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Abstract

Genome-wide molecular markers are often being used to evaluate genetic diversity in germplasm collections and for
making genomic selections in breeding programs. To accurately predict phenotypes and assay genetic diversity, molecular
markers should assay a representative sample of the polymorphisms in the population under study. Ascertainment bias
arises when marker data is not obtained from a random sample of the polymorphisms in the population of interest.
Genotyping-by-sequencing (GBS) is rapidly emerging as a low-cost genotyping platform, even for the large, complex, and
polyploid wheat (Triticum aestivum L.) genome. With GBS, marker discovery and genotyping occur simultaneously, resulting
in minimal ascertainment bias. The previous platform of choice for whole-genome genotyping in many species such as
wheat was DArT (Diversity Array Technology) and has formed the basis of most of our knowledge about cereals genetic
diversity. This study compared GBS and DArT marker platforms for measuring genetic diversity and genomic selection (GS)
accuracy in elite U.S. soft winter wheat. From a set of 365 breeding lines, 38,412 single nucleotide polymorphism GBS
markers were discovered and genotyped. The GBS SNPs gave a higher GS accuracy than 1,544 DArT markers on the same
lines, despite 43.9% missing data. Using a bootstrap approach, we observed significantly more clustering of markers and
ascertainment bias with DArT relative to GBS. The minor allele frequency distribution of GBS markers had a deficit of rare
variants compared to DArT markers. Despite the ascertainment bias of the DArT markers, GS accuracy for three traits out of
four was not significantly different when an equal number of markers were used for each platform. This suggests that the
gain in accuracy observed using GBS compared to DArT markers was mainly due to a large increase in the number of
markers available for the analysis.
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Introduction

Genomic selection (GS) is a new marker assisted selection

method based on the simultaneous use of whole-genome

molecular markers to estimate breeding values for quantitative

traits [1]. GS can accelerate the breeding cycle and increase

genetic gain per unit time beyond what is possible with phenotypic

selection [2]. Reviews are available on the application of GS to

plant breeding [3].

Key to implementing GS is the availability of inexpensive

whole-genome genotyping. One such recently developed platform

is Genotyping-by-Sequencing (GBS) [4]. Using advances in next

generation sequencing technologies, this approach uses sequencing

of multiplexed, reduced-representation libraries constructed using

restriction enzymes to obtain single nucleotide polymorphism

(SNP) data. The multiplexed libraries are sequenced on a single

run of a massively parallel sequencing platform. GBS has very low

per sample costs; an ideal situation for GS in applied programs.

GBS has been used with good results for GS in wheat [5] and

cassava [6]. GBS has the advantage that markers are discovered

using the population to be genotyped, thus minimizing ascertain-

ment bias. GBS typically generates a very large numbers of

markers but with a high rate of missing data because genomic

fragments in the library are sequenced at low depth leading to

some fragments having zero coverage in some individuals.

Ascertainment bias is introduced whenever marker data is not

obtained from a random sample of the polymorphisms in the

population of interest. It is a sampling bias. For example, the

preferential sampling of SNPs at intermediate frequencies will

result in a distribution of allelic frequencies that is different

compared to the expectation for a random sample. This type of

biased sampling can also result from the use of a small number of

lines in the SNP discovery process. This increases the frequency of

the most commonly polymorphic loci and eliminates markers for

loci that are less polymorphic in the screening panel. Consequent-

ly, estimates of population genetic parameters, allele frequency

distribution and linkage disequilibrium can be biased [7,8]. The

effects of ascertainment bias and marker platform on genetic

relationships have been studied in plants and found to have

complex effects on measures of diversity and relationships between

lines [9–11] that are not easily corrected.
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A number of cereals are characterized by complex and large

genome sizes (e.g. 16 Gb for wheat Trititicum aestivum L.). The

predominant marker platform for whole-genome genotyping in

wheat has been diversity array technology (DArT) [12–14]. DArT

was developed as a hybridization-based solution, which uses a

microarray platform to detect restriction site polymorphism using

methylation sensitive restriction enzymes [12]. DArT generates

whole-genome genotypes by scoring the presence versus absence

of DNA fragments hybridized to a microarray in a reduced

representation library generated from samples of genomic DNA.

