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Abstract

The soil-borne fungal pathogen Verticillium longisporum is able to penetrate the root of a number of plant species and
spread systemically via the xylem. Fumigation of Verticillium contaminated soil with Brassica green manure is used as an
environmentally friendly method for crop protection. Here we present a study focused on the potential role of
glucosinolates and their breakdown products of the model plant Arabidopsis thaliana in suppressing growth of V.
longisporum. For this purpose we analysed the glucosinolate composition of the leaves and roots of a set of 19 key
accessions of A. thaliana. The effect of volatile glucosinolate hydrolysis products on the in vitro growth of the pathogen was
tested by exposing the fungus to hydrated lyophilized plant tissue. Volatiles released from leaf tissue were more effective
than from root tissue in suppressing mycelial growth of V. longisporum. The accessions varied in their efficacy, with the most
effective suppressing mycelial growth by 90%. An analysis of glucosinolate profiles and their enzymatic degradation
products revealed a correlation between fungal growth inhibition and the concentration of alkenyl glucosinolates,
particularly 2-propenyl (2Prop) glucosinolate, respectively its hydrolysis products. Exposure of the fungus to purified 2Prop
glucosinolate revealed that its suppressive activity was correlated with its concentration. Spiking of 2Prop glucosinolate to
leaf material of one of the least effective A. thaliana accessions led to fungal growth suppression. It is suggested that much
of the inhibitory effect observed for the tested accessions can be explained by the accumulation of 2Prop glucosinolate.
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Introduction

The soil-borne fungi Verticillium longisporum and V. dahliae,

responsible for vascular diseases, are both damaging with respect

to the yield and quality of a number of economically important

crops worldwide [1,2]. They typically infect their hosts by root

penetration via the cortex and endodermis in response to plant

exudates, and subsequently spread systemically via xylem in the

form of conidia in the upper part of plant [3]. Infections by these

pathogens affect water and nutrition transport in the plants with

the consequences of typical symptoms such as wilting, stunting and

chlorosis [4]. Within the plant, Verticillium spp. secretes various

polysaccharide lyases able to degrade the host’s primary cell wall

and enable proliferation in the xylem [5]. The host response to

infection has been widely characterized at both the transcript

[6,7,8,9,10,11] and the protein [12,13,14] levels. In tomato [15]

and cotton [16] the presence of the immune receptor Ve confers

resistance, and the corresponding virulence effector has been

described in the pathogen [17]. A wide range of responses to

Verticillium infection has been observed among Arabidopsis thaliana

accessions, and genes implicated in phytohormone signalling [18]

and development [19,20] make a contribution to this variation.

Plants have evolved inducible and preformed defence mecha-

nisms to counteract pathogen attacks. Production of secondary

metabolites with antimicrobial properties is a preformed defence

mechanism. A known group of constitutive natural plant

compounds are glucosinolates found mainly in Capparales and

almost exclusively in Brassicaceae family including economically

important crops as well as in the model plant A. thaliana [21].

Nitrogen- and sufur-containing glucosinolates, derived from chain

elongated and glucosidated amino acids, represent a diverse set of

secondary metabolites [22]. In their intact form, they appear to be

relatively inactive, but upon hydrolysis, they display a range of

herbivore- and pathogen-suppressing activity [23,24]. Their

degradation is catalysed by myrosinase and is regulated by

proteins which control the synthesis of isothiocyanates (ITCs),

nitriles and thiocyanates, among others [25]. The unstable

aglycone that is produced upon glucosinolate degradation by

myrosinase is converted into ITC by default. However, the nature

of the hydrolysis products is mainly defined by the structure of the

glucosinolate side chain and depends on the plant species [21]. In

Arabidopsis, depending on the glucosinolate side chain, hydrolysis

conditions, and presence of specific protein factors, the formation

of nitriles and epithionitriles can be favoured. This shift is
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controlled by nitrile-specifier proteins [26], epithiospecifier pro-

teins ESP [27], thiocyanate-forming proteins [28] and epithiospe-

cifier modifier proteins [29]. The anti-fungal activity of oils

purified from mustard was discovered as early as the 1930s [30],

and a wealth of data has since confirmed these early findings [31].

While some of their fungicidal activity has been ascribed to non-

volatile degradation products, most of it derives from volatile

products, including 2-propenyl ITC (2Prop-ITC), 3-butenyl ITC

(3But-ITC) and benzyl ITC [31].

