi.1003216.t003

Hotspots and Protein-Protein Dissociation Rates

PLOS Computational Biology | www.ploscompbiol.org 7 September 2013 | Volume 9 | Issue 9 | e1003216



Hotspots and Protein-Protein Dissociation Rates

PLOS Computational Biology | www.ploscompbiol.org 8 September 2013 | Volume 9 | Issue 9 | e1003216



HSEner_NegCoop (negative cooperativity within hotregions assump-

tion) suggests that applying the general assumption of positive

cooperativity between hotspots within a hotregion, and accounting

for it, provides higher detection rates of stabilizing mutations (i.e.

Dlog10(koff),21). It should be noted however, that out of the three

hotspot predictors which generate the most discriminatory hotspot

descriptors (i.e. RFSpot, RFSpot_KFC2 and KFC2a), the positive

cooperativity descriptors which show high discrimination abilities,

are limited to those generated by RFSpot and RFSpot_KFC2. The

relationship of Dlog10(koff) and cooperative effects within hotregions

is addressed more specifically in the subsequent sections (see Effects

of hotregion size, count and cooperativity on the off-rate).

Off-rate prediction using machine learning models with
hotspot and molecular descriptors

Confirming that energy estimates of single point-alanine

mutations can be used to describe the effects of off-rate changes

of single- and multi-point mutations not limited to alanine, we

assess whether the whole set of 16 hotspot descriptors from each

hotspot prediction algorithm can be combined synergistically in a

model for off-rate prediction to achieve even higher correlations. A

separate Random Forest (RF) regression model is trained on the

713 off-rate mutant dataset using the descriptors generated by

each hotspot predictor (RFSpotOff-Rate, RFSpot_KFC2Off-Rate, RFHot-

point1Off-Rate, RFHotpoint2Off-Rate, KFC2aOff-Rate and KFC2bOff-Rate). In

Figure 3. Hotspot and molecular descriptors for estimating change in off-rate. The hotspot descriptors designed in this work are
benchmarked against a set of 110 molecular descriptors; both in their ability to estimate Dlog10(koff) and in their ability to detect stabilizing mutations
of Dlog10(koff) ,21. The performance measures shown here enable us to assess the raw predictive power of the descriptors independent of any
learning models. Green and black bars highlight descriptors from the hotspot and molecular descriptor sets respectively. (A) Comparison of the
distribution of the absolute PCC values for the hotspot descriptors designed in this work against that for the molecular descriptors. The related list of
descriptor names and their respective PCCs is found in Text S5. (B) Top 10 hotspot descriptors and top 10 molecular descriptor according to absolute
PCC with experimental Dlog10(koff). (C) Mann Whitney U-Test rankings for all descriptors where values are ranked according to 2log10(pval) and
represent the discrimination ability of the descriptors for the detection of stabilizing mutants (Dlog10(koff) ,21) from neutral to destabilizing
mutants (Dlog10(koff) .0) (Referred to as CDS1). This dataset contains 31 stabilizing mutants and 503 neutral to destabilizing mutants. (D) Matthew’s
Correlation Coefficient (MCC) rankings for all descriptors on same dataset. (E) and (F) are identical to (C) and (D) except that results are for off-rates
that satisfy |Dlog10(koff)| .1. This dataset contains 31 stabilizing mutants and 213 destabilizing mutants (referred to as CDS2).
doi:10.1371/journal.pcbi.1003216.g003

Figure 4. Hotspot and molecular descriptor scatter plots. The relationship between experimental values for Dlog10(koff) and (A) hotspot
descriptors showing highest correlation with Dlog10(koff) (SuppHSEnergyKFC2a - changes in hotspot energies in the support region as predicted by
KFC2a [30]), (B) molecular descriptor showing highest correlation with Dlog10(koff) (AP_MPS - the DARS atomic potential [54]), (C) top performing
hotspot descriptor for the detection of stabilizing mutants (HSEner_PosCoopRFSpot – changes in hotspot energies on accounting for positive
cooperativity in hotregions) and (D) top performing molecular descriptor for the detection of stabilizing mutants (CP_TB – coarse grained protein-
protein docking potential).
doi:10.1371/journal.pcbi.1003216.g004
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addition, models that add the set of 110 molecular descriptors to

the hotspot descriptors (RFSpot+MolOff-Rate, RFSpot_KFC2+
MolOff-Rate, RFHotpoint1+MolOff-Rate, RFHotpoint2+MolOff-Rate, KFC2a+
MolOff-Rate and KFC2b+MolOff-Rate) are also built for comparison.

Note that the ‘Off-Rate’ subscript is used to distinguish the off-rate

predictor trained on hotspots, from the actual hotspot predictor

generating the hotspot descriptors in question. The 20-Fold Cross-

Validation (20-Fold CV) results are concatenated to form of a set

of 713 test predictions and their PCC with Dlog10(koff) are shown in

Figure 5A (See Table S1 for list of predictions for each model).

The best performing off-rate predictor (RFSpot_KFC2Off-Rate,

R = 0.79, see Figure 6A) combines the hotspot descriptors

generated from RFSpot_KFC2 hotspot predictor and the molecular

feature set. In general, the models which combine both hotspot

and molecular descriptors achieve higher correlations to the

hotspot descriptor models, though which on their own, the latter

still achieve correlations of R.0.7 using only 16 hotspot

descriptors. Off-rate models using hotspot descriptors (Figure 6A

and B), have more stabilizing mutations in the lower left quadrant,

and hence such mutations tend to be less underestimated, than a

model using molecular descriptors (Figure 6C).

Prediction patterns and data region analysis. To gain a

better understanding of the stronger and weaker regions of

correlation in the off-rate dataset, and how dependent this

correlation is on the off-rate predictor in question, the predictions

of each off-rate predictor are also assessed at different regions of

the dataset referred to as data regions (see Materials and Methods)

and presented in Figure 5B. All off-rate predictors obtain good

correlation on core mutations, less so for support region mutations,

and the weakest correlations are found on rim region mutations.

The addition of molecular descriptors to the models, as presented

in the lower half of the matrix, increases the accuracy of the

Figure 5. Off-rate prediction models using hotspot and molecular descriptors. A number of RF regression and classification models are
built using different sets of hotspot and molecular descriptors. The prediction accuracy is also assessed on subsets of mutations defined as data
regions. The data regions enable us to identify classes of mutations, which are consistently harder to characterize, data set biases and prediction
patterns. (A) PCC values for off-rate model predictions with Dlog10(koff). Models use hotspot descriptors, or a combination of hotspot and molecular
descriptors. The different methods indicate the hotspot prediction method by which the hotspot descriptors where generated from. (B) Data region
analysis of predictions from each model. The prediction from each model are subset into the respective categories shown on the x-axis and values in
matrix show PCC achieved by the given model for the given data region. (C) MCC values for off-rate classifier model predictions for classification data
sets CDS1 in blue and CDS2 in red. CDS1 includes neutral mutations whereas CDS2 excludes neutral mutations; hence the detection of stabilizing
mutants is enhanced in the latter, though results for CDS1 are more relevant for interface design scenarios. (D–F) are similar to (A–C) except that off-
rate prediction models using subsets of molecular descriptors are investigated. CP – Coarse-Grain Potentials; AP – Atomic-Based Potentials; CP-AP –
All Statistical Potentials; PB – Physics Based Energy Terms. As a benchmark comparison, results for RFSpot_KFC2Off-Rate (best performing off-rate
predictor using hotspot descriptors) and RF_Spot_KFC2Off-Rate+MOL (best performing off-rate predictor using hotspot and molecular descriptors) are
also included in (D–F).
doi:10.1371/journal.pcbi.1003216.g005
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predictors both at the core and support regions, though rim

regions are still inadequately characterized. The hotspot descriptor

predictors are better at capturing effects of mutants on Small-

Interface-Area (SIA) than Large-Interface-Area (LIA) complexes.

This discrepancy is alleviated with the addition of molecular

descriptors to the models, where mutations in LIA complexes are

characterized with similar correlations to SIA complexes. Single-

point mutations to alanine are generally better characterized than

single-point mutations to non-alanine, and the addition of

molecular descriptors to the model again reduces this discrepancy.

RFHotpoint2Off-Rate, KFC2aOff-Rate and KFC2bOff-Rate models show

weak correlation for mutations to polar or charged residues, and

better able to characterize mutations to hydrophobic residues.

This discrepancy is not however observed in RFSpotOff-Rate and

RFSpot_KFC2Off-Rate models. The low correlations for mutations to

polar or charged residues for Hotpoint2Off-Rate, KFC2aOff-Rate and

KFC2bOff-Rate are alleviated once the molecular descriptors are

added to the models; and the highest correlations on these residue

types are achieved by RFSpot+MolOff-Rate and RFSpot_KFC2+
MolOff-Rate. In line with the PCCs shown in Table 3B, multi-point

mutations are notably better characterized than single-point

mutations, where in the former; correlations as high as R = 0.9

with Dlog10(koff) are achieved with certain models. This suggests

that the subtleties of single-point mutations are harder to

characterize than the collective effort of multi-point mutations.

Note that, though theoretically, multi-point mutations have the

potential to cause off-rate changes of larger magnitudes, this is not

so in the present dataset, where the mean and standard deviation

of|Dlog10(koff)| for multi-point mutations is 0.96 and 1.4 compared

to 1.17 and 1.48 for SP mutations. Therefore, we cannot conclude

that the reason for better prediction of multi-point mutations is

related to being able to predict extreme changes in Dlog10(koff)

better than subtle changes in Dlog10(koff). Results for more stringent

forms of cross-validation and model predictions on data regions,

which collect mutations on related complexes and interfaces

together, are also presented in Text S3. Here it is observed that

mutations on unseen complexes are markedly harder to predict,

though on controlling for conformational changes, this difficulty is

alleviated. Using specialized feature-selection models trained only

on mutations from related complexes, and analyzing their

descriptors shows that these are highly specific to certain classes

of complexes. Therefore, such descriptors cannot generalize to

unseen and unrelated complexes.

