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Abstract

Although translation is the key step during gene expression, it remains poorly characterized at the level of individual genes.
For this reason, we developed Transimulation – a web service measuring translational activity of genes in three model
organisms: Escherichia coli, Saccharomyces cerevisiae and Homo sapiens. The calculations are based on our previous
computational model of translation and experimental data sets. Transimulation quantifies mean translation initiation and
elongation time (expressed in SI units), and the number of proteins produced per transcript. It also approximates the
number of ribosomes that typically occupy a transcript during translation, and simulates their propagation. The simulation
of ribosomes’ movement is interactive and allows modifying the coding sequence on the fly. It also enables uploading any
coding sequence and simulating its translation in one of three model organisms. In such a case, ribosomes propagate
according to mean codon elongation times of the host organism, which may prove useful for heterologous expression.
Transimulation was used to examine evolutionary conservation of translational parameters of orthologous genes.
Transimulation may be accessed at http://nexus.ibb.waw.pl/Transimulation (requires Java version 1.7 or higher). Its manual
and source code, distributed under the GPL-2.0 license, is freely available at the website.
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Introduction

For many years, it was believed that gene expression regulation

takes place mainly at the level of transcription. Nevertheless, upon

the discovery that the mRNA transcription level can explain only

20–40% of the observed amounts of proteins [1,2], the focus has

been shifted to post-transcriptional mechanisms of gene expression

regulation [3–5]. Although deeper insight into protein biosynthesis

seems crucial to better integrate transcriptomic and proteomic

data [6–8], the process is still poorly characterized at the level of

individual proteins, mainly due to difficulties in experimental

determination of absolute translation rates.

For this reason, we have developed [9] a model measuring

translational activity at the level of individual genes, and

implemented it genome-wide in Saccharomyces cerevisiae. Although

the model is universal and can be used to study translation in any

organism with a known genome, new implementations require

careful selection of input data and numerous calculations. To

address this issue, we decided to extend the set of results by

applying the model to two additional organisms: Escherichia coli and

Homo sapiens (HeLa cell line), for which high quality data sets on

mRNA relative abundance, ribosome footprints, and tRNAs

decoding specificities are available. Based on them, we calculated

the absolute times of translation (elongation and initiation

separately), in SI units, for individual genes. Furthermore, by

combining these results with data on mRNA stabilities, we

determined the number of proteins produced from each transcript

during its lifetime.

To facilitate access to the results, we developed Transimulation

– a web service simulating protein biosynthesis from individual

genes for the three studied organisms. Transimulation not only

provides a graphical interface for browsing and searching for gene

products and displays the outcome in a transparent fashion, but

also simulates the average propagation of ribosomes on an mRNA

molecule according to the calculated translational parameters of a

gene. The visualization of ribosome density on a transcript enables

detection of regions most susceptible to ribosome collisions and

queuing. Moreover, the movement of ribosomes may be modified

on the fly by coding sequence manipulation. The users may

introduce any number of point mutations into the coding

sequence, both synonymous and non-synonymous, in order to

examine their impact on the fluency of ribosome flow. Transimu-

lation also enables uploading of any coding sequence and

expressing it in silico in one of the three analyzed organisms. In

such a case, the expected time of translation initiation cannot be

determined on the basis of experimental data and must be

provided by the user. This functionality of the web service may be

of crucial importance for studies on heterologous expression.

Finally, Transimulation enables large-scale analysis of genes as

translational parameters for all analyzed genes, their coding

sequences, and mean codon elongation times for an organism can

be easily downloaded as flat files. We demonstrated how

Transimulation may be used to examine evolutionary conserva-

tion of translational parameters in orthologous genes.

Results

Translational Model for Three Organisms
The following translational parameters were attributed to the

analyzed genes: L, coding sequence length in codons; x, average

number of transcripts in a cell; b, average number of proteins
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produced from one molecule of transcript during its lifespan; g,

ribosome density in number of ribosomes attached to a transcript

per 100 codons; w, the absolute number of ribosomes on a

transcript; I , mean time required for translation initiation; E,

mean time required for translation elongation; e, mean elongation

time of one codon of a transcript; and m, estimated mean lifetime

of a transcript. Parameters I , E, e, and m are given in SI units.