DArT markers were used for most of the recent investigations

concerning cereals genetic diversity and for initial studies on GS

[15–17]. However, it is not known if diversity should be re-assessed

using marker platforms subject to less ascertainment bias. In

addition if reports suggest that GBS gives good results for GS in

wheat [5], it is not known whether that difference is due to the

large increase in the numbers of markers available or to differences

between the platforms. Our objectives were to quantify the

differences between the DArT and GBS marker platforms for

population genetics metrics and GS accuracy in winter wheat, to

determine if the same number of GBS markers can deliver

prediction accuracies significantly different than DArT, and to

determine whether any accuracy difference can be explained by

either ascertainment bias, or non-random marker distribution

across the genome.

Results

Diversity Analysis
A population of 365 soft winter wheat varieties and F5–derived

advanced breeding lines originating from multiple crosses in the

Cornell University Wheat Breeding Program (Ithaca, NY) was

analyzed in this study. Lines were genotyped with 5,000 Diversity

Array Technology (DArT) markers resulting in 1,544 polymorphic

markers. All lines were also genotyped using GBS as described in

[18]. The DArT markers had 3.1% missing datapoints and the

GBS data had 43.9% missing datapoints for 38,412 markers,

where a data point refers to one cell in the marker data matrix.

The impact of imputation on the DArT given its low level of

missing data was assumed to be marginal [19]. Missing marker

data were imputed using random forest [20] as described in [19]

separately for the DArT markers and the GBS markers. Using all

the markers available for each platform revealed both similarities

and differences in the Principal component analysis (PCA) plots

(Figure 1). Both PCA plots clearly separated the different large full-

sib families present in the data. The first principle component axis

explained a similar amount of variation in both analyses, and

visually the relationships among lines were similar. In spite of

many overall similarities, however, we detected some differences

between DArT and GBS PCA. The GBS plot was rotated

compared to the DArT markers plot suggesting that the second

eigenvector was different between the DArT and GBS markers.

There was a scale difference between the DArT markers and the

GBS PCAs attributable to the large difference in the number of

Figure 1. PCA plots for respectively all DArT markers (A) and all GBS markers available (B). A few large full-sibs families are color coded.
(blue: Pioneer 2737W/Geneva, orange : Pioneer 2737W/Cayuga, green: Coker 8427 /AC Ron, purple: Diana/NY80095-6, red: Cayuga/Caledonia). Full-
sibs are lines with the same both parents. Some of the important lines in the breeding program are indicated by their name on the plot to allow a
comparison of the two PCA plots.
doi:10.1371/journal.pone.0074612.g001
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markers between platforms. Because there are many more markers

with GBS, the distances between genotypes appeared larger. The

small observed differences in the representation of genetic

distances between lines were investigated by analyzing the R2

between the eigenvectors of the PCA on all DArT markers with

the eigenvectors of the PCA on all GBS markers. This analysis

revealed some difference between platforms (Figure 2). If the PCA

in both cases were capturing the same patterns and in the same

order, the diagonal elements of the heatmap should have had a

value of one and all the other cells should have had a value of 0.

This was the case for the first few axes because the two first axes

between both platforms were correlated (R2 of 0.65 and 0.54

respectively). For axes three to five it appeared that both platforms

captured a similar pattern but the variance was distributed

differently between the axes. For the remaining axes there was

very little resemblance between the patterns captured by all GBS

and all the DArT markers except for the eighth principal

component. This was due to ascertainment bias or to far fewer

markers for the DArT markers.

Those differences were further investigated and quantified by

using a bootstrap approach to test significance of the differences.

1,544 GBS markers (same number as DArT) were sampled 1000

times and a number of metrics calculated. These tests were used to

determine if the difference between DArT and GBS markers was

significant, which would indicate that the DArT and GBS markers

were drawn from different distributions.

As suggested by Figure 1 results, the big picture of the diversity

as measured by the number of identified genotype groups was not

significantly different between DArT and GBS (Table 1). The

composition of the groups was not compared in the bootstrap

approach as there was no simple statistic for comparisons with

varying group numbers. Similarly, there were no significant

differences in the variances explained by the first eigenvector (P-

value 0.176) in both PCA with the bootstrap approach.

