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Abstract

The relationships between miRNAs and their regulatory influences in esophageal carcinoma remain largely unknown.
Accumulated evidence suggests that delineation of subpathways within an entire pathway can underlie complex diseases.
To analyze the regulation of differentially expressed miRNAs in subpathways of esophageal squamous cell carcinoma
(ESCC), we constructed bipartite miRNA and subpathway networks to determine miRNA regulatory influences on
subpathways. The miRNA-subpathway network indicated that miRNAs regulate numerous subpathways. Two principal
biological networks were derived from the miRNA-subpathway network by the hypergeometric test. This miRNA-miRNA
network revealed the co-regulation of subpathways between the upregulated and downregulated miRNAs. Subpathway-
subpathway networks characterized scale free, small world, and modular architecture. K-clique analysis revealed co-
regulation of subpathways between certain downregulated and upregulated miRNAs. When ESCC patients were grouped
according to their expression levels of paired upregulation of miR-31 and downregulation of miR-338-3p, survival time
analysis revealed a significant difference based on miR-31-miR-338-3p interaction. These findings can facilitate the
understanding of the biological meaning of miRNA-miRNA interactions with either the same or opposite expression trend.
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Introduction

miRNA is a kind of single-stranded non-coding small RNA that

regulates gene expression at the posttranscriptional level by base-

pairing with protein-coding mRNAs [1]. The biological impor-

tance of miRNAs mainly relies on the functions of their target

genes. More than ten years of investigation has confirmed that

miRNAs participate in almost all aspects of important biological

functions in a broad spectrum of human diseases [2]. To

systematically understand miRNA function at the genome-wide

level, much research has been carried out by analyzing miRNA

through GO or pathway enrichment. Xu et al. constructed a

functional miRNA–miRNA cooperation network via co-regulating

functional modules. Predicted miRNA-miRNA interaction is

validated by high co-expression of functional modules and

negative regulation of functional modules, and the topological

features of disease miRNAs in the cooperative network are distinct

from non-disease miRNAs [3]. Another comprehensive analysis

on miRNAs was carried out by determination of each known

miRNA on biochemical pathways in the KEGG and TRANS-

PATH database and the Gene Ontology categories were found

enriched with respect to its target genes. A strong relation to

disease-related regulatory pathways has been found by investigat-

ing target pathways of miRNAs [4].

The impact of miRNA on pathways is through the regulation of

its pathway member. Recent studies have shown that the damaged

pathway does not necessarily occur at the overall level, but more

likely strong disturbance at local area of pathway (subpathway). In

recent years, more attention has been paid to subpathway, which

can provide more detailed information of complex diseases in

high-throughput data analysis, because critical genes may not be

significantly enriched in the whole pathway, but nevertheless play

key roles [5,6]. Based on the concept of the subpathway, Li et al.

systematically analyzed the miRNA regulatory influences to

subpathways and found that a small fraction of miRNAs were

global regulators, and that miRNAs co-regulate groups of

subpathways with similar function. By integrating the disease

states of miRNAs, Li et al. also found that disease miRNAs

regulated more subpathways than non-disease miRNAs [7].

Esophageal cancer is the eighth most common cancer and the

sixth most common cause of cancer deaths worldwide, with

esophageal squamous cell carcinoma (ESCC) being the dominant

type in East Asia [8]. Dozens of dysregulated miRNAs have been

found in ESCC [9]. The enriched subpathways of predicted target
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genes of ESCC differentially expressed miRNA were considered

respond to the related dysregulated disease pathways. However,

there are still no reports focused on the subpathways regulation

mediated by miRNA and the interactions between miRNAs in

ESCC applying a network-based method. In this study, we

constructed a bipartite graph of miRNA–subpathway interactions

and two sub-networks (miRNA-miRNA and subpathway-subpath-

way) to characterize the miRNA regulatory influence on subpath-

ways in ESCC.

Materials and Methods

ESCC Differentially-expressed miRNAs
The differentially expressed miRNAs used in this study were

collected from the union of three earlier ESCC miRNA

microarray results of our research group and other two research

groups. We previously analyzed the miRNA expression profile in

three pairs of ESCC tissues and matched adjacent non-cancerous

tissues using a miRCURYTM locked nucleic acid (LNA) array

(version 11.0 Exiqon, Denmark) and identified 33 upregulated

miRNAs and 40 downregulated miRNAs, including miR-143,

miR-145, miR-338-3p, miR-1261, miR-31 and miR-142-3p [10].