Prediction of stabilizing mutations. Similar to the regres-

sion RF models, several RF classification models are also built for

the detection of stabilizing (i.e. Dlog10(koff),21) mutants and

results are presented for both Classifier Dataset 1 (CDS1) and

Classifier Dataset 2 (CDS2). The MCC for the 20-Fold CV test

predictions are presented in Figure 5C (Blue: CDS1, Red: CDS2)

and related classifier performance measures are presented in

Figure 6. Off-rate prediction model scatter plots. The relationship
between experimental values for Dlog10(koff) and predicted values for
Dlog10(koff) with (A) RFSpot_KFC2Off-Rate+MOL, best performing off-rate
prediction model combining hotspot and molecular descriptors.
Hotspot descriptors for this model are generated using the
RFSpot_KFC2 hotspot prediction algorithm. (B) RFSpot_KFC2Off-Rate+MOL,
best performing off-rate prediction model using only hotspot
descriptors. Hotspot descriptors for this model are again generated
using the RFSpot_KFC2 hotspot prediction algorithm. (C) Molecular

Off-Rate
,

off-rate prediction model using molecular descriptors. The addition of
hotspot descriptors as observed in (A) to molecular descriptor model as
shown in (B) notably improves the prediction of stabilizing mutants,
which are all found in the lower left quadrant for RFSpotKFC2Off-Rate

+MOL.
doi:10.1371/journal.pcbi.1003216.g006
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Tables 4 A–B (See Table S2 and Table S3 for list of predictions for

each model). As expected our ability to detect stabilizing mutants is

diminished when neutral mutations are present. The highest MCC

obtained for CDS1 is achieved by RFSpot_KFC2Off-RateC

(MCC = 0.60, TPR = 0.45, FPR = 0.01) and RFSpot+MolOff-RateC

for CDS2 (MCC = 0.82, TPR = 0.84, FPR = 0.02). Figure 7A

shows the list of 31 stabilizing mutants (Dlog10(koff),21) sorted

according to the number of classifiers which detect the given

mutation as stabilizing. Of particular interest are those stabilizing

mutations which go undetected and therefore only data from

CDS2 is used, as all mutations undetected in CDS2 were also

undetected in CDS1, though not the contrary. Two stabilizing

mutants go undetected by all the predictors, namely the double

alanine mutant VA216A-YB50A on 1JTG and the 4-point mutant

CB161L-CB299F-KB287C-KB294C on 1MQ8. Stabilizing mu-

tations which are the harder to predict, as shown by the inability of

a number of different off-rate classifiers to detect them (Figure 7B),

generally involve a mutation to an alanine residue. Complex

stabilizing alanine mutations have been previously reported

[56,57], and the likely interpretation is that several side-chains

may sometimes hinder binding. For example, several alanine-

shaving experiments have show an increase in binding affinity

between protein binding partners, as found for an octa-alanine

mutant of the hGH receptor which binds its hGHbp ligand 50-fold

times tighter than the wild-type [56,57].

Off-rate prediction using molecular descriptors. The

off-rate prediction models investigated so far concentrated on the

use different off-rate prediction models which use hotspot

descriptors generated from different hotspot predictor algorithms.

Here the performance of models created from different categories

of molecular descriptors is shown. These include Atomic Potentials

(AP), Coarse-grain Potentials (CP) and Physics-Based energy terms

(PB) (See Text S1). The same protocol as in the previous sections is

followed, where regression models are trained on the 713 mutant

dataset and 20-Fold CV results are analyzed as a whole and also

separately on different regions of the data set. Classification

models are also built on CDS1 and CDS2. As a benchmark

comparison, the results of the best performing off-rate predictors

built on hotspot descriptors (RFSpot_KFC2Off-Rate) and the best off-

rate predictor built on both hotspot and molecular descriptors

(RFSpot_KFC2+MolOff-Rate) are also presented with those of the

molecular descriptor models (See Figure 5D–F). The physics-based

descriptors’ model (PBOff-Rate, R = 0.72) which includes CHARMM

[58], FoldX [43] and PyRosetta [59] energy terms performs better

than the models with coarse-grain (CPOff-Rate, R = 0.68) and atomic

(APOff-Rate, R = 0.61) statistical potentials alone or combined

(CP_APOff-Rate, R = 0.69). RFSpot_KFC2Off-Rate (R = 0.76) built on

hotspot descriptors only, achieves higher PCC than a model with

all molecular descriptors combined (CP_AP_PBOff-Rate, R = 0.72),

whereas the highest correlation is achieved when combining both

molecular and hotspot descriptors (RFSpot_KFC2+MolOff-Rate,

R = 0.79) as already highlighted in the previous section. On

analysis of the various regions of the off-rate dataset (Figure 5E) we

observe that on all data regions, either the hotspot descriptor

model or the molecular and hotspot descriptor models combined

always perform better than the molecular descriptor models. This

is most notable for SIA complexes and charged residues. Again

mutations at the rim regions are the least accurately predicted, and

Figure 7. Detection of rare complex stabilizing mutations using off-rate classification models. (A) Ranked list of 31 stabilizing mutations
(Dlog10(koff) ,21) in SKEMPI off-rate dataset. The list is ranked according to the number of off-rate prediction classification models that detect the
mutation in question as stabilizing. Detections per model (B) are highlighted in white, and non-detections highlighted in black. The lower portion of
(A) is dominated by single-point mutations to alanine residues, which suggests that the stabilizing effects of these mutations, as opposed to their
more common neutralizing/destabilizing effects, are much harder to characterize.
doi:10.1371/journal.pcbi.1003216.g007
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multi-point mutants are better characterized than singe-point

mutants. This is consistent with what is observed in Figure 5B for

the hotspot descriptor models. The highest discriminatory power

for the detection of stabilizing mutants, for both CDS1 and CDS2,

is achieved by the off-rate models which make use of hotspot

descriptors (Figure 5F).

Specialized feature selection models for off-rate
prediction

Previous analysis has been performed using models trained on

all the 713 off-rate mutations in the dataset, of which the

predictions were then subdivided into data regions for separate

analysis. Here, descriptors, which are specific to the prediction of

mutations within each data region, are investigated. To do so,

separate models are built for the different data regions of the

dataset using a Genetic Algorithm for Feature Selection (GA-FS)

as described in Materials and Methods. All 110 molecular

descriptors and 16 hotspot descriptors generated from the

RFSpot_KFC2 hotspot predictor are available for feature selection.

The feature set size is set to 5 features to avoid over-fitting and

both non-linear (using Support Vector Machines, SVM) and linear

(using Linear Regression, LR) models are investigated. For every

data region, 50 separate GA-FS runs are performed; an inner-

cross validation loop is used for FS (And SVM parameter

optimization), whereas an outer-cross validation loop is used for

testing the final model, of which the results are summarized in

Figure 8E (blue and red). The GA-FS models built on rim and

support region mutations achieve markedly lower correlations

than core region models, though a non-linear model increases the

accuracy of the latter two models. There are no notable differences

in the ability to model LIA and SIA complexes; however, multi-

point mutations are markedly better predicted than single-point

mutations. Polar and charged mutations show good correlation

which decreases when considering hydrophobic residues.

Broadly predictive and highly specific descriptors for off-

rate data regions. To uncover links between descriptors and

certain classes of mutations, the descriptors important for the

prediction of mutations within each data region are also analyzed.

For each region, the descriptors which are part of the final model

in at least half of the total number of runs are singled out for

analysis and presented in heat maps which indicate their

importance to the given data region (Figure 8A: GS-FS (LR)

and Figure 8B GS-FS (SVM)). On the y-axis, the singled out

descriptors are listed and categorized according to descriptor type

(CP, AP, PB, and Hotspot Descriptors from top to bottom), and

each data region shown on the x-axis. Globally, it is observed that

whereas for LR models, top features are distributed throughout

the four main feature categories, for the non-linear SVM models,

61% of the features are hotspot descriptors, suggesting that non-

linear relationships between hotspot descriptors can be better

exploited for the predictions of off-rates. To visualize the

interconnections between descriptors and data regions, descrip-

tor-data region networks are generated for both the LR (Figure 8C)

and SVM (Figure 8D) GA-FS runs. An edge between a descriptor

and a data region is shown if the given descriptor is part of the

final GA-FS model in at least 50% of the GA-FS runs for the given

data region (with increasing edge weight for .50%). For the LR

model, two statistical potentials (AP_T1 [55] , CP_MJ2 [60]) are

highly specific to rim region mutations, whereas others such as

HS_PosCoop, as highlighted by its high degree, are broader in their

predictive value and can explain off-rate changes in a number of

data regions collectively. Interestingly, for the support region,

MaxClusterSize is invoked which suggests that larger hotregions in

the support regions may be important for complex stabilization.
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Figure 8. Specialized feature selection models and descriptor-data region networks. Feature selection models using a genetic algorithm
are run for different data regions of the off-rate dataset for which both linear (using Linear Regression) and non-linear (using SVM regression) models
are investigated. For each data region, the GA-FS is run 50 times designed to find an optimal feature set of size 5. Initial features available in the
population are the 110 molecular descriptors and 16 hotspot descriptors generated by RFspot_KFC2. An inner-cross validation loop is used as a
scoring function for driving the feature selection whereas and outer-cross validation loop is used to assess the model prediction accuracy. (A) and (B)
shows the importance of the most selected features for each data region. The features shown are those that are part of the final model for any data
region on more than 50% of the GA-FS runs, and the color bar displays this percentage. The features on the y-axis are ordered as: coarse-grain
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Whereas certain descriptor-data region relationships hold for both

LR and SVM models, such as electrostatic contribution (CHARM-

M_elec [58]) for mutations on complexes of LIA, the ability to

model non-linearities between features, invokes some different

descriptors. Most notably, a key observation specific to the SVM

descriptor-data region network, is a central cluster of highly

interconnected hotspot descriptors and data regions, which involve

HS_PosCoop, HSEner_PosCoop, Int_HS_Energy and RimHSEnergy.