The Fst (measuring sub-population differentiation) was much

higher with the DArT markers than with any bootstrap sample of

the GBS markers indicating a stronger apparent population

differentiation with the DArT markers. The second eigenvector of

the DArT markers PCA captured much less of the total variance

than any sample of the GBS markers bootstrap samples. This was

an indication of an apparent more complex diversity pattern as

captured by the DArT markers.

To measure the information lost when the relationship matrix

was calculated using either DArT markers or an equal number of

GBS markers, the Kullback-Leibler divergence was used [21] with

the same bootstrap approach as previously described. It measured

the information lost when the relationship matrix is used to

approximate a reference covariance matrix based on all the GBS

markers available. The Kullback-Leibler divergence was much

higher with the DArT markers than with any bootstrap sample of

the GBS markers. Similarly the correlation between the relation-

ship matrix based on DArT markers with the relationship matrix

based on all the GBS markers available was much lower than with

any bootstrap sample of the GBS markers. This shows that there

was a significant difference in the picture of diversity captured by

the two marker platforms.

The Minor allele frequency (MAF) distributions of the DArT

and of the GBS markers were compared by building a 95%

bootstrap confidence interval for quantiles of the GBS bootstrap

distribution (Figure 3). If the MAF distribution for the DArT

markers were not contained within the 95% confidence interval

generated from the GBS bootstrap distribution, it would indicate

that the MAF distribution of the DArT is significantly different

from the GBS MAF distribution. The graph on Figure 3 shows

that DArT markers are outside the GBS confidence interval for a

number of MAF bins (Equal intervals of size 0.05). This indicated

that the DArT markers MAF distribution significantly differs from

the MAF distribution of the GBS markers. The DArT markers

show a clear excess of rare variants (MAF below 0.2) compared to

the GBS markers and a large deficit of frequent variants (MAF

above 0.4). The MAF distribution for all the GBS markers with

and without imputation was compared (Figure S1), and the effect

of imputation on the MAF distribution was negligible.

A similar confidence interval based on a bootstrap distribution

was built for the percent of variance captured by each eigenvector

of the PCA and is presented in Figure 4. If the DArT values were

outside of the 95% confidence interval it would indicate that the

percent of variance captured by each eigenvector of the PCA is

significantly different between GBS and DArT. The distribution of

variance between eigenvectors for the DArT and the GBS markers

was significantly different for every given eigenvector, except the

first eigenvector (Figure 4). This also demonstrates that, despite an

overall similar main picture (same amount of variance captured by

the first component), the diversity picture was significantly

different between the GBS and the DArT markers.

Redundancy Analysis
Bootstrap p-values were calculated to test for a significant

difference in marker redundancy between DArT and GBS

platforms. A tag SNP selection procedure [22] was used to select

subsets of non-redundant markers. In this procedure, pair-wise

marker associations were measured using R2. The degree of

redundancy in the DArT and GBS markers was assessed using R2

cutoffs of 0.7, 0.8, and 0.9 for the tag SNP selection procedure

(Table 2). All markers were used for this analysis. Bootstrap p-

values indicated that there were significantly more redundant

DArT than GBS markers, indicating that DArT markers tended to

cluster more than the GBS markers. The P-value corresponded to

the probability of obtaining the same number or a lower number

of non-redundant markers with GBS markers. Similarly, the

variance of the Euclidean distance between GBS markers,

Figure 2. Heatmap of the R2 of the eigenvector between the
two platform. R2 between eigenvectors of the PCA on all DArT
markers and eigenvectors of the PCA on all GBS markers after random
forest imputation.
doi:10.1371/journal.pone.0074612.g002
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calculated using their marker scores as predictors, was smaller for

all GBS bootstrap samples (mean 27.61) than the DArT markers

value (30.86). This indicates that GBS markers were significantly

more evenly distributed across the genome than DArT markers.

The same analysis was also done with non-imputed markers and

gave similar results (Table S1).

GS Analysis
Phenotypic data for four traits were analyzed: grain yield, plant

height, heading date, and preharvest sprouting (PHS) as

described in [15]. Preharvest sprouting is the premature

germination of seeds while still attached to the mother plant.