The values of parameters L, x, g, w, I , E, and e were attributed

to 1738, 4470, and 7494 genes in E.coli, S.cerevisiae, and H.sapiens,

respectively, which corresponds to the 42, 76, and 41% coverage

of the genomes. Due to the accessibility of data, parameters m and

b were determined only for subsets of analyzed genes, containing,

respectively, 1574, 3425, and 6205 genes. The summary of

quantitative measures of translation for the three organisms may

be found in Table 1.

Web Service Implementation
All translational parameters for individual genes are presented

on the Transimulation website. The database may be browsed or

searched by the query engine. Simple searches may be performed

by typing a single gene name, or a key word in the query window.

More complicated queries, combining several gene names, key

words, or values and ranges of translational parameters are also

possible. The results page of an individual gene consists of a list of

all the calculated translational parameters and an interactive

simulation of translation.

The top part of the applet displays transcript coding sequence,

which may be navigated or mutated with the help of appropriate

buttons on the control panel. The current sequence may be

downloaded as a fasta file anytime. The simulation starts by

placing the ribosome active site on the initial codon and then

moving it from one codon to another only if it has spent there the

required amount of time for translation of the current codon and

the subsequent codon is vacant. The successive ribosome attaches

to the initial codon after a time interval equal to the translation

initiation time. Ribosome collisions will not occur during

simulation, if the original sequences are used, as only collision-

free genes were retained in the database. Otherwise, ribosome

blockage may take place. In such a case, the simulation stops and

active sites of collided ribosomes are indicated by red exclamation

marks. For easier identification of ribosome deceleration regions,

plots of translation speed (in aa/sec) in relation to the original

coding sequence are provided. To facilitate analysis, the plots may

be smoothed by calculating translation speed over a sliding

window of the size of 2, 5, 10, 20, 30 or 50 codons (see Figure 1).

In addition, Transimulation allows to express any coding

sequence in silico in one of the three studied organisms. To run

simulation of ribosome movement, the time of translation

initiation should also be provided by the user. Translation times

of individual codons are those of the host organism. Most

translational parameters are calculated based on the initiation

time and the coding sequence. To calculate the number of proteins

produced per mRNA – b, mean lifetime of a transcript should also

be provided. Additionally, translation speed plots (raw and

smoothed) may be generated for the uploaded sequence. Finally,

to facilitate more automatic analysis, the entire database of

translational parameters, as well as translation times of individual

codons, may be downloaded as flat files. Detailed manual for

Transimulation users may be found on the website.

Agreement with Previous Studies
A detailed comparison of model results with other studies was

shown previously for yeast [9]. However, as in this study we used

different input data set for yeast mRNA degradation time [10],

which is a key parameter for calculating b, we repeated the

comparisons of obtained protein abundances with experimental

data. Similar but more detailed analysis for bacteria and humans

was also performed.

At first, we examined the compatibility of our predictions with

genome-wide, experimental measurements of protein levels for

Table 1. The summary of translational parameters calculated in the model.