Subsequently, the downregulation of miR-143 and miR-145 were

confirmed by QRT-PCR in 86 matched pairs of ESCC specimens

[10]. In our another research, the downregulation of miR-338-3p

and miR-1261 and the upregulation of miR-31 and miR142-3p

were confirmed also by QRT-PCR in other 89 matched pairs of

ESCC specimens [11]. Feber et al. analyzed 10 matched pairs of

esophageal carcinoma specimens with Ambion bioarrays and

reported 14 dysregulated miRNAs in ESCC, including the

upregulation of miR-21 and miR-342, the downregulation of

miR-203, miR-205 and let-7c [12]. Eight differentially-expressed

miRNAs were also obtained from the analysis of 31 matched pairs

of ESCC specimens and corresponding adjacent normal esoph-

ageal tissues by Guo et al. using their own designed miRNA

microarray. They found upregulation of miR-25, miR-424, miR-

151, miR-103 and miR-107, and downregulation of miR-100,

miR-99a and miR-29c [13]. Of these miRNAs, hsa-miR-103/107

expression trends were determined by QRT-PCR in another 11

matched pairs of ESCC cases [13]. No differentially expressed

miRNAs from three ESCC miRNA profiles were inconsistent, but

rather were complementary. Then the 56 union differentially

expressed miRNAs obtained from these three miRNA profiles

were applied in this study as a dataset, many of which were

verified later by other researches in ESCC by QRT-PCR (Table 1).

To determine if the miRNA was related to human disease, the

disease information of miRNAs was extracted from the miR2Di-

sease database (March 2011), which contained disease-miRNA

relationships extracted from literature [22].

miRNA Target Collection and Curation
The predicted target genes of ESCC differentially expressed

miRNAs were retrieved from miRecords, which stores predicted

miRNA targets produced by 11 established miRNA target

prediction programs, including DIANA-microT, MicroInspector,

miRanda, MirTarget2, miTarget, NBmiRTar, PicTar, PITA,

RNA22, RNAhybrid, and TargetScan [23]. These programs are

based on different prediction algorithms, such as target site

evolutionary conservation and thermodynamic stability of the

RNA–RNA duplex (Text S1). Except for sites in the traditional

39UTR, some programs could predict miRNA binding sites in the

target mRNA CDS and 59UTR. Such as RNA22 successfully

predicted target sites for miR-296, miR-470 and miR-134 in the

CDS regions of the Nanog, Sox2 and Oct4 mRNAs [24].

Only targets predicted by at least 4 of 11 programs and filtered

by the default value of programs in miRecords were applied in the

present study (Text S1, File S1). TargetScan, for example, applies

context scores to consider features such as the AU content in the

vicinity of the site and the position of the site within the message,

to predict the function and quantitative efficacy of each site [25].

This criterion reduces the false positive rate to ensure the

authenticity of miRNA target genes and subsequent analysis

results to a certain extent.

Integrating both sequence information and expression profiles

of miRNAs and mRNAs can potentially identify the relevant

miRNA-mRNA pairs, thus facilitating interventional experiments

to validate bona fide targets of miRNAs. Because differentially

expressed miRNA might correspond with dysregulation of mRNA,

mRNA expression data in ESCC were considered to ensure the

tissue specificity of miRNA targets in ESCC. Six ESCC mRNA

expression profile datasets (GSE17351, GSE20347, GSE29001,

GSE33426, GSE33810 and GSE23400) were downloaded from

NCBI GEO. Then we used fold-change analysis to identify

differentially expressed genes (DEGs) from the corresponding

ESCC cases and controls. Since miRNA can regulate targeted

mRNA at different strengths, such as inhibiting translation,

degradation and cleavage, we defined the threshold of ESCC

DEGs at 1.5-fold. Next, the intersections of predicted targets from

miRecords and ESCC DEGs from ESCC mRNA profile were

computed for subsequent subpathway analysis for each differen-

tially expressed miRNA, respectively. Taken together, our miRNA

targets predictions strategy considers targets from multiple

prediction softwares as well as ESCC mRNA expression data.

Subpathway Analysis of miRNA Targets
In this study, the k-clique method in SubpathwayMiner R

packages was applied to identify the significantly miRNA

regulated subpathways based on the targets of each ESCC

differentially expressed miRNA [5]. All pathways from KEGG

database are considered for analysis in this study [26]. Sub-

pathwayMiner is able to identify all subpathways based on

closeness of genes in pathways through a given distance parameter

k, which means that the distance among all genes within the

subpathways is no greater than k. Briefly, each pathway is

converted to an undirected graph with genes as nodes. After

inputting the given each miRNA target genes and distance

parameter k, the method can mine each subpathway and then

identify statistically significantly enriched subpathways. Use of

different settings of the distance parameter k allowed the

identification of subpathways to become more flexible. In this

study we used the default value of parameter k (k = 4). The k-clique

method has been proved to be effective in subpathway identifi-

cation [5]. It can identify some important subpathways which

contained very important nodes (genes), such as membrane

receptors or their ligands and end-points are transcriptional

factors.