As was done previously, a bootstrap approach was used to test for

the significance of the difference in cross-validated accuracy

between DArT and GBS markers for an equal number of

markers. A simple ridge regression Best linear unbiased predictor

(BLUP) was used with a 10-fold cross-validation. The cross-

validation partition was identical for all analyses. When using the

same number of markers, redundant or not, the difference in

accuracy was not significant for three out of four traits (based on

bootstrap p-values) (Table 3). When using all the GBS markers

available, accuracy was higher than with the DArT markers. To

demonstrate that inclusion of GBS markers with high levels of

missing data was appropriate, subsets of GBS markers were also

selected based on a missing data threshold per marker and GS

accuracies were computed (Table S2). With variation between

traits, accuracies reached a plateau when including markers with

a high level of missing data. (Between 15% missing data for

heading date and 80% for plant height). This corresponds to a

minimum of 4787 GBS markers compared to 1,544 DArT

markers available.

Table 1. Population genetics parameters computed using the DArT and p-value from the GBS bootstrap.

Parameter N groups geno R2 1st PC R2 2nd PC Fst (Weir)
Kullback-Leibler
divergence A matrix correlation

All DArT markers 8 0.099 0.061 0.24 698.32 0.7

P-value 0.205 0.176 0 0 0 0

Number of clusters of lines identified, R2 explained by the first two PCA components, Fst corrected for subpopulation size difference. The Kullback-Leibler divergence
and the A matrix correlation test the significance of the difference between the A matrix calculated with all the GBS markers and the A matrix based on the DArT
markers. Note that the bootstrap P-value does not compare the values obtained with all DArT markers to the value obtained with all GBS.
doi:10.1371/journal.pone.0074612.t001

Figure 3. DArT MAF distribution and 95% confidence interval
from the GBS bootstrap. The filled circle corresponds to the DArT
and the empty circle corresponds to the mean of the 1000 GBS
bootstrap samples.
doi:10.1371/journal.pone.0074612.g003

Figure 4. DArT PCA R2 and 95% confidence interval from the
GBS bootstrap. The filled circle corresponds to the DArT and the
empty circle corresponds to the mean of the 1000 GBS bootstrap
samples.
doi:10.1371/journal.pone.0074612.g004

Table 2. Non-redundant GBS and DArT markers and P-value
function of the R2 cutoff.

R2 cutoff 0.9 0.8 0.7

All GBS 35,462 31,605 27,197

All DArT markers 956 787 699

P-value 0 0 0

Note that the bootstrap P-value does not compare the values obtained with all
DArT markers to the value obtained with all GBS. Rather the P-value is for the
observed DArT markers value on a bootstrap distribution of the GBS markers.
doi:10.1371/journal.pone.0074612.t002
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Discussion

Our analyses tested for significant differences between DArT

and GBS markers when the number of markers was the same.

That is, whether the DArT could have been drawn from the same

distribution as the GBS markers. Our results indicated that the

DArT and GBS marker data yielded significantly different results

for several statistics related to diversity. For a number of metrics, it

was very clear that the DArT markers were not drawn from the

same distribution as the GBS markers. This difference was likely

due the ascertainment bias inherent in the DArT markers because

DArT markers were discovered and validated on a screening panel

independent from the genotyped population while with GBS the

marker discovery and genotyping took place at the same time. The

analyses showed that the diversity image was distorted using DArT

compared to GBS markers for an equal number of markers, even

though a largely similar first principle component was captured by

both platforms. The difference in eigenvalues R2 was significant

between platforms indicating an apparently more complex

diversity pattern as captured by the DArT markers. This would

suggest that DArT markers overestimated the genetic diversity and

differentiation in this population compared to the GBS markers.

This was a clear indication of ascertainment bias [8]. The

significant difference in Fst between platforms was also an

indication of ascertainment bias [7].

DArT markers had a significantly different MAF distribution

from the GBS markers with an excess of rare variants compared to

GBS. The different MAF distribution showed that the DArT

polymorphism frequency distribution was quite different from the

polymorphism frequency of all the variants in this population. This

could be caused by the discovery process, done on an independent

screening panel of lines. Only, polymorphisms that were in high

frequency in the screening panels are genotyped, while common

variants in this breeding population might have been rare or

absent in the screening panel, and thus, were not included on the

DArT array. We also expect some bias with GBS. If an allele

frequency is too low, it will only be read a few times, and likely be

discarded by the GBS pipeline as a sequencing error.