organism L x b g w I E e m

E.coli mean 335 3.6 47 1.3 4.0 62 40 119 7.5

median 298 1.7 28 0.8 2.3 15 35 119 6.8

sd 203 5.6 60 1.3 5.0 206 24 9 4.0

min 15 0.1 0 0 0 2 2 87 2.0

max 1487 54.0 940 6.6 41.2 5091 178 177 42.3

S.cerevisiae mean 513 7.8 116 1.1 5.6 54 116 224 33.2

median 431 2.7 58 0.8 3.1 28 96 229 27.4

sd 365 29.0 188 0.9 7.3 186 84 31 26.8

min 37 0.1 1 0.0 0.0 2 4 98 4.3

max 4911 591.3 2543 6.6 142.1 6714 1074 360 677

H.sapiens mean 676 85.9 9171 2.3 11.5 7 59 87 6.5

median 506 42.6 5616 2.1 10.1 4 44 87 9.2

sd 620 171.9 9739 1.4 7.22 23 54 4 6.3

min 38 0.9 14 0.0 0.0 1 3 75 3.0

max 14508 4e3 83e3 7.5 131.6 1372 1232 108 34.6

Column description: (L) transcript length; (x) number of gene transcripts; (b) number of proteins produced from one transcript; (g) ribosome density in number of
ribosomes per 100 codons; (w) number of ribosomes on a transcript; (I ) initiation time in s; (E) elongation time in s; (e) mean elongation time of one transcript codon in
ms; and (m) mean transcript lifetime in min (bacteria, yeast), or in h (humans). For all parameters, except b and m, the rows 1–15 were calculated for 1738, 4470, and
7494 genes for bacteria, yeast, and humans, respectively. For parameter b and m, the rows were calculated for 1574, 3425, and 6205 genes, respectively.
doi:10.1371/journal.pone.0073943.t001
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E.coli [11], S.cerevisiae [8,12], and H.sapiens [13]. All scatter plots

and distributions of log fold differences are presented in Figure 2

and S1, respectively. For H.sapiens the 95% confidence interval

(CI) for the Spearman correlation coefficient r is 0.65–0.68 (for

sample size n = 3041), which means that our model explains 42–

46% of the variability of protein levels measured experimentally.

Globally, our predictions are overestimated by approximately one

order of magnitude in relation to experimental studies. Next, we

compared protein abundances in S.cerevisiae with those assessed

experimentally by other groups [8,12]. The obtained 95% CI for r
was 0.62–0.67 (n = 1778), and 0.52–0.80 (n = 60) for the Newman

et al. and Gygi et al. data sets, respectively. Our predictions

explain 38–45% and 27–64% of the experimental values’

variability in these data sets, and may be slightly shifted in relation

to them, although the difference rarely exceeds one order of

magnitude. For comparison, the 95% CI for r calculated between

these two experimental studies is 0.35–0.64 (n = 97), which

corresponds to 12–41% of each other’s explained variability. For

E.coli, the 95% CI for r was 0.18–0.40 (n = 262), indicating that

our model explains 3–16% of the variability of protein abundances

measured experimentally. Again, there is a shift in values, but this

time our protein levels are underestimated; for some genes this

shift may be serious (several orders of magnitude), as may be seen

from the long left tail of the log fold differences distribution (Figure

S1). For explanation of this fact, see Discussion.

Furthermore, many of the obtained cell-wide parameters of

translation can be compared with other quantitative studies. For

instance, according to our model the global ribosome density

calculated over the entire E.coli transcriptome equals 3.46

ribosomes per 100 codons. Assuming that a ribosome covers 10

codons, the length of average gap between ribosomes equals ,19

codons, which corresponds to an earlier report [14], claiming 14–

28 codons between adjacent ribosomes. Additionally, the average

translation rate for bacteriae cells was estimated at 12–21 [14],

and 15 aa/sec [15], while our model predicts 8.4 aa/sec. Our

mean transcript lifetime of 7.5 min for E.coli agrees well with

previous estimates of 5.87 min 6 34 s [16] and 5–10 min [17].

Besides, Open WetWare web page (http://openwetware.org,

accessed Jan 2013) provides a list of E.coli statistics, which

generally confirm our calculations of: transcript copy number per

gene (2–3 according to Open WetWare vs. 1.7 in our model

[median]); translation initiation time (20–30 vs. 15 s in our model

[median]); the number of proteins produced from one transcript

(40 vs. 28 [median] and 48 [mean] in our model). There is a

discrepancy in the mean number of proteins produced from a gene

(1000 vs. 45 [median] and 205 [mean]). Other studies also claim

that the total number of proteins in a bacterial cell is ,2.4 mln

[18], while our calculation (sum of b times x over all analyzed

genes) gives only ,300,000. The origins of all the discrepancies

are analyzed in Discussion.