Having looked at both the use of specialized models (GS-FS

SVM/LR) for different types of complexes, mutations, and regions

on the interface, and the use of a global one-fits-all models (such as

RFSpot_KFC2+MolOff-Rate) for off-rate prediction, it is important to

highlight whether there is any advantage in having such

specialized models for the prediction of off-rate mutations which

fall under a given data region. In Figure 8E, the correlations for

the various data regions are compared. For most of the regions,

having one-fits-all model suffices, however, for mutations in the

rim region, and mutations to charged or polar residues, having a

specialized model markedly increases our ability to characterize

off-rates in these data regions.

Central and distributed stability regions in protein-
protein complexes

One advantage of using hotspot descriptors to estimate off-rates

is the ability to localize interface regions of high stability and assess

how mutations affect the distribution of stabilities, within these

regions. The importance of the core interface region is implicated

largely due to the tendency of hotspots to preferentially occur in

this region [24]. On the other hand rim residues seem to play a

more secondary role of solvent shielders by providing an ideal

dielectric constant for better interactions at the core [24]. In this

section we analyze hotspot energies at specific regions of the

interface, namely the core, rim and support regions and evaluate

whether complex stability can be effectively disrupted homo-

genously across the interface or preferentially in a particular

region. More specifically the role of rim residues is re-investigated

in the light of off-rate changes upon mutations on complexes of

various sizes and interface-areas.

CoreHSEnergy, RimHSEnergy and SuppHSEnergy represent the

change in total hotspot energies limited to each region upon

mutation. Effectively, the PCC of these descriptors with the off-

rate expresses how well changes in the given region show

themselves as changes in log10(koff) - irrespective of changes in

hotspot energies in any other region. Therefore, by assessing the

relative PCCs of the three regions we can gauge whether a given

region acts independently and dominates in its contribution to

complex stability compared to other regions. Given that we have 6

instances of each hotspot descriptor, as generated per each hotspot

predictor, the correlations for each descriptor shown are the mean

of each descriptor’s correlation under the 6 hotspot predictors.

Hence results can be considered to be independent of the hotspot

predictor generating the hotspot descriptors. From the PCCs of

the three hotspot region specific descriptors (CoreHSEnergy

|R| = 0.48, RimHSEnergy |R| = 0.20 and SuppHSEnergy

|R| = 0.38), it is observed that changes in the hotspot energies

at the core affect the off-rate more significantly than the rim

(p,,0.01) and support region (p,0.01). Given that 355

mutations affect hotspot energies in the core region compared to

148 and 182 for rim and support regions respectively, results may

however be biased. For example, if fewer events are observed at

the rim region, there is less chance of the rim region playing a

significant role in off-rate changes, when looking at it globally over

a population of complexes as is done presently. To remove this

potential bias, the subset of mutations, which affect all three

regions simultaneously, is extracted and the PCC recalculated.

The PCCs still suggest dominance from the core region

(|R| = 0.53), more significantly than the rim region (|R| = 0.22

p,,0.01).

Stability regions in SIA and LIA complexes. To investigate

whether the relative importance of these three regions of stability

change when considering complexes of different interface areas,

the dataset is divided into Small-Interface-Area (SIA) complexes

(,1600 Å2 buried surface area) and Large-Interface-Area (LIA)

complexes (.1600 Å2 buried surface area). The threshold of

1600 Å2 is such that both subsets are of similar number of

examples. The mean PCC for the CoreHSEnergy, SuppHSEnergy and

RimHSEnergy for LIA and SIA complexes is calculated and shown

in Figures 9A and 9B respectively. For the LIA complexes, a

dominant contribution from the changes in core hotspot energies

(CoreHSEnergy |R| = 0.48) and minimal contribution from SuppH-

SEnergy (|R| = 0.37) and RimHSEnergy (|R| = 0.20) is observed.

Therefore, even though a given set of mutations might be affecting

support or rim regions, it is the changes in hotspot energies at the

core region which show up as the dominant changes in the off-rate

(|R| = 0.48). For SIA complexes, changes in hotspot energies in

both the in the rim regions show a highly significant 2-fold increase

in correlation (p,,0.01). This renders all three regions with

similar contributions to complex stability (CoreHSEnergy

|R| = 0.56, SuppHSEnergy |R| = 0.46, RimHSEnergy |R| = 0.40).

For LIA complexes, the ratio of mutations applied in positions that

affect the core to those that affect the rim is 2:1. On considering

SIA complexes this ratio increases to 3:1. Therefore, we negate the

possibility that the increased presence of the rim hotspot energies

from LIA to SIA is due to an increase in the number of mutations

affecting these regions. Rather, we see an increase in correlation of

RimHSEnergy in spite of a reduction in mutations affecting these

regions. As an additional test which accounts for biases in the

number of examples affecting each region, the correlations are

calculated for only the mutations which make changes in the

respective region, again taking an average over all 6 hotspot

predictors’ descriptors. Here no significant changes in correlation

are observed in LIA and SIA complexes for the core and support

region. For LIA complexes, changes in rim hotspot energies have

minimal effect on the off-rate with |R| = 0.29, whereas for SIA

potentials, atomic-based potentials, physics-based energy terms and hotspot descriptors. (C) and (D) are descriptor-data region networks for (A) and
(B) respectively. Circled nodes represent data regions and square nodes represent features; therefore, only edges between circle and square nodes
are present. An edge is present if the feature is in the final model for the given data region in more than 50% of the GA-FS runs (dotted edge),
between 70–90% of the GA-FS runs (normal edge), more than 90% of the GA-FS runs (bold edge). Coarse-grain potentials (blue), atomic-based
potentials (yellow), physics-based energy terms (green), hotspot descriptors (pink) and data regions (gray). From the descriptor-data region networks,
descriptors highly specific to certain classes of off-rate mutations can be observed. Conversely, as in the case of the GS-FS (SVM) data region network,
a cluster of broadly-predictive hotspot descriptors is also shown. (E) Mean PCC of the optimal models found by the GA-FS runs for each data region.
For comparison, PCC results on the data regions results are also shown for RFSpot_KFC2Off-Rate+Mol. Note that the latter model is trained on all 713 off-
rate mutations, and the predictions are separated post prediction into data regions and analyzed for their PCC. This effectively compares the
predictions of specialized models vs. one-fits-all model. Though we find no evidence that specialized models perform better than a one-fits-all model,
certain subsets of mutations, such as those at the rim regions, show notable improvements when a specialized model is employed.
doi:10.1371/journal.pcbi.1003216.g008
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complexes, a 1.75-fold increase (p,0.01) in correlation is observed

(|R| = 0.51).

Complex size, interface area and stability regions. To

probe further the difference in the distribution of stability regions

in SIA and LIA complexes, the size of the complexes is also taken

into consideration. The dataset is divided into the mutations which

are found on Large-Complex-Size (LCS) (with 231 mutations) and

Small-Complex-Size (SCS) complexes (with 482 mutations). The

PCC for CoreHSEnergy, RimHSEnergy, SuppHSEnergy averaged over

the descriptors from all hotspot predictors is calculated for both

LCS and SCS (Figure 9C, D). Core hotspots are critical to the

stability of LCS complexes whereas for SCS complexes, all three

regions are important. This effect is synonymous with what is

observed in LIA and SIA complexes, though the increase in

correlation for RimHSEnergy (R = 0.07 to R = 20.36 p,,0.001) is

more pronounced for complex size. Noting that fewer mutations

are on LCS complexes, the percentage of mutants affecting each

region in LCS, compared to that for SCS, is similar across the

three regions (61%, 52% and 46% for core, rim and support

regions respectively) and therefore shows no relationship to the

changes seen in the PCC of the three regions from LCS to SCS.