Furthermore, we found that greater ascertainment bias in the

DArT marker set led to greater redundancy of polymorphisms

compared to those of the GBS marker set. This non-random

sampling of polymorphisms in the genome (contributing to

ascertainment bias) was most likely introduced by the restriction

enzymes and screening panels used to develop the DArT array. If

the restriction sites are not randomly distributed across the

genome, the markers on the DArT array will also be non-

randomly distributed, consistent with what we observed. DArT

used TaqI and PstI, while the GBS protocol in this study used PstI

and MspI. The differences between the two protocols go beyond

the choice of enzymes as DArT uses arrays of cloned PstI-PstI

fragments of size 0.4 to 1kb [13] while GBS directly sequences

PstI-MspI of size between 170 and 350 bp [4]. Because of those

differences in protocol it was not possible to test if the observed

non-random distribution of the DArT across the genome is due to

the choice of restriction enzyme itself or to other constraints of the

protocol.

These findings illustrated that the reduced ascertainment bias of

GBS compared to DArT markers led to differences in diversity

measurements, suggesting that our knowledge of cereals diversity,

which is mainly based on DArT markers, should be re-evaluated

using GBS or another marker platform with reduced ascertain-

ment bias. As no physically mapped genome sequence that is

available is sufficiently anchored for wheat it was not possible to

accurately assess the true distribution of polymorphisms across the

genome. However, [18] showed that the GBS markers are

uniformly spaced across the genome using biparental populations.

An unbiased assessment of ascertainment bias would require

knowledge of all the polymorphisms in a set of lines for a

comparison to those obtained by GBS or any other genotyping

method [7]. Some bias might be expected of the GBS platform

because the restriction enzymes usually used when creating

reduced representation libraries of genomes are methylation

sensitive and preferentially target gene rich regions [4]. This is

potentially a problem for population genetics studies. However, at

this point there is limited ability to correctly sequence and align

repetitive regions such that generating markers from repetitive or

gene poor regions with GBS is currently a challenge. In addition,

as illustrated by Figure 3, identifying rare polymorphisms with

GBS is currently a challenge because of confounding with

sequencing errors.

Finally, despite differences due to ascertainment bias, GS

accuracies between GBS and DArT markers were not significantly

different for three traits out of four when the same numbers of

markers was used. This difference was still non-significant when

using sets of non-redundant markers for the DArT markers and

GBS. The difference in accuracy was significant only for PHS

suggesting that ascertainment bias had an impact on GS accuracy

for that trait only. As DArT are not evenly spaced across the

genome, they may under represent areas close to QTLs for the

trait leading to a lower accuracy. When using all the GBS markers

available, accuracy was higher than with the DArT markers as

previously reported in [5]. This can be explained by the much

larger number of markers available with GBS compared to the

DArT markers. Further analysis revealed that the optimum

numbers of markers varied between 4787 and 38120 GBS markers

depending on the trait considered (Table S2).

In terms of cost, because both platforms were designed for

applications requiring high density genome coverage such as GS

Table 3. Cross-validated GS accuracy for DArT and GBS and boostrap p-values for the DArT markers.

Trait
All DArT
markers

non-redundant
DArT markers All GBS non-redundant GBS P-value Redundant P-value non-redundant

YLD 0.36 0.36 0.41 0.39 0.29 0.48

HT 0.48 0.47 0.52 0.53 0.19 0.37

HD 0.30 0.31 0.47 0.43 0.22 0.56

PHS 0.47 0.47 0.57 0.56 0.00 0.06

The cross-validated accuracy is calculated using all DArT markers or all GBS or or with only the non-redundant markers, (YLD: yield, HT: height, HD: heading date, PHS:
pre-harvest sprouting). P-values are presented both when all the markers were used for bootstrap and when using only the non-redundant ones for the analysis. To
note that the bootstrap P-values do not compare the values obtained with all DArT markers to the value obtained with all GBS.
doi:10.1371/journal.pone.0074612.t003
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and association studies, the cost per genotyped entry is more

relevant than cost per marker. Currently, the DArT array used

here cost approximately 50 USD per sample while the GBS

protocol we used cost less than 20 USD per sample.