The antifungal activity of volatile glucosinolate breakdown

products, mainly ITCs, are assumed as driving compounds in

biofumigation where crop residues (particularly those of Brassica

spp.) with high glucosinolate content are incorporated into the soil

for control of soil-borne pathogens [32,33]. The hydrolysis of

glucosinolates in the residue is an important component of this

control, acting against fungi [34,35,36,37,38,39,40], bacteria

[41,42] and nematodes [43,44]. Although it has been established

that the severity of the disease caused by a number of pathogens

can be notably attenuated when the host’s glucosinolate compo-

sition is transgenically modified [45], there has been no systematic

attempt until now to determine the extent to which genetic

variation in glucosinolate composition affects pathogen growth

within the plant. Here, we report an analysis of genetic variation

with respect to the volatile glucosinolate breakdown product

composition from the leaves and roots of A. thaliana. As a bioassay,

we have measured the in vitro mycelial growth of V. longisporum in

response to volatile emission upon tissue damage of leaves and

roots. We hypothesize that the glucosinolate profile correlates with

disease suppression of V. longisporum in a set of 19 key accessions of

A. thaliana accessions.

Experimental Procedures

Cultivation of Verticillium spp.
A. thaliana plants were inoculated with either one of two V.

longisporum isolates 43-3 [46] or VD-1 [47] or V. dahliae isolate

GU060637 (kindly provided by Valerie Grimault, GEVES,

Angers, France). The fungi were cultivated at 25uC in the dark

on potato dextrose agar (PDA) (VWR International GmbH,

Germany). Conidial suspensions were prepared by inoculating

500 mL sucrose sodium nitrate medium with five mm diameter

plugs excised from a PDA plate, and shaking the culture at room

temperature for three weeks.

Plant material, growth and inoculation method
The 19 A. thaliana (L.) Heynh. accessions investigated were Bur-

0, Can-0, Col-0, Ct-1, Edi-0, Hi-0, Kn-0, Ler-0, Mt-0, No-0, Oy-

0, Po-0, Rsch-4, Sf-2, Tsu-0, Wil-2, Ws-0, Wu-0 and Zu-0, which

together make up the set of parents used by Kover et al. [48] to

create a MAGIC (Multiparent Advanced Generation Intercross)

population (kindly provided by L. Westphal, IBP Halle, Germany).

All plants were grown in sand watered with nutrient solution, as

described by Gibeaut et al. [49], and were exposed to an 8 h

photoperiod provided by artificial lighting (300 mmol m22 s21)

with a light temperature of 20uC and a dark temperature of 18uC.

After five weeks, leaf and root tissue was harvested separately and

lyophilized to provide the material both for glucosinolate analysis

and the anti-fungal growth bioassay.

Two week old Bur-0 and Ler-0 plants were also inoculated with

each of the Verticillium sp. isolates (or with water as a control). For

this purpose, a conidial suspension was homogenised in a blender,

filtered and adjusted to 106 conidia mL21. A 10 mL aliquot was

poured over the surface of each pot, and the plants were cultivated

for a further five weeks, before harvesting and lyophilizing their

leaves and roots. This material was used to quantify the fungal

DNA present in the plants’ tissue. Reproducibility of results was

confirmed in two independent experiments.

Anti-fungal growth bioassay
Agar plugs (5 mm diameter) were removed from the margin of

mycelial growth on a PDA culture of V. longisporum 43-3,

transferred to a fresh PDA plate and held at 25uC in the dark

for three days. After that, the plates were turned upside down with

the fungus now positioned at the top. A sterile filter paper was

placed in the lid, and 0.3 g of lyophilized plant tissue (leaf or root)

was spread over its upper surface. Myrosinase-induced hydrolysis

of the glucosinolate was initiated by moistening the filter paper

with 1.8 mL sterile water, after which the plate was sealed. The

diameter of the mycelial mat was measured after four days of

incubation at 25uC, and compared to the mycelial growth on

similarly treated plates where the plant material had not been

included. Each of these experiments was represented by five

technical replicates. Growth-suppressive effects of selected acces-

sions Bur-0, Can-0, Edi-0, Hi-0, Ws-0 and Wu-0 was verified in

two sets of independently grown plants.

In further experiments, a concentration range of 0 to 4 mg of

purified 2Prop glucosinolate prepared from horseradish (sinigrin

hydrate, obtained from Sigma-Aldrich Chemie GmbH, Germany)

dissolved in sterile filtrated 0.03 M citrate buffer, pH 6.5, was

applied to the filter instead of the plant material. Hydrolysis was

initiated by the addition of 0.1 U thioglucosidase extracted from

white mustard (Sigma-Aldrich Chemie GmbH, Germany). Myce-

lial growth was assessed after four days of incubation on five

technical replicates per treatment. This experiment was performed

twice to ensure reproducibility.

Spiking experiments using one of the least effective A. thaliana

accession Oy-0 were performed as described above, except that 0

to 4 mg of purified 2Prop glucosinolate was dissolved in sterile

water and added to 0.3 g of lyophilized leaf material. Hydrolysis of

2Prop glucosinolate was initiated by the plants endogenous

myrosinase. Mycelial growth was assessed after four days of

incubation on five technical replicates per treatment and

compared to plates where plant material had not been included.

This experiment was performed twice to ensure reproducibility.

Glucosinolate analysis
Desulfo-glucosinolate profiles and concentrations were derived

using a modified HPLC protocol [50]. Duplicates of lyophilized

plant tissue (20 mg) were heated to 75uC and held there for 1 min,

and then extracted by the addition of 0.75 mL 70% methanol.