miRNA-subpathway Network Generation
A pair of miRNA–subpathway regulation relationship was

defined when target genes of an individual miRNA were

significantly enriched in one subpathway (P,0.05). After assem-

bling all significant pairs, a network of miRNA–subpathway was

generated and visualized by Cytoscape, where nodes represented

miRNAs or subpathways, and edges represented their regulation

relationship [27]. Then an upregulated miRNA-subpathway

network and downregulated network were constructed based on

the expression levels of miRNA in ESCC.

miRNA-miRNA in ESCC
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Table 1. Summary of differentially-expressed ESCC miRNAs applied in this study.

miRNAs
Expression
level

Disease
miRNA

Intersection of
predicted target gene
and ESCC DEGs Subpathway number

ESCC profile
Reference

Confirmed by
QRT-PCR

hsa-miR-103 up Yes 515 141 [13] N/A

hsa-miR-107 up Yes 502 152 [13] N/A

hsa-miR-1246 up N/A 2042 222 [10] [14]

hsa-miR-1248 up N/A 4057 397 [10] N/A

hsa-miR-1280 up N/A 762 172 [10] N/A

hsa-miR-142-3p up Yes 215 134 [10] [11] N/A

hsa-miR-142-5p up Yes 427 90 [10] N/A

hsa-miR-146b-5p up Yes 466 143 [10] N/A

hsa-miR-152 up Yes 465 143 [10] N/A

hsa-miR-15a up Yes 853 315 [10] [15]

hsa-miR-424 up Yes 846 267 [12] N/A

hsa-miR-181a up Yes 835 225 [10] N/A

hsa-miR-18b up Yes 235 44 [10] N/A

hsa-miR-199a-3p up Yes 134 59 [10] N/A

hsa-miR-21 up Yes 299 65 [10] [13] [14]

hsa-miR-22 up Yes 308 133 [10] N/A

hsa-miR-25 up Yes 442 142 [10] [12] [16]

hsa-miR-31 up Yes 729 117 [10] [11] [15]

hsa-miR-338-5p up Yes 689 40 [10] N/A

hsa-miR-381 up Yes 685 75 [10] N/A

hsa-miR-491-3p up Yes 190 48 [10] N/A

hsa-miR-645 up N/A 556 89 [10] N/A

hsa-miR-720 up Yes 1120 194 [10] [17]

hsa-miR-93 up Yes 802 142 [12] N/A

hsa-let-7c down Yes 619 177 [12] [13] N/A

hsa-miR-125b down Yes 462 79 [10] N/A

hsa-miR-126 down Yes 14 87 [10] [15]

hsa-miR-1261 down N/A 1651 116 [10] [11] N/A

hsa-miR-133a down Yes 335 63 [10] [14]

hsa-miR-133b down Yes 372 66 [10] [14]

hsa-miR-134 down Yes 161 69 [10] N/A

hsa-miR-143 down Yes 299 98 [10] [14]

hsa-miR-145 down Yes 463 179 [10] [14]

hsa-miR-192 down Yes 107 60 [12] N/A

hsa-miR-194 down Yes 359 64 [12] N/A

hsa-miR-200b down Yes 795 179 [10] N/A

hsa-miR-200c down Yes 759 207 [12] N/A

hsa-miR-203 down Yes 1865 331 [10] [13] [18]

hsa-miR-205 down Yes 375 109 [12] [13] [19]

hsa-miR-27b down Yes 841 219 [12] N/A

hsa-miR-29c down Yes 662 229 [12] [14]

hsa-miR-30a down Yes 921 216 [10] N/A

hsa-miR-320a down Yes 128 82 [10] N/A

hsa-miR-320b down Yes 2022 407 [10] N/A

hsa-miR-338-3p down Yes 342 58 [11] [20]

hsa-miR-378 down Yes 175 60 [10] N/A

hsa-miR-451 down Yes 28 35 [10] N/A

hsa-miR-571 down N/A 641 134 [10] N/A

miRNA-miRNA in ESCC
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miRNA–miRNA Network and Subpathway–subpathway
Network Construction

Because miRNA can regulate multiple targets and one target is

probably controlled by multiple miRNAs, this pattern was

applicable for miRNA in the regulation of subpathways [7]. To

comprehensively understand the internal relationships of miRNAs

or subpathways based on the relationship of a miRNA-subpath-

way in ESCC, the significances of multiple subpathways shared by

two different miRNAs, and multiple miRNAs regulating two

common subpathways were statistically analyzed, respectively.

miRNA-miRNA networks and subpathway-subpathway networks

derived from the miRNA-subpathway network were constructed

using a cumulative hypergeometric distribution. The formula was

as follows:

p~
Xm

i~k

(m{j=n{j)(j=i)

(m=n)
:

For each miRNA-miRNA pair, n denotes the total number of

subpathways derived from the KEGG pathways, m represents the

number of subpathways that are regulated by one differentially

expressed miRNA, i denotes the number of subpathways that are

regulated by the other differentially expressed miRNA, and j

represents the number of overlapping subpathways that are

regulated by the two miRNAs. To analyze the significance of

each subpathway-subpathway pair, n denotes the total number of

miRNAs that regulate subpathways, m represents the number of

miRNAs that regulate one subpathway, i denotes the number of

miRNAs that regulate the other subpathway, and j represents the

number of overlapping miRNAs that regulate the two subpath-

ways.