This study suggests that the gain in accuracy observed using the

GBS compared to the DArT markers was mainly due to a large

increase in the number of non-redundant markers available for the

analysis. This constitutes further evidence that GBS is the marker

platform of choice for further diversity analyses and GS. It also

demonstrated that, given a robust imputation strategy, the high

amount of missing data in GBS can be handled and imputed even

without a reference map or genome sequence for application in

GS as pointed out by results in Table 3 and Table S2. As SNP

arrays become more widely available in wheat, it would be useful

to carry out the same comparison and assess the level of

ascertainment bias in SNP arrays compared to GBS. For future

studies it is important to understand the quality of a genotyping

platform not only based on error rate or polymorphism rate, but

also based on the level of ascertainment bias and the number of

non-redundant markers.

Materials and Methods

Data
A population of 365 soft winter wheat varieties and F5–derived

advanced breeding lines originating from multiple crosses in the

Cornell University Wheat Breeding Program (Ithaca, NY) was

analyzed in this study. Lines were genotyped with 5,000 Diversity

Array Technology (DArT) markers (Triticarte Pty. Ltd., Yar-

alumla, ACT, Australia), resulting in 1,544 polymorphic markers.

The DArT technology for wheat assayed a reduced representation

library of the genome; built on a small subset of genotypes using

PstI and TaqI restriction enzymes. PstI-PstI fragments were cloned

and the fragments polymorphic between a set of 13 Australian

wheat genotypes were printed on an array. Each clone was further

validated on a large panel of genotypes for quality and

polymorphism [12,13,14].

All lines were genotyped using GBS as described in [18].

Briefly, after DNA digestion by two restriction enzymes, PstI and

MspI, barcoded adaptors were ligated and the PstI-MspI

fragments amplified by PCR (Polymerase chain reaction).

Libraries were then pooled to 48-plex and sequenced on Illumina

HiSeq2000. The sequencing reads were processed to remove

potential sequencing errors and 38,412 SNPs were identified.

Detailed protocols can be found in [18] and the latest updates on

the GBS approach for wheat can be found on the USDA Wheat

Genetics and Germplasm Improvement website (http://www.

wheatgenetics.org/research).

Phenotypic data for four traits were analyzed: grain yield, plant

height, heading date, and preharvest sprouting (PHS) as described

in [15]. Preharvest sprouting is the premature germination of seeds

while still attached to the mother plant that decreases grain value

and was measured as described by [23,24]. Phenotypic data were

collected from field trials in 2008 and 2009, with three locations

per year near Ithaca, NY. Each year, two locations had yield plots

(1.26 m by 4 m) and one location had single 1 m rows. All traits

were measured in yield trial locations, while PHS, height, and

heading date were also measured in single row trials. Each location

was arranged in a row-column, augmented design [25] with six

check varieties replicated 10 times each.

A two-stage analysis was used to calculate best-linear unbiased

estimators (BLUEs) because it was less computationally demand-

ing than a one-stage analysis and has been shown to generate

similar results [26]. First, BLUEs were calculated for each trait in

each location using a mixed model in ASReml-R [27]. When

necessary, the data was corrected for a trend along the rows and

the columns of the trial and the covariance of error between

neighboring plots modeled [28,29]. For PHS, an additional

random effect of harvest date was included. Second, line BLUEs

were calculated across years and locations. The line mean

heritability was estimated to be: (yield: 0.29; heading date: 0.73;

height 0.77; PHS 0.24). Phenotypic and marker data is available in

Data S1.

Imputation of Genotypic Data
The DArT markers had 3.1% missing datapoints (cells in the

marker data matrix) and the GBS data had 43.9% missing

datapoints for 38,412 markers. The low level of missing data for

the DArT suggested that the impact of imputation would be

marginal [19] for this set. Missing marker data were imputed using

random forest [20] as described in [19] separately for the DArT

markers and the GBS markers. However, to be able to generate

certain population genetics statistics a categorical allele call is

needed. Thus, instead of random forest regression we used

random forest classification to obtain a categorical allele call.