After incubating at 75uC for 10 min, the extracts were centrifuged

for 5 min, the supernatant removed, and the residue re-extracted

twice more in 0.5 mL 70% methanol at 70uC. To convert the

combined extracts to desulfo-glucosinolates, extracts were loaded

on a 500 mL DEAE-Sephadex A-25 ion-exchanger (Sigma-Aldrich

Chemie GmbH, Germany). Prior to sample loading, the column

was first equilibrated in 2 M acetic acid, then pre-treated by the

addition of two 1 mL aliquots of 6 M imidazole-formate (Carl

Roth GmbH, Germany) in 30% v/v formic acid, followed by two

washes with 1 mL deionized water. The column was washed twice

with 1 mL 20 mM sodium acetate buffer pH 4.0 (Sigma-Aldrich

Chemie GmbH, Germany), and 75 mL purified Helix pomatia aryl

sulfatase (Roche Diagnostics GmbH, Germany) was loaded and

left to stand for 12 h. Desulfo compounds were eluted with 1 mL

deionized water. Desulfo-glucosinolate quantification was carried

out by HPLC (Merck HPLC pump L-7100, DAD detector L-

7455, automatic sampler AS-7200 and HPLC Manager-Software

D-7000) using a Spherisorb ODS2 column (Bischoff, Germany,
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3 mm, 12564 mm). The separation employed a 0–20% v/v

aqueous acetonitrile gradient from minutes 2–34, 20% v/v

aqueous acetonitrile from minutes 35–40, and finally 100%

acetonitrile from minutes 41–50, with a flow rate of

0.7 mL min21. Detection was carried out at 229 nm. Glucosino-

late concentrations were calculated using 2Prop glucosinolate as

an external standard and the response factor of each compound

relative to 2Prop glucosinolate. Where possible, desulfo-glucosi-

nolates were identified following Zimmermann et al. [51], on the

basis of protonated molecular ions [M+H]+ where the fragment

ions corresponded to [M+H - glucose]+ by HPLC-ESI–MS2 using

Agilent 1100 series (Agilent Technologies, Germany) operating in

the positive ionization mode. Each determination was performed

in duplicate. Hierarchical clustering of glucosinolate profiles was

performed using MultiexperimentViewer MeV v4.7.4, based on

Euclidean distance and average linkage clustering [52].

Analysis of glucosinolate hydrolysis products derived
from leaf tissue or purified 2Prop glucosinolate

For the determination of enzymatically formed breakdown

products of the GSL, the method of Lambrix et al. (2001) was

adapted. Either one mL of water was added to 50 mg of

lyophilized plant tissue in centrifugal tubes and left for 30 min at

room temperature for glucosinolate hydrolysis or 0.4 or 8 mg of

purified 2Prop glucosinolate dissolved in the sterile filtrated citrate

buffer described in 6.3 was hydrolysed for 2 h or 24 h by adding

0.1 U thioglucosidase. Next, 2 mL of methylene chloride (Carl

Roth GmbH, Germany; GC Ultra Grade) and 100 mL of 2 mM

benzonitrile in methylene chloride as internal standard (Sigma-

Aldrich Chemie GmbH, Germany; $99.9%) were added and the

tubes were sealed. After shaking for 20 sec and centrifugation for

5 min, the methylene chloride layer was removed and filtered

through a small column of anhydrous sodium sulfate (VWR

International GmbH, Germany; $99%) to remove residual water.

The remaining aqueous layer was re-extracted with 2 mL of

methylene chloride. The dried extracts were combined, concen-

trated under nitrogen gas flow to 300 mL and transferred into a

vial. Samples were analyzed by gas chromatography-mass

spectrometry detection (GC-MS) using an Agilent 6890 A Series

GC System (Agilent Technologies, Germany) with a Gerstel Multi

Purpose Sampler MPS2 (Gerstel GmbH & Co. KG, Germany)

and an Agilent 5973 Network MSD. The GC was equipped with

an Optima 5 MS column (Macherey-Nagel, Germany,

30 m60.25 mm60.25 mm film). After splitless injection of 1 mL

of the sample at 190uC, analytes were separated, using helium as

carrier gas (1.8 mL/min), and a temperature gradient starting at

35uC (3 min) and raising up to 50uC with 9uC/min. After holding

this temperature for 7 min, the temperature increased to 230uC
with 9uC/min and then with 35uC/min to 310uC. The

temperature of the transfer line was 310uC, the ion source of the

MSD was set to 230uC. Mass spectra were acquired in the EI

mode (70 eV) in the full scan mode (TIC) for the plant tissue

samples (m/z 30–350) or in the selected ion monitoring mode

(SIM) for the hydrolysed 2Prop glucosinolate samples (Quantifier

ions: m/z 41 for 2Prop-CN, m/z 99 for 2Prop-ITC and m/z 103

for the internal standard benzonitrile). Analytes were identified by

comparing mass spectra and retention times with those of

authentic standards and with literature data [53,54]. Analyte

content was calculated using benzonitrile as internal standard and

the response factor (RF) of each compound relative to benzonitrile.