On the 50 complexes considered in the 713 off-rate mutant

dataset, complex size and interface size show a correlation of

R = 0.55 (Scatter plot in Figure 9I). The correlation is higher

(R = 0.74) for complexes sizes of less than 500 residues, and

becomes insignificant (R = 0.18) beyond complex sizes of 500

residues. The dataset is therefore further divided into four

regions (Scatter Plot I), which include: SIA-SCS (191 mutations)

Figure 9. Stability regions, interface-area and complex-size. The changes in hotspot energies upon mutation are assessed at three interface
regions, which enable us to explore changes in the distribution of stability for complexes of different size and interface-area. CORE, RIM and SUPP
represent the PCCs of CoreHSEnergy/RimHSEnergy/SuppHSEnergy averaged for the 6 hotspot prediction algorithms with Dlog10(koff).(A) PCCs for
mutants on Complexes with interface-area .1600 Å2 (LIA). (B) PCCs for mutants on complexes with interface-area ,1600 Å2 (SIA). (C) PCCs for
mutants on complexes with size ,500 residues (SCS). (D) PCCs for mutants on complexes with size .500 residues (LCS). (E) LIA-SCS, (F) LIA-LCS, (G)
SIA-SCS, (H) SIA-LCS. (I) Scatter plot of complex size vs. interface area for all complexes in off-rate mutant dataset. Here it is observed that complex
stability is distributed across all three regions for small-size complexes (C, E and G), whereas the core becomes a localized region of stability for large-
complex sizes (D, F, H). On analysis of the interface-area vs. complex-size subsets (E–H), the distribution of stability regions is affected primarily
through complex-size irrespective of interface-area.
doi:10.1371/journal.pcbi.1003216.g009
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, SIA-LCS (67 mutations), LIA-SCS (191 mutations), LIA-LCS

(164 mutations) and again the PCC for CoreHSEnergy, RimHSEnergy,

SuppHSEnergy averaged over the descriptors of all hotspot

predicators is calculated and shown in Figure 9G: SIA-SCS,

Figure 9H: SIA-LCS, Figure 9E: LIA-SCS and Figure 9F: LIA-

LCS. Here it is observed that given a fixed complex size (SCS or

LCS), moving from small interface areas to larger interface areas,

the landscape for the contributions of the core, rim and support

regions is unchanging. Therefore, independent of the interface

area size, for low complex sizes the off-rate has the propensity to

be affected equally from all regions of the interface, whereas for

high-complex sizes, stability is primarily emanating from core

hotspots. Further analysis of SCS and LCS complexes shows a

greater sensitivity in off-rate changes upon mutations for SCS

complexes; the mean |Dlog10(koff)| is 1.4 and 0.69 for SCS and

LCS complexes respectively. Though the latter result is intuitive,

in that changes on large complexes are less likely to have effects as

significant as those on small complexes, the key finding here is that

on dissection of the three interface regions, the reduction in the

ability to make significant changes in LCS is not equally shared on

the three regions. Rather, mutations at the core can still have

notable effects on the stability of large complexes as in the case of

smaller complexes.

From our findings we confirm that the higher sensitivity of SCS

complexes to mutations manifests as an increase in the role of the

rim regions and also possibly the support regions. Support regions

represent residues which are generally buried both in the unbound

and bound structures; therefore, hotspots in this region are

primarily responsible for monomer stability as their disruption is

likely to affect intra-protein contacts. Given the correlations

observed between protein-size and protein stability [61], it is likely

that the possible increased role of support regions in SCS

complexes, though not as evident here as is for rim regions, is

related to monomer size. Rim region residues on the other hand

are generally exposed both in the unbound and bound states, but

form inter-protein contacts in the complex state. Of particular

interest is the observation that rim hotspots are unimportant for

the stability of large complexes, even for small-interface-areas.

However, given the small number of mutations affecting these

complexes (67 mutations), to substantiate this observation, further

experimental data may be required. Also for additional validation,

analysis of the flexibility of rim regions and the contribution such

flexibility is likely to make to the dissociation process, using for

example MD simulations on large and small complexes with small-

interface-areas, may give further insights.

Effects of hotregion size, count and cooperativity on the
off-rate

In this work we have shown that indeed changes in the energies

of hotspots upon mutations have a direct relationship with the off-

rate. More so, changes at certain regions of the interface such as

the rim may affect the off-rate differently depending on its size,

whereas the core is a critical stability region for complexes of a

wide range of size and interface areas. Hotspots tend to cluster into

tightly packed regions and the conservation of this type of

organization suggests that they are important for protein-protein

association [37]. The aforementioned analysis however is not

performed in relation to binding free energies or off-rates for

protein-protein interactions. Therefore, it is still not clear to which

extent, the presence, number and size of hotregions is advanta-

geous to complex stability. Using the hotspot descriptors and the

experimental off-rates, some insights into this can be gained.

Hotregion size, count and complex stability. Analysis of

the mean PCCs for No_Clusters (the change in the number of

hotregions upon mutation, R = 20.15) and MaxClusterSize (the

change in size of the largest hotregion R = 20.09), show no

notable contribution to changes in the off-rate (Table 2). Both the

change in interface hotspot energy, and change in the number of

hotspots show higher correlations (R = 20.51 and R = 20.44

respectively). For RFSpotKFC2, both No_Clusters and MaxClusterSize

show higher correlations than the average (R = 20.29, for both),

and the combination of the two descriptors into one using

multiplication increases the PCC with log10D(koff) to R = 20.48.

Nevertheless, its correlation of R = 0.6 with the change in hotspot

energies (Int_HS_Energy), suggests that the underlying mechanism

might still be the change in hotspot energies, irrespective of

hotregion size and count. Note also that this does not imply that

larger hotregions do not provide added stability to the complex,

but rather their disruption is not critical to complex stability.

Understanding if there is any advantage, when attempting to

increase complex stability, in having larger hotregions, or more

hotregions, would ultimately require analysis which controls for

the number of hotspots, varies the number of hotregions or their

size and assesses changes in the off-rate. However, current

experimental data is limited in size and diversity for this to be

performed comprehensively.

Hotregion cooperativity and complex stability. Probing

the importance of the tendency for hotspots to cluster into

hotregions, and for that matter, the importance of both size and

number of hotregions for complex stability, has also to be done in

the light of hotspot cooperativity. Cooperativity within hotregions

has been suggested to be a natural consequence of the tight

packing ratios found for hotspot residues in hotregions [37]. This

adds another layer of complexity in validating the role of

hotregions, as under cooperativity, larger hotregions do not

necessarily contribute more to complex stability. In turn, this

knowledge is critical in order not to overestimate or underestimate

the contribution of hotspot energies within hotregions. There are

two caveats to this, firstly we need to address the question of what

type of cooperativity exists within the hotregions and complexes in

the dataset, and secondly we need to have a function which can

model or in this case account for it. To our knowledge, this is the

first work to include energetic descriptors which account for

potential cooperative effects in an empirical scoring function.

Diversity of cooperative effects. The approach taken here

is that no assumption is made before hand for any type of

cooperativity prevalent in the complexes and hotregions within

our dataset. Rather the two hypotheses of positive cooperativity

(HSEner_PosCoop) and negative cooperativity (HSEner_NegCoop) are

investigated and compared to the baseline hypothesis of additive

hotspot energies (Int_HS_Energy) – (We refer to these three

descriptors as the cooperativity descriptors). The motivations and

design of these descriptors are detailed in Materials and Methods,

but effectively, the higher the PCC of these descriptors with the

off-rate, the more likely it is that hotregions on the complexes of

the 713 off-rate mutant dataset, show the given type of

cooperative/additive effect. In Figure S2, the PCCs of coopera-

tivity descriptors with Dlog10(koff) are highlighted for every hotspot

predictor investigated. From these results, we find no evidence for

a prevalent form of cooperativity in hotregions, as the additivity

assumption works generally better than positive or negative

cooperativity assumption. Several alanine scanning experiments

on protein-protein interactions indicate that mutations are, to a

large extent, naturally additive [62–64]. Eleven residues in the

helix-turn-helix motif of the N-terminal domain of Gamma

repressor, found in a region important for DNA binding, were

substituted to alanine using binomial mutagenesis [64]. The

additivity of two mutations was tested by comparing the observed
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and expected frequencies of the pairwise substitutions. Most of the

pairwise substitutions occurred among the active sequences at

frequencies close to the product of their single frequencies, thus

confirming their additive nature. More so, a model assuming

additive interactions was able to predict the activity class of

mutants with 90% accuracy [64]. In similar fashion, nineteen

residues within the hGH site 1 for binding to the hGHR were

randomized using a combinatorial, shotgun alanine-scanning

library [62]. On comparison of the counts of double alanine-

mutations in hGH site 1 variants selected for binding to the hGHR ,

from the 144 pairwise combinations, only 15 pairs (10%) behave

in a cooperative manner. Still, the analysis of such experiments

is not limited to only hotspot residues, and therefore cannot be

generalized to those of hotregions; for example combinatorial

mutant analysis of the TEM1-BLIP complex which is performed

on residues in tight packed modules, and hence more akin to

hotregions, shows that residues within a cluster tend to show

strong positive cooperativity [65]. With this in mind, our results

in Figure S2 are dependent on both the definition of a contact

and that of a hotregion. There is no rule of thumb on how to

define a contact or hotregion; in one example, the distance

between radii balls, with origins set on each C-a atom of the

residues in question, is used to define a contact between two

hotspot residues [37]. A hotspot residue is added to a hotregion

cluster if it is in contact with at least two existing hotspot

residues. Our definition uses a more fine-grain approach as a

contact between two hotspot residues is created if any of their

atoms are at a distance less than their van der Waals radii

+0.5 Å. Though for hotspot residues to be added in an existing

hotregion, it only needs to be in contact with any other of the

hotspot residues, and therefore might be a more lenient way of

adding hotspot residues to a hotregion cluster, which in turn

may render less packed hotregions. Other contact methods also

include weighted contacts according to whether side-chain or

Figure 10. Effects of cooperativity on effective energetic contribution of hotregions. The summation of single-point alanine DDGs of a
hotregion may underestimate/overestimate its contribution if negative/positive cooperative effects are at play respectively. In this work, in order to
account for potential cooperative effects, hotspot descriptors HSEner_PosCoop, HSEner_NegCoop apply linearly decreasing and increasing weights
respectively to single-point alanine DDGs within a hotregion. In turn Int_HS_Energy, based on the assumption the hotspot residues within the
hotregion can be assumed to be additive, does not apply any weights. Here, the effects of accounting for cooperative/additive effects on the
predicted hotspot and hotregions energies on all mutated complexes used in this work, is shown. (A) The mean hotspot energies for hotregion sizes
of 1 to 8 hotspot residues. Each column shows the predictions of different hotspot predictors. (A) First row (blue), shows the raw mean hotspot
energies, which essentially assumes all hotspots are additive within a hotregion. (A) Second row (red), assumes negative cooperativity within
hotregions. To account for negative cooperativity, a linearly increasing weight is applied to the hotspot energies according to the size of the
hotregion they are in (see Materials and Methods). (A) Third row (green), assumes positive cooperativity within hotregions and a linearly decreasing
weight is applied to the hotspot energies according to the size of hotregion. (B) is similar to (A) but values are now the mean of the total hotregion
energy of the given size. Effectively, the additive hotspot energy assumption results in hotregions contributing in a linearly increasing manner
according to their size, the negative cooperativity assumption results in hotregions contributing in an increasing exponential-like manner as the
hotregions increase in size, and the positive cooperativity assumption results in hotregions reaching a maximum contribution at around a hotregion
size of 5, with their contribution decreasing beyond.
doi:10.1371/journal.pcbi.1003216.g010
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backbone atoms are in contact [65]. Most importantly, these

different definitions generate different clusters of different

packing ratios depending on their leniency and stringency,

and therefore may affect the levels of cooperativity observed.