Random forest is a machine-learning algorithm that uses an

ensemble of decision trees, taking a majority vote of the multiple

decision trees to determine a classification or a prediction value for

new instances. It is a robust algorithm for classification and

regression when there are thousands of input variables. In this

study, a majority vote for 100 regression trees was used to impute

the missing values for each marker with the RandomForest

package [30] in R 2.15.0 [31] using the R package snow for

parallelization. For each marker, the training set was the

genotypes without missing data for that particular marker. For

each classification tree, the algorithm generated a bootstrap

sample as the training population. The missing data for that

marker were then predicted by each tree and the most frequently

called allele was used as the imputed value.

Diversity Analysis
As a first approach, principal component analysis (PCA) was used

to analyze all DArT or GBS data available to look for differences in

the representation of the lines. To quantify the differences between

the DArT and the GBS platforms, a bootstrap procedure was used.

A total of 1,544 imputed GBS markers (same as the number of

DArT markers) were sampled and used to compute population

genetics statistics. Based on that sample of GBS markers, lines were

clustered using the R package mclust [32] to identify subpopulations

by hierarchical clustering using a parameterized Gaussian mixture

model. The Bayesian information criterion (BIC) was used to

identify the optimal number of subpopulations as well as the optimal

clustering model to use. Based on that subpopulation structure, Fst

values were computed to measure the genetic differentiation

between subpopulations. Fst measures the fraction of the variance

in allele frequencies due to population differentiation. The Fst

estimator of [33] which is insensitive to differences in subpopulation

sizes was used. The overall gene diversity was computed using the R

package hierfstat [34]. To measure the information lost when the

relationship matrix was calculated based on sampled GBS markers

or DArT markers instead of using all GBS markers, the Kullback-

Leibler divergence was used [21]. The Kullback-Leibler divergence

is a measure of the difference between two probability distributions.

It measured the information lost when the relationship based on

sampled GBS markers or DArT markers are used to approximate a

reference covariance matrix. The relationship matrix based on all

GBS markers was used as a reference. The relationship matrix is

equal to XXt, where X is the marker score matrix, of dimensions
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number of lines by number of markers. Markers ared coded such

that {aa, Aa, AA} = {21, 0, 1}. XXt is also referred to as the realized

relationship matrix because it captures relationship between lines,

including Mendelian sampling. In the context of the infinitesimal

model for quantitative genetics and of genomic selection, the

relationship matrix based on markers corresponds to the covariance

between genotypes. For multivariate normal distribution and non-

singular covariance matrix, the Kullback-Leibler divergence has a

simple algebraic formulation. Calculation was carried out using the

monomvn R package. The minor allele frequency (MAF) was

computed for each marker. Finally, PCA analysis was carried out

and the variance captured by each eigenvector calculated for each

bootstrap sample. The sampling procedure was repeated 1000 times

to generate a bootstrap distribution for the GBS markers.

The same statistics were computed on the entire set of DArT

markers. A P-value was computed for the DArT value using the

bootstrap GBS distribution to test the null hypothesis that, for an

equal number of markers, the diversity picture is the same between

GBS and DArT markers. When the P-value was less than 0.05, it

showed the presence of significant difference between the two

marker platforms for the metric considered and indicated possible

ascertainment bias. Finally, PCA analysis was carried out and the

variance captured by each eigenvector calculated for each

bootstrap sample. The sampling procedure was repeated 1000

times to generate a bootstrap distribution for the GBS markers.

The same statistics were computed on the entire set of DArT

markers. A P-value was computed for the DArT value using the

bootstrap GBS distribution to test the null hypothesis that, for an

equal number of markers, the diversity picture is the same between

GBS and DArT markers. If the P-value was significant, it showed

the presence of significant difference between the two marker

platforms and indicated possible ascertainment bias.

Bootstrap Confidence Interval
To test for significant differences between DArT and GBS

platforms in terms of their MAF distributions and the percent of

the variance explained by each eigenvector from PCA, a bootstrap

confidence interval of the statistics of interest were calculated for

the GBS marker set and then compared to that of the DArT set.