In HeLa cells, the global translational rate estimated by the

model is ,11 aa/sec. Previous studies reported 6 aa/sec for

human apolipoprotein B [19], 0.74 aa/sec for rabbit hemoglobin

[20], 5 aa/sec for chick ovalbumin [21], and an average

translation rate of 7.3 aa/sec in cockerel liver [22]. Moreover,

according to reference [23], the entire proteome of a mammalian

cell contains about 8e9 molecules, while our model predicts 6e9

proteins per cell. The distribution of protein abundances is also in

accordance with this report, claiming variation in protein levels

from less than 100, to 1e8 molecules, depending on their function.

In our model, the number of proteins produced from a gene (b
times x) is between 127 and 1e8 molecules per cell, with median

230,000 and standard deviation 3.3e6.

Case study: Comparison of Translation in Three
Organisms

To demonstrate the applicability of Transimulation to answer-

ing biological questions we used its data to estimate conservation

of translational parameters between evolutionary related genes. By

taking advantage of the Inparanoid database [24] (accessed Jan

2013), we prepared a list of 69 orthologous genes present in E.coli,

S.cerevisiae and H.sapiens genomes, for which translational param-

eters can be found on the Transimulation website (Table S1). We

measured the agreement between parameters values for all

possible pairwise comparisons, by calculating 95% confidence

intervals CI for the Spearman correlation coefficient r. All results,

as well as three-dimensional scatter plots, are provided in Figure

S2.

The closest agreement, yet still relatively small, was found for

the transcript copy number x. For intra-species comparisons, all

correlations were positive, with lower CIs limits between 0.13–

0.29, and upper CI limits between 0.55–0.65, indicating that the

percent of explained variability of mRNA levels is in the range 2–

42. Although this is not much, and could result from data noise,

we must not forget that the analyzed species are very distant, and

stronger signals are hardly expected. No coherent picture emerges

from comparisons of parameters g, w, m, b, and I , as obtained

confidence intervals are too ambiguous to decide on correlation

sign, thus precluding any further discussion. The only exception is

the case of the yeast-human comparison for parameters g and I ,

Figure 1. Translation speed plot generated by Transimulation. An example plot of translation speed (in aa/sec) in relation to the coding
sequence of one of the E.coli genes. To facilitate analysis, the plot was smoothed by calculating translation speed over a 10-codon sliding window.
Similar plots for window sizes of 1, 2, 5, 10, 20, 30, and 50 codons are generated for all analyzed genes and sequences uploaded by the user.
doi:10.1371/journal.pone.0073943.g001
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for which some positive correlations were found. Here again, the

signal is weak, possibly explaining as little as 4–5% of the values

variability. The number of ribosomes attached to a transcript w

correlates better, with lower CI limit of 0.43, corresponding to at

least 18% of the explained variability. However, this is the result of

strong conservation of orthologs’ sequence length L, which

significantly affects the calculations of w. This influence is also

visible in elevated CIs for the remaining intra-species comparisons

of w.

Translation elongation time E seems strongly conserved, with

correlation CI lower limits ranging from 0.7 to 0.83, indicating

that at least 49% of values variability could be explained.

Nevertheless, this is again due to conservation of L, the main

determinant of total elongation time. In particular, the inter-

species comparisons for the samples of 69 genes show very strong

correlations between E and L, with r above 0.83 (yeast), 0.96

(bacteria), and even 0.99 (humans). Furthermore, this is confirmed

by unambiguous correlations of �ee, mean elongation time of one

codon of a transcript, suggesting that in case of evolutionary

Figure 2. Calculated protein abundance vs experimental studies. Correlations between protein abundances calculated in our model (as b
times x) and those obtained in experimental studies [8,11–13]; n – sample size, r – Spearman correlation coefficient and its 95% confidence interval.
doi:10.1371/journal.pone.0073943.g002
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related genes of similar sequence (and thus sequence length) any

variability of elongation times of individual codons (or codons

substitutions, insertions, and deletions) has negligible effect on total

elongation time of the transcript. The differences in elongation

times of individual codons seem too small to significantly affect E

for sequences of similar length. Hence, it should not be surprising

that the intra-species comparison of mean elongation times of 61

sense codons (all measured at 37uC) results in very weak (if any)

positive correlations. However, this may also be explained by the

independent adaptation of species to the changes in tRNAs pool in

the cell.