Another factor which may account for the inconclusiveness

regarding the more prevalent form of cooperativity, is the

modeling of cooperativity functions itself. Finding the right

weights to apply to hotregions to account for cooperativity is not

trivial as experimental data (such as [65]) is not common enough

to be able to learn cooperativity functions from experimental data.

Last but not least, the diversity of interactions within the dataset

may be better characterized with different cooperativity functions.

Interestingly, this diversity of cooperative effects is also observed in

the GA-FS runs performed on subsets of related complexes (see

Figure S4 in Text S3). Namely we observe that HSEner_PosCoop,

HSEner_NegCoop and Int_HS_Energy tend to be important for

different sets of related complexes in a mutually exclusive manner.

This re-stresses the importance of detecting when a given type of

cooperativity is present as much as it is important to model or

account for it accurately.

Effects of cooperativity on effective energetic contribution

of hotregions. In order to understand better the effects of our

cooperativity descriptors on the distribution of average hotspot

energy, and the average hotregion energy for different hotregions

sizes, we compare the average hotspot and hotregion energies of

different hotregions sizes with no cooperative weightings (i.e.

additive hotspot energy assumption), to those after positive

cooperativity and negative cooperativity weightings are applied

(Figure 10A–B). Analysis of the mean hotspot energies predicted

by each hotspot predictor (first row in Figure 10A) shows a

constant mean energy profile of hotspot energies within different

hotregions. For the additive energy assumption (first row in

Figure 10B) and the negative cooperativity assumption (second

row in Figure 10B), a linear and exponential-like increase of

energetic contribution from larger hotregions is shown respective-

ly. For the positive cooperativity assumption, application of a

linearly decreasing function on increasing hotregion sizes which

have constant hotspot energies to start off with, results in a bell-

shape contribution from hotregions. This suggests that maximum

stability is provided by HR sizes of around 5; therefore, a

saturation of HR contribution is achieved, beyond which larger

hotregions do not necessarily increase complex stability.

Off-rate prediction and conformational changes
Predictions of off-rate models are analyzed separately for

mutations on complexes which undergo significant backbone

conformational changes. The subset of complexes for which the

unbound crystal structures of the wild-type complex are available,

were singled out and their I_RMSD values for backbone

conformational rearrangements were extracted from [66].This

subset of complexes for which unbound crystal structures are

available, amounts to 17 complexes and 332 mutations. 67

Figure 11. Effects of conformational changes and off-rate prediction. Predictions of the original 13 regression models developed for off-rate
prediction. The predictions are assessed separately (PCC with Dlog10(koff)) for mutations on complexes which undergo significant backbone
conformational changes of I_RMSD .1.5 Å (dark green), notable conformational changes of I_RMSD .1 Å (light green) and little to no
conformational changes I_RMSD ,1 Å (dark blue). Predicted accuracy is directly related to the magnitude of conformational change and becomes
highly dependent on the model at higher levels of conformational changes. I_RMSD values were extracted from our previous work on the
construction of a protein-protein affinity database [66].
doi:10.1371/journal.pcbi.1003216.g011
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mutations on 4 complexes show significant conformational

changes with (I_RMSD .1.5 Å) as defined in [66], and if the

threshold is lowered to (I_RMSD .1 Å), this results in 119

mutations on 6 complexes. The PCCs for the off-rate model

predictions with Dlog10(koff) are shown under three conformational

change categories (Figure 11). The PCC, for complexes which

show little to no conformational change (I_RMSD ,1.5 Å),

averaged over all prediction models, shows a correlation of

R = 0.86, which decreases to R = 0.58 at (I_RMSD .1 Å) and

R = 0.28 at (I_RMSD .1.5 Å). Though for the latter category,

RFSpotOff-Rate achieves a correlation of R = 0.43. Changes in the

different models are more apparent at complexes with higher

conformational changes, most notably is the discrepancy in PCC

between Molecular and RFSpotOff-Rate off-rate prediction models.

This discrepancy is minimal at complexes with little conforma-

tional changes, DR = 0.01I_RMSD ,1.5 Å and increases to

DRI_RMSD .1 Å = 0.11 and DRI_RMSD .1.5 Å = 0.24 for complexes

with significant conformational changes. Reduction in the

prediction accuracies for wild-type binding free energy prediction

for complexes which undergo conformational change have also

been noted [42], constituting an important challenge. Several

factors may contribute to this, for example, complexes that are

natively unstructured/disordered in local regions, may still remain

disordered even in the bound state [67,68]. Binding site variability

has also been observed in certain complexes where the variability

is not explained by experimental or procedural inaccuracies [69]

and the off-rate may also be affected directly by the unbinding

mechanism [70]. In all these examples, having a single snap-

shot i.e. one conformational state for the complex we wish to

calculate off-rate changes for, may not provide a picture

comprehensive enough to predict off-rates. Methods for modeling

conformational changes which in turn can be used to generate

relevant snap-shots, are still one of the main limitations in current

docking algorithms [71]. The generation of relevant snap-shots

might also possibly involve the characterization of encounter

complexes and their stability, where both the computational

generation and experimental measurement of such states is still

major challenge [50].

Conclusions
In this work we take a comprehensive look at the determinants

of complex dissociation in relation to interface hotspot energies

and organization. Though the DDG of a mutation may manifest

itself as change in the off-rate as well as the on-rate [72], several

lines of evidence suggest a dominant contribution from the off-rate

[44–46]. Using experimental values on 713 mutations, in this work

we also find evidence for a stronger relationship of DDG with

Dlog10(koff). More importantly, our investigations show that the

change in the off-rate of a protein-protein interaction can be

sufficiently explained by the re-distribution of hotspot energies

caused by that mutation. Hence, the DDG of single-point alanine

mutations, and readily available hotspot predictors, can indeed be

used as a starting point for the estimation of off-rate mutations to

any residue type and also multi-point mutations. Given this, the

novelty in our approach is in the way we quantify the effects of a

mutation on the dissociation rate of a protein-protein interaction.

Namely, instead of directly calculating a number of features pre-

and post-mutation, a complete computational alanine scan is

performed at the interface pre- and post-mutation. Using the

single-point alanine energies from the scans we generate a set of

hotspot descriptors which describe both local and global changes

caused by the mutation in question. These include changes in the

size and distribution of hotregions, cooperative effects within

hotregions and changes in localized stability regions such as the

core, rim and support regions. Using these sets of hotspot

descriptors and a number of computational experiments, we are

able to gain new insights into the determinants of protein-protein

dissociation.

The predictive ability of the hotspot descriptors, in estimating

Dlog10(koff), is first assessed independent of a learning model.

Emphasis is given, both to numerical estimation and detection of

stabilizing mutations (Dlog10(koff),21). As a benchmark compar-

ison, the performance of the hotspot descriptors is compared to a

diverse set of molecular descriptors, varying from physics-based

energy terms to coarse-grain and atom-based statistical potentials.

Here we find consistently higher predictive abilities for the hotspot

descriptors, in estimating Dlog10(koff). The results suggest that both

the synergistic and distributional information within hotspot

energies may be exploited to uncover the more causative changes

in complex stability. More importantly, it proposes an alternative

way of modeling single-point and multi-point mutations to any

residue type, which is that of mapping them to functions using only

alanine DDG energies.

To assess the predictive abilities of hotspot descriptors when

combined in learning models, several machine learning models

trained on Dlog10(koff) are also investigated. The best regression

model, which combines both molecular and hotspot descriptors,

RFSpot_KFC2Off-Rate+Mol, achieves a PCC of 0.79 with experimen-

tal off-rates. Model predictions are also assessed on different

subsets of mutations defined as data regions. The data regions

enable us to identify, classes of mutations which are consistently

harder to characterize, data set biases and prediction patterns. We

find that core and multi-point mutations are the most accurately

predicted; however, mutations at rim regions are consistently

harder to characterize. In terms of the prediction of stabilizing

mutations, a pattern emerges where mutants to alanine which

stabilize the complex are harder to detect. To uncover relation-

ships between different subsets of off-rate mutations and descrip-

tors, we develop linear and non-linear feature-selection models

trained on data-regions. Descriptor-data region networks gener-

ated from these models, enable us to identify descriptors highly

specific to certain classes of mutations and those which are broadly

important to a number of different regions simultaneously.