Specifically, 1000 bootstrap samples of 1,544 GBS markers (same

number as DArT) were drawn without replacement, and the

statistics of interest were calculated. In the case of the MAF, MAF

was computed for each marker and for various MAF bins the

proportion of markers belonging to each bin was computed and

saved for each bootstrapped sample, generating a distribution of

proportions. 95% confidence intervals were then computed using

these distributions and the confidence intervals were then

compared to the proportion of markers in various MAF bins in

the DArT marker set. In the case of percent of variance explained

by each eigenvector, for each of the 1000 bootstrapped GBS

samples, the percent of the variance explained by each eigenvector

was calculated and saved. The distributions of these values were

then compared to the percent of the variance explained with each

eigenvector using the DArT marker set. Absence of overlap

between the DArT values and the 95% confidence intervals of the

GBS values indicated significant differences.

Redundancy Analysis
A similar type of bootstrap analysis was carried out to test for a

significant difference in marker redundancy. A tag SNP selection

procedure [22] was used to select one SNP for each bin of associated

SNPs. Pair-wise SNP associations were measured using R2, and

SNPs within a bin that had pair-wise R2 values greater than or equal

to a specified threshold level were considered redundant. The tag

SNP within a bin was selected to minimize missing data, and there

was no selection for MAF. The R2 thresholds of 0.7, 0.8, and 0.9

were compared for the degree of redundancy. The number of tag

SNPs resulting from each sample of GBS markers was computed to

generate a distribution of the number of non-redundant markers for

each R2 threshold. The same tag SNP procedure was also applied to

the DArT markers to estimate the number that were non-redundant

at each threshold level. P-values for each threshold level were

computed based on the distributions of the number of non-

redundant GBS markers to test the hypothesis that the number of

non-redundant markers is significantly different between the DArT

and GBS marker sets. As an additional test of difference in marker

distribution across the genome, the variance of the Euclidean

distance between markers of each GBS sample and for DArT

markers was calculated. To calculate this distance between markers,

the markers scores of the genotypes were used. A large variance is

indicative of an uneven marker distribution across the genome and

of marker clustering. A P-value was derived for these statistics using

the bootstrap approach.

GS Analysis
A bootstrap p-value was used to compare the differences in GS

accuracy. For each bootstrap, 1,544 imputed GBS markers were

sampled and used to compute a realized relationship matrix. A GS

model was built using genomic BLUP with the R package rrBLUP

[35]. In genomic BLUP the covariance of the lines is constrained

by the realized relationship matrix based on markers. A 10-fold

cross validation procedure was used keeping the same partition of

the folds for every bootstrap. The procedure was repeated for each

of the four traits studied. This provided a cross-validated accuracy

for each trait and each bootstrap sample. Cross-validated accuracy

was also computed using the DArT markers and a P-value derived

using 1000 bootstrap samples.

The procedure was repeated after applying the tag SNP

selection procedure to the DArT markers using an R2 threshold of

0.8. This reduced the number of sampled markers to 787. Tag

SNPs for the GBS markers were selected in the same manner,

reducing the total number of sampled markers to 31,605. The 10-

fold cross-validated accuracies were computed for 1000 samples of

787 GBS markers to obtain a bootstrap distribution of accuracies.

The 10-fold cross-validated accuracies were also computed using

the 787 non-redundant DArT markers and compared to the GBS

accuracy distribution to derive a P-value.

Supporting Information

Figure S1 Minor allele frequency histogram for the GBS
markers respectively non imputed (A) and imputed (B).

(EPS)

Table S1 Non-redundant GBS and DArT markers and P-value

function of the R2 cutoff when the tag SNP procedure was done on

the non-imputed data. Note that the bootstrap P-value does not

compare the values obtained with all DArT markers to the value

obtained with all GBS. Rather the P-value is for the observed

DArT markers value on a bootstrap distribution of the GBS

markers. For the GBS data, R2 was calculated using pairwise

complete observations, and if there were fewer than 30

observations overlapping, the R2 was considered missing.

(DOC)

Table S2 Cross-validated GS accuracy for subset of GBS

markers based on the amount of missing data. Subsets of markers

were selected based on a maximum rate of missing data but the

imputed data based on the complete marker set was used for the
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analysis. (YLD: yield, HT: height, HD: heading date, PHS: pre-

harvest sprouting). For each missing data threshold, the corre-

sponding number of markers is indicated.

(DOC)

Data S1 Molecular marker and phenotype data.

(ZIP)
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