Taken together, our results suggest rather modest conservation

of transcript copy number in orthologs. We cannot exclude the

possibility that ribosome density and initiation time is also slightly

conserved, although it could not be confirmed by comparisons

with E.coli. Possibly, the evolutionary distance between bacteria

and analyzed eukaryotes is too large to detect such a weak signal.

We could not detect any conservation of mean transcript lifetimes

and the number of produced proteins per transcript, which may

stem from the fact that in the course of evolution many of the

analyzed genes duplicated, gained or lost function. In conse-

quence, their stoichiometry in the cell may be very distant from

that in the theoretical common ancestor of these three species.

Finally, the observed conservation of total elongation time E of

orthologs should rather be due to similar sequence length of

analyzed genes.

Discussion

The Transimulation service provides easy access to the results of

the computational model of translation applied cell-wide in three

organisms: E.coli, S.cerevisiae, and H.sapiens, and also enables to

simulate translation of individual genes, including arbitrary

sequences provided by the user. It is freely available at http://

nexus.ibb.waw.pl/Transimulation. The simulation of ribosomes’

movement is written in the Java programming language and

requires Java version 1.7 or higher plugged into the browser. The

source code is distributed under the GPL-2.0 license and may be

freely downloaded from the Transimulation website, along with

installation instructions and all the necessary input data.

The results presented in this and our previous paper [9] show

that generally the predictions of our model are reasonably good,

taking into account the differences in strains and experimental

conditions as well as assumptions and simplifications of the model.

However, some discrepancies can be found, especially in protein

abundance. In case of humans, they may be assigned to the fact

that our model does not take into consideration protein turnover,

and, therefore, the experimentally observed protein level should be

smaller than predicted, especially for short-lived proteins. In

contrast, in E.coli our predictions are strongly underestimated,

which most likely stems from the fact that E.coli has a very short

generation time, varying between ,18 and ,38 min for rich and

minimal medium, respectively [25]. Simultaneously, the vast

majority of its proteins has much longer half-life. For instance, it

was reported that only 2 to 7% of the proteome degrades at half-

life as short as ,1 hour [26]. This means that a typical protein

lifetime strongly exceeds cell generation time, and protein

molecules are inherited by subsequent generations through cell

devisions. Summing up, we do not expect very good agreement

between b – the average number of proteins produced from one

molecule of transcript during its lifespan – and experimentally

determined protein concentrations, as protein concentration in a

cell is not exactly what b stands for.

Nevertheless, this problem shows difficulty of evaluation of the

model at the current level of biological knowledge. For individual

genes, most parameters, such as translation time and protein

production rate, cannot be compared with experimental studies,

because no such studies exist or are available only for a very

limited set of genes. Even genome-wide determinations of mRNA

or protein levels, performed by several groups separately (e.g. in

yeast), are far from setting the gold standard [27]. In particular,

our predictions for yeast proteins abundance show similar

agreement with experimental studies, as the experimental studies

among themselves. However, one must not forget that those

experimental studies can explain even as little as 12% of their

counterpart variance. Some researchers argue [27] that many

genome expression data sets suffer from large random errors and

systematic shifts in reported values, and thus cannot be used to

predict translation rates at the level of individual proteins.

Nevertheless, even if the experimental procedures were more

precise, we would not avoid the variability of the measurements

due to the fact that the cell is alive and thus constantly interacts

with the environment. Hence, only numerous repetitions of

quantitative genome-wide experiments in fixed conditions, but

performed separately, could provide enough data for complex and

comprehensive meta-analysis of gene expression and a good

estimate of the errors. Only such data could provide stable ground

for translational models, like the one presented above, finally

upgrading all estimations from point to interval-oriented. For this

reason, we recommend taking any parameter value at the level of

individual gene with a much caution. We hope to develop and

complete Transimulation as more genome-wide data become

available, so that it becomes a theoretical framework for a future

more predictive quantitative model.