The RF were experimentally determined for 2Prop-ITC

(RFTIC = 1.70, RFSIM = 3.07), 3-butenenitrile (2-Prop-CN;

RFTIC = 3.70, RFSIM = 7.32), 4-pentenenitrile (3But-CN;

RFTIC = 2.45), and 3-(methylthio)propyl ITC (3MTP-ITC;

RFTIC = 1.07) (all purchased from Sigma-Aldrich Chemie GmbH,

Germany); 3-hydroxypropionitrile (RFTIC = 7.67; Thermo Fischer

Scientific, Belgium), 3But-ITC (RFTIC = 1.06) and 4-pentenyl ITC

(4-Pent-ITC; RFTIC = 1.14) (both purchased from TCI Deutsch-

land GmbH, Germany), 4-(methylthio)butyl ITC (4MTB-ITC;

RFTIC = 0.76; Santa Cruz Biotechnology, Germany), and for 4-

(methylsulfinyl)butyl ITC (4MSOB-ITC; RFTIC = 3.01; Enzo Life

Sciences GmbH, Germany). For those compounds, that were

commercially not available, the RF of the chemically most similar

compound was used: For the epithionitriles of 2Prop and 3-But

glucosinolate the RF of the corresponding ITC was used,

diastereometric 3-hydroxy-4,5-epithiopentylnitrile (2OH3But-

EPT) and 5-vinyl-1,3-oxazolidine-2-thione (OZT) were calculated

with the RF of 3-But-ITC. The corresponding nitriles of 3-

(methylthio)propyl (3-MTP) glucosinolate, 4-(methylthio)butyl (4-

MTB) glucosinolate and 4-(methylsulfinyl)butyl (4MSOB) glucosi-

nolate were calculated with the RF of the analogous ITC. The

degradation products of 8-(methylthio)octyl (8MTO) glucosinolate

were calculated with the RF of 4MTB-ITC and all sulfinyl nitriles

and ITC were calculated with the RF of 4MSOB-ITC. For the

quantification of degradation products of the 3-hydroxypropyl

glucosinolate the RF determined for 3-hydroxypropionitrile was

utilized. The limit of detection ranged between 0.9 mM (4Pent-

ITC) and 15.5 mM (3-hydroxypropionitrile).

DNA extraction and qRT-PCR analysis
Extraction of DNA from infected plant material was performed

following Tinker et al. [55], with the inclusion of an additional

DNA purification procedure [56]. The integrity and quantity of

the DNA were assessed photometrically using a NanoDrop ND-

1000 device (PeqLab GmbH, Germany).

The abundance of fungal DNA present in the plant material

was estimated by a PCR based on the primer pair VDS1 (59-CAC

ATT CAG TTC AGG AGA CGG A-39) and VDS2 (59-CCT

TCT ACT GGA GTA TTT CGG-39), which specifically

amplifies a 521 bp product from a template of either V. dahliae

[57] or V. longisporum DNA. The amplicon was generated by

imposing an initial denaturation of 95uC/3 min, followed by 40

cycles of 95uC/20 s, 66uC/20 s, 72uC/60 s. The template DNA

was diluted tenfold in sterile water to an approximate concentra-

tion of 10 ng mL21. Two primer pairs were selected as A. thaliana

reference genes based on geNORM [58] analysis of expression

stability and previous evaluation [59]. The two reference genes

selected were a gene encoding a pentatricopeptide repeat

(At5g55840; 59-AAG ACA GTG AAG GTG CAA CCT TAC

T-39, 59-GTT TTT GAG TTG TAT TTG TCA GAG AAA G-

39, amplicon 61 bp in length), and one encoding the mitosis-

associated protein YLS8 (At5g08290; 59-TTA CTG TTT CGG

TTG TTC TCC ATT T-39, 59-CAC TGA ATC ATG TTC

GAA GCA AGT-39, amplicon 66 bp in length). Both amplicons

were generated by imposing an initial denaturation of 95uC/

3 min, followed by 40 cycles of 95uC/10 s, 60uC/30 s. The

template DNA was diluted 100 fold in sterile water to an

approximate concentration of 1 ng mL21. The PCR efficiency of

the primer pairs, as estimated from a template dilution series, was

respectively 97% for VDS, 98% for YLS8 and 99% for PPR. A

CFX96 real-time System driven by CFX Manager software v2.1

was used for qRT-PCR, in reactions based on SsoAdvancedTM

SYBRH Green Supermix (Bio-Rad Laboratories, Hercules, CA).

Each 6 mL reaction was composed of 3 mL 26SsoAdvanced, 1 mL

diluted DNA and 1 mL of each gene-specific primer (2 mM), and

was replicated three times per biological sample. Primer specificity

was assessed by inspection of the melting curve after cycle 40 and

agarose gel electrophoresis of the amplicon. The Cq values of
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individual well traces were determined using the regression model

implemented in the CFX Manager software. The data were

analyzed using qbasePLUS software v2.3 (Biogazelle NV,

Belgium) applying the following parameters: primer amplification

efficiency: 100%, normalization strategy: two reference targets

[60].