The results gained in this work are particularly useful from a

computational design perspective. Off-rate classification models

for stabilizing mutation prediction (Dlog10(koff),21), achieve a

MCC of 0.59, which increases to 0.82 when neutral mutations are

excluded. We find that hotspot descriptors which are able to

capture the intricacies of off-rate changes related to the re-

distribution of hotspot energies and positive cooperative effects

play a key role in detecting such mutations. Secondly, we

underline the importance of performing a computational alanine

scan, if possible, before optimizing an interface. This presents a

distributional context that one may exploit and apply mutations

accordingly, and thus adopt a biomimetic design strategy

mirroring that taken by evolution. For example, our results

indicate that the distribution of the critical stability regions across

protein-protein interfaces is a function of complex size. Though

large-size complexes investigated here show more robustness to

mutations than small-size complexes, here we show the insensi-

tivity to mutations is not shared equally across all parts of the

interface, as changes in the core can still significantly affect

complex unbinding for large complexes. Conversely for small

complexes, the increase in insensitivity to mutations is distributed

homogenously across the interface, with hotspots in the rim region

becoming jointly critical for complex longevity. This suggests that

the accurate characterization of rim hotspots is important in the

design of small complex interfaces. Further advances in charac-
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terization of off-rate mutations are likely to be achieved upon

improved modeling of cooperative effects within hotregions and

that of conformational changes.

Materials and Methods

Method summary
Six hotspot prediction algorithms (RFSpot, RFSpot_KFC2,

RFHotpoint1, RFHotpoint2, KFC2a and KFC2b) are used for the

generation of hotspot descriptors, which are subsequently used for

the prediction of off-rates. The method is explained in Figure 1

and requires that the hotspot predictor in question generates a

prediction for each residue at the interface, both pre- and post-

mutation, akin to an alanine-scan. The energies from single-point

alanine mutations of the pre- and post-mutation scans are then

used to calculate a set of 16 hotspot descriptors. For each hotspot

predictors, its own set of hotspot descriptors is generated. The

hotspot descriptors enable us to use the energies from single-point

alanine mutations, particularly those which are hotspots, in order

to describe the effects of off-rate mutations to non-alanine

mutations and also multi-point mutations.

SKEMPI alanine dataset
The prediction of hotspots is an active area of research and

several hotspot prediction algorithms have been developed [25–

35]. One short-coming of these algorithms is that they have been

trained and tested on very limited alanine scanning databases,

namely ASEdb [73] and BID [74]. The shortcoming of these

datasets as benchmarks has been highlighted in [25,41]. To

address these limitations we recently assembled the largest

database of mutations to date, with 3047 experimentally

determined structures and binding kinetics, including free energy

changes, dissociation/association rates and enthalpies/entropies

where available [41]. All single-point alanine mutations, limited to

the complex interfaces, were extracted from the SKEMPI

database. This totals to a set of 635 non-redundant mutations

with experimental DDG in 59 different complexes and 154 hotspot

residues with DDG . = 2 kcal/mol (Table S16 in Text S4). All

hotspots represent the positive training examples and anything,

which is not a hotspot (DDG ,2 kcal/mol) as negative training

examples.

Hotspot predictor design and performance analysis
RFSpot and RFSpot_KFC2. For each training example in

the SKEMPI alanine dataset, and hence wild-type complex PDB

structure, a number of molecular descriptors, describing various

aspects of the interaction, were calculated. These descriptors have

already proven successful in our previous work related to the

prediction of wild-type binding free energies [42] and wild-type

kinetic rate constants [19]. A full list and explanation of the

molecular descriptors can be found in the Text S1. After

calculation of the molecular descriptors on the wild-type complex

PDB structure, each respective structural mutation was made

using FoldX [43] and the same set of molecular descriptors

recalculated. Each descriptor, fed into the learning model, is

determined as the difference between the mutant and wild-type

descriptor value:

DEDesc~DEMUT
Desc {DEWT

Desc ð4Þ

As a learning algorithm the RF classifier model is employed

[75], using 1000 trees and an mtry (i.e. number of random

variables sampled as candidates for a split) of 15. The RF learner

is well suited for high dimension datasets, such as the one

described here with 110 features. Throughout the manuscript, we

refer to this RF hotspot classifier algorithm as RFSpot.

RFSpot_KFC2 is a similar classifier model to RFSpot with the

difference that it adds to the 110 molecular features set, 13

features from the original KFC2a and KFC2b models. These

include: res_hp, pos_per, delta_tot, core_rim, rot5, plast4, plast5, fp10

from KFC2a and res_size, ratio5, rot4, hp5, fp9 from KFC2b. Details

on the calculation of each specific descriptors are described in

[30], most notably they include features which position the

mutation using solvent accessibility. This enables the model to

exploit the fact that hotspots tend to occur in regions of low

solvent accessibility [24] and is the key difference between RFSpot

and RFSpot_KFC2.

RFHotpoint1 and RFHotpoint2, KFC2a, KFC2b. Similar

to RFSpot and RFSpot_KFC2, RFHotpoint1 and RFHotpoint2, are RF

hotspot classifiers trained on the SKEMPI alanine dataset which

use only features from the original Hotpoint server as features, these

include: relativeComplexASA, relativeMonomerASA, pairPotential, complex-

ASA as described in [28]. RFHotpoint2 differs from RFHotpoint1 in

that for the former, the threshold is lowered to allow for more

hotspot detections at the cost of a higher FPR. The reason behind

developing the RFHotpoint models is due to the fact that the

original Hotpoint server does not associate an energetic or

confidence value to its hotspot prediction, hence hotspot

descriptors which make use of hotspot energies cannot be

calculated. RFHotpoint models therefore enable us to use Hotpoint

features, trained on a larger dataset of SKEMPI instead of ASEdB

(as in the original Hotpoint algorithm) and most importantly,

associated confidence values to our hotspot predictions using the

RF model. To validate RFHotpoint1 and RFHotpoint2 as a

representative alternative to Hotpoint, predictions from Hotpoint

server were generated for the SKEMPI alanine dataset. Any

predictions for mutations in ASEdB were also removed since

Hotpoint uses ASEdB as training data. The predictions are

compared to the 20-fold test predictions of RFHotpoint1 and

RFHotpoint2 for the same mutations and classification results are

presented in Table S15 in Text S4. Both RFHotpoint1 and

RFHotpoint2 achieve higher MCCs than Hotpoint. For KFC2a and

KFC2b, no models needed to be re-trained again, as the original

predictions from the KFC2 server have associated with them an

energetic value which can be directly used for the calculation of

the hotspot descriptors.

Hotspot energies. In the RF classifier model used in RFSpot,

RFSpot_KFC, RFHotpoint1 and RFHotpoint2, each tree in the 1000-

tree forest makes is own class prediction (Hotspot/Non-Hotspot) of

the mutation in question. The class which accumulates the

majority of tree-votes is the predicted class, and the difference in

the number of votes for the hotspot class relative to the non-

hotspot class (VotesHotspot- VotesNon-Hotspot) indicates the model’s

confidence in the predicted class. In this work, these confidence

values are used as an estimation of hotspot DDGs. The rational is

that the higher the confidence value, the more trees have predicted

this to be a hotspot, implying that larger numbers of different

feature subsets consider this to be a hotspot also. Given that several

different aspects of the protein interaction have vouched for the

example to be a hotspot, we expect the hotspot DDG to be larger.

To confirm this, RF regression models are trained on the same

training data as RFSpot, RFSpot_KFC2, RFHotpoint1 and RFHotpoint2

RF classifiers, in order to generate true DDG predictions and

compared to the confidence values generated by each of them.

Note that RFHotpoint1 and RFHotpoint2 use the same confidence

values and only differ by their threshold on those confidence

values; hence one correlation for the confidence values is presented
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for both. The confidence values of the classifier models, show

correlations of R = 0.88, R = 0.86, R = 0.86 with the regression

models’ DDG predictions for RFSpot, RFSpot_KFC2 and RFHot-

point1&2 respectively. Therefore, apart from the differences in

their absolute values, the confidence values do provide relative

values which have a direct linear relationship to DDG. On

assessment of the MCCs of the regression RF models at a

threshold of . = 2 kcal/mol, the regression models achieve lower

MCCs to that of the classifier models, all of which are the result of

higher FPR. Given that 75% of the DDG data is of the negative

non-hotspot class, minimal increases in the FPR add a significant

number of false-positives which would subdue the gain of

additional hotspots correctly detected. Therefore, the use of a

classifier in RFSpot, RFSpot_KFC2, RFHotpoint1 and RFHotpoint2,

enables us to achieve a lower false positive rate, to that of a

regression model, but still be able to have confidence values which

relate directly to DDG. For the sake of simplicity, we refer to the

DDG confidence values extracted by the method described here as

DDGs throughout the manuscript.