Materials and Methods

Computational Model of Translation
The model used to calculate the translational parameters

presented in our web service has been described in detail

previously [9]. The majority of the input data and other variables

required for the model were found in the Bionumbers database

[28], and are presented in Table 2. All translational parameters for

yeast, except m and b, were taken directly from Table S1 of [9].

Below, we briefly summarize the calculations, along with some

details on data sets parsing for the remaining organisms. More

thorough derivation of the equations may be found in our previous

work [9].

Coding Sequences
Coding sequences of the analyzed organisms were downloaded

from the web resources shown in Table 2. Our reference genomes

were the same as those used in the ribosome profiling analysis of

the species, i.e. NC_000913 for E.coli, and hg18 for humans.

Codon Elongation Times
Mean elongation times of individual codons of E.coli were taken

directly from [29], and for yeast from [9]. For humans, we

obtained them as described in [29]. In short, the average time to

add an amino acid coded by the jth codon to the nascent peptide

chain was calculated as stated in [29], namely:

ej~Dcognz1:445|(Dnear
:CjzDnonc

:Rj)(in ms), ð1Þ

where Dcogn is the average time to insert an amino acid from a

cognate aa-tRNA, and Dnear and Dnonc are the average time delays
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caused by the binding attempts of near- and non-cognate aa-

tRNAs, respectively. Values of Dcogn, Dnear and Dnonc can be

calculated at any given temperature, as shown by [29]. In our

analysis we used the same temperatures at which the cells were

grown in the ribosome profiling experiments: 30uC for yeast, and

37uC for E.coli and humans. In the above equation Cj and Rj

stands for two tRNA competition measures, being the quotients of

the sums of arrival frequencies of near-cognates vs. cognates and

non-cognates vs. cognates, respectively. For each codon we

determined its cognates, near- and non-cognates, based on data

sets on tRNA specificities listed in Table 2. We assume that all

sense codons have one or more cognate aa-tRNA and varying

numbers of near-cognates. Near-cognates are defined as having a

single mismatch in the codon-anticodon loop in either the 2nd or

3rd position. Since some cognate tRNAs have a mismatch in the

3rd position, these tRNAs are excluded from the set of near-

cognates [30]. The arrival frequency of the aa-tRNA molecule is

defined as in [29]:

F~
6:D:n:2l

V
, ð2Þ

where D is the diffusion coefficient, n is the number of molecules in

a cell, 2l is the molecule size in m, and V is the average cell

volume in m3. The values of D for all aa-tRNAs were taken

directly from [29]. As this value depends only on the accepted

amino acid, we assumed that the difference in size between E.coli

and other species’ tRNAs is negligible. For humans the diffusion

coefficient of the tRNA(Cys) was used for the selenocysteine

isoacceptor tRNA(Sec). The levels of tRNA molecules in a cell, as

well as their decoding specificities, were taken from sources given

in Table 2. If necessary, the relative abundances were transformed

to absolute values assuming the total number of tRNAs listed in

Table 2. The values of 2l used previously [29] were determined

separately for individual E. coli aa-tRNA molecules [31]. As we

are not aware of any similar reports for other analyzed organisms,

we decided to use l~14:5|10{9 m for other species’ codons,

which is the mean of the E. coli l values. Average cell volumes for

E.coli, yeast and humans were taken directly from the references

in Table 2. Mean codon elongation times for all three species may

be downloaded as flat files from the Transimulation web page, and

parameters D, n and F are presented in Table S2. The list of

cognate and near-cognate tRNA for each codon, as well as the

measures C and R, may be found in Table S3.