Data analysis
All chemical and microbial data were checked to be normally

distributed and showed homogeneity of variances before the

analysis of variances (ANOVA’s) were calculated using Tukey’s

HSD test at p#0.001–0.05.

Results and Discussion

Genetic variation in A. thaliana for the suppression of in
vitro growth of V. longisporum

When V. longisporum 43-3 was exposed to plant material

extracted from the 19 different A. thaliana accessions, its growth

was more noticeably retarded by the presence of lyophilized leaf

rather than root tissue (Fig. 1). The leaf tissue-induced reduction in

growth reached 92% of the non-treated control, whereas the

maximum extent of the suppression induced by the presence of

root tissue was only 58%. The six accessions whose leaf tissue

induced the most substantial growth reduction (.50%) were Bur-

0, Can-0, Edi-0, Hi-0, Ws-0 and Wu-0. The most efficacious root

tissues (reducing fungal growth by .30%) were those prepared

from Edi-0, Hi-0, Ws-0, Wu-0 and Zu-0. The apparent presence

of genetic variation in A. thaliana for the ability to suppress fungal

growth mirrors equivalent variation demonstrated in other Brassica

spp. [61,62]. The extent of the inhibition is also comparable to

that observed against Sclerotinia sclerotiorum [63], Leptosphaeria

maculans [64], Xanthomonas campestris [41] and V. dahliae [65,66].

Genetic variation for glucosinolate composition among
A. thaliana accessions

The profile of compounds emitted by intact A. thaliana leaves is

dominated by terpenes and various aromatic compounds, but

wounding induces a shift towards that of glucosinolate hydrolysis

products [67]. For this reason, our focus was to obtain the

glucosinolate profiles of the 19 A. thaliana accessions. These profiles

are known to be affected by both genetic and environmental

Figure 1. Relative growth of Verticillium longisporum 43-3 on PDA at 256C for four days when exposed to volatiles emitted from 19
Arabidopsis thaliana accessions. Red bars represent mycelial growth in the absence of plant tissue and black bars represent (A) leaf and (B) root
tissue. Data represent the mean of five replicates, and the error bar represents the standard error. Significant differences between the control mycelia
and those exposed to plant material are indicated by asterisks (*: p,0.05, **: p,0.01, ***: p,0.001). (C) The effect on the in vitro growth of V.
longisporum 43-3 of leaf volatiles emitted from the three most suppressive accessions after four days of exposure. The red circle indicates a diameter
of 1.6 cm.
doi:10.1371/journal.pone.0071877.g001
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factors [68,69,70], and vary between plant organs [71,72] and

over development [73]. A total of 20 distinct glucosinolates

was identified and quantified, of which 16 were aliphatic

(alkenyl, hydroxyalkenyl, hydroxyalkyl, thioalkyl and sulfinylalkyl

glucosinolates) and four indole (Tables S1 and S2). All 20

compounds have previously been detected in A. thaliana [68,74].

The aliphatic glucosinolate concentration in the leaf tissue was

tenfold that in the root tissue, while the indole glucosinolates were

equally represented in both tissues (Fig. 2); a similar partitioning

was obtained in the Col-0 accession [71,73]. The glucosinolate

composition varied from accession to accession. While some

compounds (particularly the indole glucosinolates) were present in

all 19 accessions, most of the aliphatic ones were accession-specific

(Tables S1 and S2). The aliphatic glucosinolate concentration in

the leaf tissue varied from 5 mmol g21 dry weight (DW) in Mt-0 to

54 mmol g21 DW in Can-0, while the indole glucosinolate

concentration lay between 3.3 mmol g21 DW (Ct-1) and

12 mmol g21 DW (Can-0). In root tissue, the range in aliphatic

glucosinolate concentration was 1.4–7.8 mmol g21 DW (for,

respectively, Oy-0 and Zu-0), while that for the indole glucosino-

lates was higher abundant with 2.5–12.7 mmol g21 DW (Ct-1 and

Tsu-0) (Fig. 2). A similar range both with respect to composition

and quantity has also been demonstrated in 82 different B. rapa

cultivars [62], and in 39 [68] and 96 A. thaliana accessions [74].

A hierarchical clustering was performed to group accessions on

the basis of their glucosinolate profile. This analysis delivered three

major clusters, the first comprising accessions Can-0, Edi-0, Bur-0,

Ws-0, Hi-0 and Wu-0, which preferentially accumulated the

alkenyl glucosinolates 2Prop, 3-butenyl (3But) and 4-pentenyl

glucosinolate (4Pent) (with 2Prop being the most abundant); the

second group featured those accumulating hydroxyalkyl glucosi-

nolates (Kn-0, Ler-0, Rsch-4, No-0, Tsu-0, Ct-1, Wil-2), and the

third those with an elevated level of methylsulfinylalkyl and indole

glucosinolates (Mt-0, Col-0, Oy-0, Po-0, Sf-2) (Fig. 3). There was a

correlation between an accession’s ability to accumulate alkenyl

glucosinolates and the suppression by its leaf tissue of Verticillium sp.

growth. Leaf tissue prepared from Can-0 was the most effective for

inhibiting fungal growth, and this accession also accumulated the

most 2Prop glucosinolate; as a result, the hypothesis was that a

hydrolysis product of 2Prop glucosinolate is the major agent of

anti-fungal activity.