Performance of hotspot predictors on SKEMPI alanine

dataset. The predictive accuracy of the hotspot predictors from

which the hotspot descriptors are generated from (i.e RFSpot,

RFSpot_KFC2, RFHotpoint1, RFHotpoint2, KFC2a and KFC2b), is

assessed on the SKEMPI alanine dataset using a number of

classification performance measures. For RFSpot, RFSpot_KF2,

RFHotspoint1 & RFHotpoint2, the predictions results from a 20–Fold

CV are used, whereas for KFC2a and KFC2b the predictions

from KFC2 [30] server are used. Note that for KFC2a and KFC2b,

the predictions for the data which is in SKEMPI and not in

ASEdB is presented, as KFC2 server algorithm uses ASEdB

mutations for model design and training. The predictions are

compared to a number of hotspot prediction algorithms (KFC2

[30] HotPoint [28], Robetta [35], RFMirror [32], and TSVM

[31]). Details on each hotspot predictors and the sources of their

predictions are presented in Table S10 in Text S4. The

performance of each hotspot predictor is shown in Table S11 in

Text S4 and a list of their predictions in Table S16. Note however

that Table S11 in Text S4, though ranked according to MCC,

shows their performance on different mutations, and therefore

cannot be relatively compared. A relative comparison between two

predictors can only be performed on the intersections of mutations

for which both algorithms provide unbiased predictions, which is

beyond the scope of this work. However, this comparison is made

for the two hotspot predictors developed in this work namely

RFSpot and RFSpot_KFC2. Table S13 in Text S4 shows the

performance of RFSpot against all other hotspot predictors on their

data intersection, similarly for RFSpot_KFC2 in Table S14 in Text

S4. Though RFSpot excels at having a low false-positive-rate (FPR),

its true-positive-rate (TPR) is compromised. We note that some

hotspot prediction algorithms introduce features, which are based

on statistical tendencies of hotspots [30,32]. For example, the

inclusion of W, Y, R as features, since all three show a

predisposition to be hotspot residues [36], or the inclusion of the

accessible surface area of the residue in question, where it is known

that hotspots have a predisposition to occur at the core of the

interface [24]. To maintain an unbiased prediction scheme, based

purely on molecular and physical descriptors, we intentionally

avoid the inclusion of such descriptors in RFSpot, and this is the

probable reason for its low TPR. It is understood that the addition

of descriptors which relate to solvent accessibility may increase the

TPR of RFSpot as this would enable the RF learner to distinguish

between mutations performed at the core as opposed to those at

the rim, where less hotspots occur [24]. Indeed, it has been shown

that a predictor with just 3 solvent accessibility features can result

in a sensitivity of 0.87 (i.e. TP/(TP+FN)) for the BID test set [30].

This is also confirmed using RFSpot_KFC2 which introduces

features that relate to solvent accessibility and upon setting the

threshold to achieve the same FPR to that of RFSpot, the TPR is

increased from 0.27 (in RFSpot) to 0.49 (in RFSpot_KFC2). With this

in mind, low solvent accessibility is not a sufficient indicator of

hotspots as most residues at the core are still non-hotspots [24,30].

Such models are biased towards predicting hotspots at the core

regions as a result of a statistical tendency, and may lay the risk of

not being able to detect mutations in other regions as accurately.

The risk is even higher if the training set is small and other regions

outside the core are underrepresented. Though RFSpot_KFC2 uses

such solvent accessibility descriptors, the model uses other

molecular features and is trained on a more diverse alanine

dataset of SKEMPI as opposed to the ASEdB. Therefore, though

still present, the bias towards the prediction of hotspots towards

the core is not as strong.

Hotspot descriptor calculation and dataset
As depicted in Figure 1, for any given complex, a computational

alanine scanning is first performed on the wild-type interface using a

hotspot prediction algorithm. This enables calculation of the set of

hotspot descriptors described in Table 1. The respective single-

point or multi-point mutation is then applied using FoldX [43],

and another computational alanine scan is performed on the

mutated interface, again using the same hotspot prediction

algorithm invoked for the wild-type scan, from which a new set of

hotspot descriptors are calculated. The energetic value contributed

by each hotspot descriptor is then the difference in its energetic

value pre- and post-mutations:

DEHS Desc~DEMUT
HS Desc{DEWT

HS Desc ð5Þ

The hotspot descriptors are calculated for a set of 713 mutations

from the SKEMPI database [41]. Therefore, in total, for each

hotspot prediction algorithm, we make 50 wild-type and 713

mutant computational alanine scans. To ensure that off-rate

predictions are not made via hotspots models trained on the same

examples, all 713 computational alanine-scans made by RFSpot,

RFspot_KFC2, RFHotspoint1 and RFHotspoint2 are strictly 20-Fold-

test predictions for mutations common between the off-rate and

hotspot datasets, and test predictions for the rest. Therefore, all

hotspot predictions on which the hotspot descriptors are calculated

are unbiased and not susceptible to over-fitting. Each mutation in

the 713 off-rate mutant dataset has available the experimental

wild-type and mutant off-rates and the respective PDB structure.

This off-rate dataset is the largest assembled to date and

experimental off-rates within this set range cover a range of

Dlog10(koff) of 28.5 to 6.8, with koff units of s21 and represent a

diverse set of interactions as listed in (Dataset S1).

Hotspot descriptors
Hotspots provide a very rich source of information, which can

be exploited on many levels. Firstly, the occurrence of a hotspot is

not limited to any particular physical phenomena. Instead hotspots

are the result of the synergistic effect of different phenomena

together. These may include evolutionary pressures, along with

physicochemical and structural properties [76]. Thus, mapping all

the critical points for each to an interface produces a complex

distribution. However, the description of an interface though

hotspots is conceptually much simpler. From a computational

stand-point, the advantage is that one is able to represent an
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interface with a much smaller set of features without compromising

accuracy, as the effects of several phenomena is still encompassed

within the hotspots themselves. This reduction in feature set size is

also particularly attractive in the context of learning algorithms. A

second attractive attribute of hotspots is their distributional properties.

Hotspots tend to cluster into hotregions, within which, hotspots are

suggested to be energetically cooperative [37,65]. It has also been

shown that hotspots tend to occur more at the core regions as

opposed to the rims; however, low solvent accessibility is not a

sufficient property for a residue to be a hotspot [24]. Understanding

how these two aspects of hotspot structure and organization, relate to

the off-rate of a complex, is critical for an accurate characterization of

changes in the off-rate caused by mutations. The aim of the hotspot

descriptors designed here (Table 1) is therefore to present hotspots in

different positional contexts, which may affect complex destabiliza-

tion to differing degrees. The relevance of each descriptor to off-rate

variation is then assessed with different feature importance measures

and the key determinants of the dissociation process reported.
Interface hotspot descriptors. Int_Energy_1 is the difference

in the sum of the single-point alanine DDGs of all interface residues

N, pre- and post-mutation.

Int Energy 1~
XN

n~1

DDGn?Ala

 !MUT

{
XN

n~1

DDGn?Ala

 !WT

ð6Þ

Int_HS_Energy is the difference in the sum of the single-point

alanine DDGs of all hotspot residues NHS, pre- and post-mutation.

Int HS Energy~
XNHS

nHS~1

DDGnHS?Ala

0
@

1
A

MUT

{

XNHS

nHS~1

DDGnHS?Ala

0
@

1
A

WT
ð7Þ

No_HS is the change in number of hotspots predicted at the

interface pre- and post-mutation. This can be considered to be a

coarse-grained version of Int_HS_Energy.
Solvent accessible region hotspot descriptors. To ac-

count for the different solvent accessible regions where hotspots

may occur at the interface, the following hotspot DDGs are

summed separately for the core, rim and support regions and

termed as CoreHSEnergy, RimHSEnergy and SuppHSEnergy respec-

tively. Therefore, these hotspot descriptors are similar to

Int_HS_Energy but limited to counting DDG for hotspots that fall

in the given region. In addition, CoreHS, RimHS and SuppHS

desfcriptors, count the hotspot changes within each region. Again

these can be considered as coarse-grained versions of their

respective counterparts. The core, rim and support regions of the

complex interface are defined according to [77]. Core residues are

generally exposed in the unbound configuration but buried in the

bound state. Rim regions are generally exposed in both the bound

and unbound states whereas support residues are generally buried in

both states. The thresholds chosen in defining these regions are such

that each region has a similar number of residues [77].
Hotregion cooperativity descriptors. The cooperativity of

a pair of residues m1 and m2, can be calculated by comparing the

gain of adding each residue separately from a neutral reference state

of both wild-type residues mutated to alanine (DDGA1,A2RA1,m2+
DDGA1,A2Rm1,A2) to that of adding both residues concurrently,

given the same reference state(DDGA1,A2Rm1,m2) [78]. Namely, let

A1 and A2 represent the alanine mutation of m1 and m2 respectively,

then

DDDG~ DDGA1,A2?A1,m2zDDGA1,A2?m1,A2ð Þ�

DDGA1,A2?m1,m2

ð8Þ

If DDDG is positive, this indicates positive cooperativity as the

contribution of both residues together is more stabilizing than the

sum of their parts. Conversely if the DDDG is negative, this

indicates negative cooperativity, whereas if the DDDG is close to

zero, then such pairs can be considered to be effectively

independent of each other hence their contributions to be additive

in relation to each other.

Expanding DDGA1,A2RA1,m2 and DDGA1,A2Rm1,A2 we get

DDDG~ DDGm1,m2?A1,m2�DDGm1,m2?A1,A2½ �zð

DDGm1,m2?m1,A2{DDGm1,m2?A1,A2½ �Þ�DDGA1,A2?m1,m2

ð9Þ

DDDG~ DDGm1,m2?A1,m2zDDGm1,m2?m1,A2ð Þ{

DDGm1,m2?A1,A2

ð10Þ

In this work, we only make single point-mutations during the

alanine scan and calculate the energetics associated with such

complex states as in eqn (10): DDGm1,m2RA1,m2 and

DDGm1,m2Rm1,A2. The summation of these energies is then used

as an estimate of the off-rate. If hotspots within a cluster are

additive, then the summation of DDGm1,m2RA1,m2

+DDGm1,m2Rm1,A2 would be a sufficient estimate of the cluster’s

contribution to the off-rate. However if m1 and m2 are positively

cooperative, then their contribution towards the off-rate using the

summation DDGm1,m2RA1,m2+DDGm1,m2Rm1,A2 would be an

overestimate of the true contribution DDGm1,m2RA1,A2, hence

the positive value for DDDG. Therefore in this case, to account for

positive cooperativity we down-weight the summation of

DDGm1,m2RA1,m2+DDGm1,m2Rm1,A2. Conversely if m1 and m2

are negatively cooperative, then a positive weighting would be

more suitable to account for the underestimation. Further, higher

order cooperativity effects involving three or more residues are

known [78] and it is likely that many binding modules exhibit such

complexity, where it is not possible to decouple the contributions

from each individual residues. However, if we assume that

cooperativity effects are taking place, the weighting applied should

also reflect the number of residues suspected to be cooperative. With

this in mind, the cooperativity hotspot descriptors are designed as

follows; given a set of predicted hotspots at the interface, each hotspot

is categorized according to the hotregion cluster size it is found in. As

Int_HS_Energy assumes hotspot contribution is additive, the sum of

the hotspot energies is independent of the hotspot locations eqn (7).