Transcript Abundance
The levels of mRNA molecules were taken directly from the

references in Table 2. If necessary, the relative abundances were

transformed to absolute values assuming the total number of

mRNAs given in Table 2 and complete coverage of the

transcriptome by the reference study.

Ribosome Density
The average number of ribosomes attached to a transcript – w,

as well as the ribosome density g (the number of attached

ribosomes per 100 codons), were determined on the basis of

genome-wide ribosome profiling data, as stated in Table 2. For

human and yeast, genes that did not have either ribosome or

mRNA footprint counts at all, or their sum was below 128, were

excluded from further analysis. As the E.coli data set does not

provide information on mRNA counts, only genes with less than

100 ribosome footprint counts in at least one repetition were

excluded. When transforming footprint counts into ribosome

density for E.coli, one obstacle cannot be ignored – the fact that

typically E.coli expresses ,600 genes at a time from the pool of

,4000 [15] and transcript turnover is very rapid [16,17]. The

ribosome profiling data provide information for ,3000 genes,

which means that it concerns bacterial cells at many possible

stages. The key parameter for ribosome density calculation is the

sum of all footprints from the experiment, which is assumed to

correspond to the total number of footprints in a cell. In bacteria

the sum calculated over all ,3000 analyzed genes would be

seriously overestimated. To overcome this problem, we estimated

it by finding the mean of 1000 sums calculated over 600 genes,

sampled without replacement from the pool of 3331 genes of

known footprints count. For all species the total number of

ribosomes required for calculations of w was taken from the

references in Table 2, and it was assumed that 85% of ribosomes

present in the cell actively participate in translation [32,33].

Assuming that a ribosome covers about 10 codons [34], only

transcripts with gƒ 10 were retained.

Other Translational Parameters
The average elongation time of a transcript E was calculated as

the sum of mean elongation times of its codons. Transcript mean

elongation time of one codon �ee was calculated as E=L, where L
stands for sequence length in codons. The translation initiation

time I was calculated as the quotient of E and the number of

ribosomes attached to a transcript – w, as discussed previously.

Mean mRNA lifetimes were taken from the references listed in

Table 2. The expected number of proteins produced from a

transcript during its lifespan was calculated as the quotient of the

mean lifetime and translation initiation time I . Using the

Table 2. Summary of data sets and variables used as an input
of the model.

Input data E.coli S.cerevisiae H.sapiens

Cell line K12 MG1655 BY4741 HeLa

Temperature 37uC 30uC 37uC

Medium MOPS YEPD –

Global parameters

Transcriptome size 1,500 [15,35] 36,000 [36] 700,000*

Ribosomes/cell 20,000 [15] 200,000 [37] 9,500,000 [38]

Average cell volume 1e-18 m3 [29] 42e-18 m3 [39] 2425e-18 m3 [40]

Parameters required to calculate mean codon elongation times

tRNA decoding [29] [41] [42]

tRNA abundances [43] [9] [42]

tRNAs/cell 71,000 [43] 2,800,000 [9] 60,000,000*

Data sets

Coding sequences NCBI SGD UCSC

mRNA abundances [11] [44] [45]

mRNA lifetime [46] (M9 medium) [10] [47]

Ribosome footprints [34] [44] [45]

Details on data parsing and calculations may be found in the main text. Cell
lines and growth conditions (temperature and medium) denote those used in
the ribosome profiling experiments. The numbers marked by an asterix were
taken from the RNA Tools and Calculators section at the Invitrogen Website
(www.invitrogen.com, accessed April 2013). The coding sequences were
downloaded from the following databases: NCBI (www.ncbi.nlm.nih.gov.ftp,
accessed May 2012), SGD (www.yeastgenome.org, accessed June 2009), and
UCSC (http://genome.ucsc.edu, accessed July 2012).
doi:10.1371/journal.pone.0073943.t002
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simulation of ribosome movement on a transcript and calculated

parameters, we reduced the final data set to the transcripts on

which ribosome queuing does not occur. We excluded 89, 151 and

194 transcripts from E.coli, yeast and human data sets, respectively.
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