V. longisporum growth is affected by the formation of
2Prop-ITC

A subset of ten Arabidopsis accessions was selected for chemical

analysis based on contrasting leaf glucosinolate patterns to identify

glucosinolate hydrolysis products with an inhibitory effect on

Verticillium growth. Accessions included alkenyl glucosinolate

accumulators with strongest antifungal effects (Bur-0, Can-0, Hi-0,

Figure 3. Hierarchical clustering of the glucosinolate composition of the leaf tissue of a range of Arabidopsis thaliana accessions. Each
column represents one accession and each row the concentration of glucosinolates (mmol g21 DW) using colour coding.
doi:10.1371/journal.pone.0071877.g003

Figure 2. Total concentration of aliphatic and indole glucosi-
nolates in a range of Arabidopsis thaliana accessions. Bars
represent the cumulative total of each glucosinolate class in (A) leaf
tissue and (B) root tissue, and error bars represent standard deviation.
doi:10.1371/journal.pone.0071877.g002
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and Wu-0) as well as accessions being rich in hydroxyalkenyl,

hydroxyalkyl, methylthioalkyl and methylsulfinylalkyl glucosino-

lates that showed low antifungal activity (Kn-0, Ler-0, Po-0, Rsch-

4, Wil-2, and Zu-0). A total of 20 different glucosinolate hydrolysis

products was identified and quantified in lyophilized plant tissue

that were either ITC (including OZT), nitriles or epithionitriles

(Table 1). ITCs were the main breakdown products formed in all

10 accessions. The predominant hydrolysis product in Can-0, Hi-

0, and Wu-0 was 2Prop-ITC with concentrations in the range of

9.2–19.7 mmol g21 DW (Can-0 and Hi-0, respectively), whereas

Bur-0 formed slightly more 3But-ITC than 2Prop-ITC. The main

degradation product upon myrosinase-driven breakdown in Zu-0

was also 3But-ITC, but this accession also formed OZT in

substantial amounts. Accessions Kn-0, Ler-0, Po-0, Rsch-4, and

Wil-2 revealed a high level of 3-hydroxypropyl ITC (3OHP-ITC),

ranging from 13–44.3 mmol g21 DW for, respectively, Po-0 and

Kn-0. Epithionitriles, being formed only in presence of the ESP

from alkenyl or hydroxyalkenyl glucosinolates [27] were detected

in hydrolysed leaf tissues of Bur-0, Can-0, Wu-0 and Zu-0, but not

in those from Hi-0. Nitrile production usually is accompanied by

the formation of ITC, however hydrolysed Kn-0 leaf tissue was

absent of the nitrile deriving from 3OHP, although it was detected

in all other hydroxyalkyl rich accessions.

Alkenyl accumulating Arabidopsis accessions, that were able to

restrict growth of V. longisporum, formed 2Prop-ITC as main

glucosinolate hydrolysis product. Therefore, the inhibitory effect of

hydrolysis products of purified 2Prop glucosinolate was tested for

the V. longisporum isolate 43-3. Fungal growth was significantly

inhibited by concentrations of 0.4 and 4.0 mg 2Prop glucosinolate

per plate in a dose-dependent manner (Fig. 4 A). The application

of 4 mg 2Prop glucosinolate, matching the same amount in 1 g

leaf material of Bur-0, resulted in a growth reduction of 97% as

compared to the 54% inhibition obtained by the leaf material of

the same accession. The GC-MS analysis of the hydrolysed 2Prop

glucosinolate (Fig. 4 B) confirmed the formation of 2Prop-ITC as

the main degradation product. After 2 h of hydrolysis time 91% of

the 2Prop glucosinolate (0.4 mg level) were recovered as ITC,

those concentrations declining to 63% within the next 22 h.

Low alkenyl-accumulating A. thaliana accessions showed no

ability to suppress fungal growth in the bioassay (see Fig. 1). The

pure 2Prop glucosinolate was added to leaf material of Oy-0 in

order to complement this deficiency in fungitoxicity, (Fig. 5).

Table 1. Breakdown products formed by hydrolysis of glucosinolates in the leaf tissue of selected Arabidopsis thaliana accessions.

Bur-0 Can-0 Hi-0 Kn-0 Ler-0 Po-0 Rsch-4 Wil-2 Wu-0 Zu-0

Alkenyl hydrolysis products

2Prop-CN 0.0560.05 0.1260.03 0.0660.00 n.d. n.d. 0.0560.03 n.d. n.d. 0.1660.10 n.d.