On the other hand, HSEner_PosCoop and HSEner_NegCoop are the

sum of the hotspot energies downweighted/upweighted using simple

linearly decreasing/increasing functions related to the size of the

hotregion the given respective hotspot is in:

HSEner PosCoop~
XN

nHS~1

wDec
HR|DDGnHS?Ala

0
@

1
A

MUT

{

XN

nHS~1

wDec
HR|DDGnHS?Ala

0
@

1
A

WT
ð11Þ
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HSEner NegCoop~
XN

nHS~1

wInc
HR|DDGnHS?Ala

0
@

1
A

MUT

{

XN

nHS~1

wInc
HR|DDGnHS?Ala

0
@

1
A

WT
ð12Þ

where wHR
Dec = (0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1) and

wHR
Inc = (1, 0.875, 0.75, 0.625, 0.5, 0.375, 0.25, 0.125) for hotspot

nHS in a hotregion of sizes (HR = 1, 2, 3, 4, 5, 6, 7, 8+) respectively.

Though more complex non-linear weightings could be investigated,

such as ones fitted to the off-rate data itself, this would require

sacrificing parts of the data for fitting. With this in mind, all hotspot

descriptors designed in this work were independent of any off-rate

data. Coarse-grained versions HS_PosCoop and HS_NegCoop, which

weight hotspot counts instead of energies, are also implemented in

the model. One should note that since the energetic contribution of a

hotregion taken as a whole is considered to be additive and

independent of other hotregions [37,65] we only aim to investigate

and account for intra-hotregion cooperativity using these descriptors

as opposed to inter-hotregion cooperativity.

Hotspot coverage related descriptors. Other hotspot

descriptors relate to the spread of hotspots across the interface.

The intuition here is that a heterogeneous distribution of hotspots

across the interface might be more beneficial to complex stability

than if hotspots where concentrated onto a specific region of the

interface only. AVG_HS_PathLength is the average path length

between all possible pairs of hotspots at the interface, normalized

to the average path length of all possible pairs of a random set of

residues at the interface. The path length between two residues is

calculated as the least number of contacting residues linking them

together. Two residues are considered to be in contact if any of

their atoms are at a distance smaller than the sum of their van der

Waals radii +0.5 Angstroms. No_Clusters counts the number of

unique hot regions, where it is likely that more hotregions may

span the interface given that separate hotregions are not in

contact. MaxClusterSize counts the change in the number of

hotspots in the largest hotregion.

Definition of a hotregion. Some of the hotspot descriptors

use hotregion information within them (No_Clusters, MaxClusterSize,

HSEner_PosCoop/HS_PosCoop and HSEner_NegCoop/HS_NegCoop). A

hotregion is created whenever two or more hotspot residues are in

contact. Two hotspot residues are considered to be in contact if

any of their atoms are at a distance smaller than the sum of their

van der Waals radii +0.5 Å. A hotspot residue is added to an

existing hotregion, if any of its atoms makes contact with any of the

hotspot residues already in the hotregion.

Feature importance measures
The importance of the descriptors used in this work, in relation

to the dissociation rates, is assessed using three methods. The first

method is the global correlation of a given descriptor with the

target variable, which in this case is the experimental off-rate

Dlog10(koff). To calculate this, the Pearson’s Correlation Coefficient

(PCC) is used. A second method is the Mann-Whitney U-test,

which checks whether a set of two independent observations have

smaller or larger values than the other. The test is used to assess

the coarse-grain predictive power of our descriptors in discrimi-

nating between stabilizing mutants from neutral to destabilizing

mutants. Several other classification related measures are used for

this same purpose also, namely:

True-Positive-Rate (TPR)/Recall:
TP

TPzFN

False-Positive-Rate (FPR):
FP

FPzTN

Specificity:
TN

TNzFP

Precision:
TP

TPzFP

Accuracy:
TPzTN

TPzFPzFNzTN
Matthew’s Correlation Coefficient (MCC):

TP|TN{FP|FN

(TPzFP)|(TPzFN)|(TNzFP)|(TNzFN)

F1-Score:
2|precision|recall

precisionzrecall
where TP = True-Positive, FP = False-Positive, TN = True-Neg-

ative, FN = False-Negative. A third method used is an assessment

of descriptor importance in the context of a learning model where

several of the descriptors are combined together to make a

prediction. For this the built-in Random Forest Feature Impor-

tance measure (RFFI) is used [75]. Note that unlike the PCC,

Mann-Whitney U-test and the above mentioned classification

measures, the RFFI calculates feature importance as a function of

other features in the model.

Data regions
The 713 off-rate mutations from SKEMPI are also subdivided

into the following data regions for analysis: Single-Point (SP)

alanine mutations, 361; SP non-alanine mutations, 155; SP

mutations, 516; Multi-Point (MP) mutations, 197; SP mutations

to polar (Q, N, H, S, T, Y, C, M, W) residues, 39; SP mutations to

hydrophobic (A, I, L, F, V, P, G) residues, 309; SP mutations to

charged (R, K, D, E) residues, 68; mutations exclusively on core

regions, 272; rim regions, 79; support regions, 114; mutations on

complexes of Large-Interface-Area (.1600 Å2) , 355 and Small-

Interface-Area (,1600 Å2), 358.

Genetic Algorithm Feature Selection (GA-FS)
The GA-FS algorithm runs feature selection on subsets of the

off-rate mutation dataset defined as data regions. Two separate

GA-FS runs are performed, one for Linear Regression models and

another for Support Vector Machine (RBF) Regression Models

(using the LIBSVM package). Two separate 10-fold cross-

validation loops are used. One to assess prediction accuracy on

the off-rate mutations for the given data region and the second to

derive the optimal feature set. A 10-fold inner-cross validation loop

is used within the GA-FS fitness function to drive the feature

selection process with reference to Pearson’s Correlation Coeffi-

cients. After the GA has converged, the LR/SVM model is tested

for its accuracy on the outer-loop fold. This process is repeated 10

times such that all 10 outer loop folds are used as a test set

validation for the final model. Therefore, the accuracy of the final

model is tested on data which is not used to derive the feature set.

As an initial feature set available for selection, 110 molecular

descriptors and 16 hotspot descriptors from the best performing

off-rate prediction model RFSpot_KFC2 are available. A fixed

feature set size of 5 is chosen so as to avoid overfitting on smaller

sized data regions. Therefore, the genome size for the GS-FS (LR)

is 5 whereas that for GA-FS (SVM) is 7 to also optimize the cost

and gamma parameters of the RBF. Available cost parameters

values are quantized into 111 bins ranging from 225 to 26.

Gamma parameter values are quantized into 1300 bins ranging

from 228 to 25. The GA’s initial population size was set at 1000

individuals, and generated such that the initial population included

Hotspots and Protein-Protein Dissociation Rates

PLOS Computational Biology | www.ploscompbiol.org 25 September 2013 | Volume 9 | Issue 9 | e1003216



at least one instance of each of the 126 features. Tournament

selection was employed with a size of 8 individuals. Uniform

random crossover was used with a crossover fraction set to 50%

and a mutation rate that exponentially decreased as the number of

generations applied increased. Note that for each data region 50

separate GA-FS runs were performed.

Off-rate Classification Data Sets (CDS1 and CDS2)
To assess the discriminatory power of the hotspot and molecular

descriptors, the 713 off-rate mutations are partitioned into

(Dlog10(koff),21), representing the stabilizing portion of the

dataset, and (Dlog10(koff).0), representing the neutral to destabi-

lizing portion of the dataset (referred to as CDS1 –Classification

Dataset 1). The motivations behind the thresholds of CDS1 are

two-fold. Firstly, previous error estimates show that experimental

noise in the data can be as high as 2kcal/mol [41,42].

Experimental noise causes miscategorization errors when convert-

ing Dlog10(koff) from continuous values to categorical bins, and

therefore, the exclusion of data-points within [21, 0] should

reduce sufficiently the number of miscategorization errors between

stabilizing and neutral/de-stabilizing mutations. Secondly, being

able to detect stabilizing mutations from neutral ones is an

important aspect of interface design. As shown in Figure S1, the

range within [0, 1] contains 43% of the data. Therefore, the

removal of Dlog10(koff) within the range [21,0] still allows a

sufficient amount of neutral mutations. This data subset, results in

a dataset of 501 neutral to destabilizing mutations (referred to as

non-stabilizing mutations) and 31 stabilizing mutations (See

Dataset S2). To further investigate the discrimination ability of

the descriptors, an additional threshold satisfying |Dlog10(koff)| .1

is also investigated (Dataset S3). This dataset which removes most

of the neutrals is referred to CDS2.
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