2Prop-ITC 5.3060.84 9.2161.47 19.7460.51 n.d. n.d. n.d. n.d. n.d. 16.6066.04 2.3960.31

2Prop-EPT 0.5460.36 1.0660.13 n.d. n.d. n.d. n.d. n.d. n.d. 1.1260.87 0.1760.11

3But-CN 0.1660.07 n.d. 0.1660.02 n.d. n.d. n.d. n.d. n.d. n.d. 0.1860.04

3But-ITC 6.8260.78 0.2560.04 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 6.4461.00

3But-EPT 0.6560.38 0.0260.00 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.2960.18

4Pent-ITC 0.3060.06 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.2760.02

Hydroxyalkenyl hydrolysis products

Epi2OH3But-EPT 0.0460.05 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.4960.26

OZT 0.1960.23 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 2.6360.35

Methylthioalkyl hydrolysis products

3MTP-CN n.d. 0.0560.01 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

3MTP-ITC n.d. 0.4560.14 n.d. n.d. n.d. n.d. 0.0960.04 n.d. n.d. n.d.

4MTB-ITC n.d. 0.0860.03 n.d. n.d. n.d. 0.1760.04 n.d. n.d. n.d. n.d.

8MTO-CN n.d. 0.0360.00 n.d. 0.4760.11 n.d. 0.0260.02 n.d. n.d. n.d. n.d.

8MTO-ITC 0.1460.03 0.6460.05 0.1460.05 n.d. 0.2160.10 0.4860.08 0.3660.13 0.0960.02 0.4060.15 0.3560.02

Methylsulfinylalkyl hydrolysis products

3MSOP-ITC n.d. 0.3760.11 n.d. n.d. n.d. 0.2960.04 0.1560.26 n.d. n.d. n.d.

4MSOB-ITC n.d. n.d. n.d. n.d. n.d. 2.5460.31 n.d. n.d. n.d. n.d.

8MSOO-CN 0.2260.10 0.3260.02 n.d. 0.1760.02 n.d. 0.1560.01 0.1160.03 n.d. n.d. n.d.

8MSOO-ITC 0.5460.13 0.2760.01 0.1660.04 0.8460.25 0.2960.23 0.5160.03 0.4360.21 0.3060.03 n.d. 0.1760.11

Hydroxyalkyl hydrolysis products

3OHP-CN n.d. n.d. n.d. n.d. 0.7660.05 0.7060.28 0.7460.48 0.7660.21 n.d. n.d.

3OHP-ITC n.d. n.d. n.d. 44.3461.96 38.9362.28 13.0062.32 37.17612.79 32.3160.23 n.d. n.d.

Quantities shown in mmol g21 DW, derived from the mean of three batches of plants (each n = 50) and two technical replicates per sample. Errors denote standard
deviation.
2Prop-CN: 3-butenenitrile, 2Prop-ITC: 2-propenyl ITC, 2Prop-EPT: 3,4-epithiobutylnitrile, 3But-CN: 4-pentenenitrile, 3But-ITC: 3-butenyl ITC, 3But-EPT: 4,5-
epithiopentylnitrile, 4Pent-ITC: 4-pentenyl ITC, 2OH3But-EPT: 3-hydroxy-4,5-epithiopentylnitrile, OZT: 5-vinyl-1,3-oxazolidine-2-thione, 3MTP-CN: 4-
(methylthio)butylnitrile, 3MTP-ITC: 3-(methylthio)propyl ITC, 4MTB-ITC: 4-(methylthio)butyl ITC, 8MTO-CN: 9-(methylthio)nonylnitrile, 8MTO-ITC: 8-(methylthio)octyl ITC,
3MSOP-ITC: 3-(methylsulfinyl)propyl ITC, 4MSOB-ITC: 4-(methylsulfinyl)butyl ITC, 8MSOO-CN: 9-(methylsulfinyl)nonyl ITC, 8MSOO-ITC: 8-(methylsulfinyl)octyl ITC, 3-OHP-
CN: 4-hydroxybutylnitrile, 3-OHP-ITC: 3-hydroxypropyl ITC. n.d. not detected.
doi:10.1371/journal.pone.0071877.t001
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Fungal growth was not significantly affected by the presence of

Oy-0 leaf material. However, when 0.4 or 4 mg 2Prop

glucosinolate were added to the lyophilized Oy-0 leaf material,

the fungal growth rate decreased to 11 and 14%, respectively, as

compared to the non-treated control. This indicates that 2Prop

glucosinolate greatly contributes to the growth suppression

observed for alkenyl-accumulating plant accessions. Thus, present

data suggest that 2Prop-ITC can provide protection against fungal

pathogen infection. The abundance of 2Prop-ITC has been

correlated with fungicidal activity in several Brassica spp.

[75,76,77], while the exposure to purified 2Prop-ITC is strongly

inhibitory over the growth of both Fusarium oxysporum [36],

Phymatotrichopsis omnivora [78] and V. dahliae [79]. Transcriptional

analysis in A. brassicicola points to oxidative damage and redox

imbalance being the result of exposure [80].

Differential systemic colonization by Verticillium ssp.
The accessions accumulating 2Prop glucosinolate were those

whose leaf tissue most strongly inhibited the growth of V.

longisporum. It was therefore of interest to contrast two accessions

differing in their ability to accumulate 2Prop in their leaf with

respect to their capacity to resist the systemic spread of the

pathogen in planta. Since genetic mapping of resistance against V.

longisporum infection has already been carried out in a population

derived from a cross between Ler-0 and Bur-0 [20], these two

accessions represented an appropriate choice of material. The

extent of fungal colonization in the root and leaf tissue of the two

Figure 4. Fungitoxicity of 2Prop-ITC on growth of Verticillium longisporum 43-3. Effect of hydrolysed 2Prop glucosinolate on the in vitro
growth of V. longisporum 43-3 was demonstrated using the biofumigation assay (A). Data represent the mean of five technical replicates per
biological sample and error bars represent the standard error. Significant differences between the control mycelia and those exposed to 2Prop-ITC
are indicated by asterisks (*: p,0.001). The formation of 2Prop-ITC through myrosinase-driven glucosinolate breakdown was verified by GC-MS
analysis (B). GC-MS chromatograms display the product of hydrolysed 2Prop glucosinolate (black) in comparison to the hydrolysed fraction accession
Wu-0 (green line).
doi:10.1371/journal.pone.0071877.g004
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accessions was quantified using quantitative real time PCR (qRT-

PCR). The analysis was extended to a second isolate of V.

longisporum, VD-1, and to the closely related species V. dahliae to test

whether 2-Prop contribute to non-host resistance and inhibits

growth of a range of Verticillium species. V. dahliae isolate

accession GU060637 colonized the root system more efficiently

than did either of the two V. longisporum isolates 43-3 and VD-1

(Fig. 6). However, there was no significant difference in the

quantity of fungal DNA present in the root tissue of Ler-0 and

Bur-0, suggesting that resistance is unrelated to the ability to

prevent invasion. All three fungal isolates were detectable in the

leaf tissue of the susceptible accession Ler-0, but not in that of

Bur-0. The implication is that resistance is determined by an

interaction occurring in the shoot, as also suggested in recent

studies on Verticillium interactions with Bur-0/Ler-0 (high/low

alkenyl) [20] or Ws-0/Ler-0 (high/low alkenyl) [81]. The

accumulation of alkenyl glucosinolates in the leaf tissue thus

seems to represent an important mechanism for plant resistance,

probably acting to inhibit the systemic spread of the pathogen.

Note, however, that glucosinolate hydrolysis products differ

between lyophilized and fresh plant material since modifying

enzymes loose activity after freeze-drying. Hence, also other

factors might contribute to the suppression of fungal spread in

planta. The interaction between the host and its various fungi and

bacteria is clearly therefore a complex one.

Concluding Remarks
We have reported here that key A. thaliana accessions vary with

respect to their accumulation of glucosinolates in the leaf and root

tissue, and that the accumulation of 2Prop glucosinolate in the leaf

can explain much of the inhibitory effect of leaf tissue on the in vitro

growth of V. longisporum. In order to further assess the biofumiga-

tion potential of 2Prop glucosinolate for crop protection,

effectiveness should be investigated under field conditions.
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propyl, 4MTB: 4-(methylthio)butyl, 7MTH: 7-(methylthio)heptyl,

8MTO: 8-(methylthio)octyl, 3MSOP: 3-(methylsulfinyl)propyl,

4MSOB: 4-(methylsulfinyl)butyl, 5MSOP: 5-(methylsulfinyl)pen-

tyl, 6MSOH: 6-(methylsulfinyl)hexyl, 7MSOH: 7-(methylsulfinyl)-

heptyl, 8MSOO: 8-(methylsulfinyl)octyl, 3OHP: 3-hydroxypropyl,

I3M: 3-indolylmethyl, 4OHI3M: 4-hydroxy-3-indolylmethyl,

1MOI3M: 1-methoxy-3-indolylmethyl, 4MOI3M: 4-methoxy-3-

indolylmethyl glucosinolate. n.d. not detected.
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Table S2 Glucosinolates present in the root tissue of a
range of Arabidopsis thaliana accessions. Quantities

shown in mmol g21 DW, derived from the mean of three batches

of plants (each n = 50) and two technical replicates per sample.

Glucosinolate abbreviations as used in Table S1. n.d.: not

detected.
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dopsis thaliana accession Oy-0 on the growth of Verticillium
longisporum 43-3. Data represent the mean of five technical replicates
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Significant differences between the control mycelia and those exposed
to Oy-0 volatiles spiked with 2Prop glucosinolate are indicated by
asterisks (*: p,0.001).
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Figure 6. Systemic spread of Verticillium longisporum 43-3, VD-1
and V. dahliae GU060637 within the leaf and root of Arabidopsis
thaliana accessions Ler-0 and Bur-0, as measured by qRT-PCR,
five weeks after inoculation. Data represent the mean of three
batches consisting of five plants each, measured in technical triplicates
via qRT-PCR. Bars denote standard deviations. Significant differences
between Ler-0 and Bur-0 are indicated by asterisks (*: p,0.001).
doi:10.1371/journal.pone.0071877.g006
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