All analyses were run by the costumed R program. If the P-

value is ,0.01, the miRNA-miRNA pair or subpathway-subpath-

way pair was considered significant, and then the networks were

also constructed and visualized by Cytoscape, in which nodes

represented miRNAs or subpathways and edges represented their

interactions.

Analysis of Network Properties
The topological characteristics of networks obtained in this

study were analyzed using NetworkAnalyzer, one of the Cytoscape

plugins for network topological parameter analysis [28]. The edges

in all networks were treated as undirected. The degree of a

miRNA (or subpathway) was the number of subpathways (or

miRNAs), which connected the miRNA (or subpathway) in the

network. Node degree distribution P(k) is defined as the number of

nodes with a degree k for k = 0, 1, 2, …. By fitting a line on

datasets, such as node degree distribution data, the pattern of their

dependencies can be visualized. NetworkAnalyzer considers only

data points with positive coordinate values for fitting the line

where the power law curve of the form y = bxa. The R2 value is a

statistical measure of the linearity of the curve fit and used to

quantify the fit to the power line. When the fit is good, the R2

value is very close to 1.

Analysis of Cliques
CFinder software was applied to find functional communities or

modules within miRNA-miRNA networks and subpathway-

subpathway networks based on the Clique Percolation Method

(CPM) [29]. A clique in the network was a complete subgraph in

which every two miRNAs (or subpathways) were connected by an

edge. Each clique must be the biggest fully connected subgraph

and could be reached from each other through adjacent k-cliques

that shared k-1 nodes [30].

The Cluster of Two Interacting miRNAs
Expression data of interesting miRNA-miRNA interactions,

detected by QRT-PCR in 89 cases of ESCC clinical samples in

our previous report, were reanalyzed in this study [11]. Cluster 3.0

and Java Treeview software were applied to cluster and visualize

according to the miRNA expression levels [31,32]. Cluster 3.0 can

perform a variety of types of cluster analysis on expression

datasets, including hierarchical clustering, self-organizing maps, k-

means clustering and principal component analysis. The k-means

clustering was applied in this study.

Survival Analysis
In our previous research, 89 matched pairs of ESCC species

were collected between September of 2004 and May of 2007 in the

Department of Cardiothoracic Surgery of the First Affiliated

Hospital of Shantou University (Shantou, China) [11]. The follow-

up of their survival time was updated to March of 2012. Then the

89 ESCC specimens were classed into two groups according to the

expression of two interacting miRNAs clustering clusters result

from above. The survival of grouped ESCC patients was analyzed

by Kaplan–Meier analysis and the log-rank test using SPSS 13.0

(SPSS Inc, Chicago, IL).

Table 1. Cont.

miRNAs
Expression
level

Disease
miRNA

Intersection of
predicted target gene
and ESCC DEGs Subpathway number

ESCC profile
Reference

Confirmed by
QRT-PCR

hsa-miR-604 down N/A 404 82 [10] N/A

hsa-miR-617 down N/A 767 178 [10] N/A

hsa-miR-644 down N/A 719 115 [10] N/A

hsa-miR-662 down Yes 312 131 [10] N/A

hsa-miR-671-5p down N/A 1098 159 [10] N/A

hsa-miR-891a down N/A 10 1 [10] N/A

hsa-miR-99a down Yes 32 72 [10] [12] [21]

hsa-miR-100 down Yes 30 68 [10] [12] [21]

doi:10.1371/journal.pone.0073191.t001

miRNA-miRNA in ESCC
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Results

Subpathways of Differentially-expressed miRNAs in ESCC
The workflow to construct networks is shown in Figure 1. We

initially collected 56 differentially expressed miRNAs from three

ESCC miRNA microarray expression profiles, including 24

upregulated miRNAs and 32 downregulated miRNAs (Table 1).

To identify whether these miRNAs were related to human disease,

disease information of miRNAs was extracted from the miR2Di-

sease database (March 2011), a manually curated database that

provides a comprehensive record of miRNA deregulation involved

in various human diseases, including cancers [22]. According to

the miR2disease report, 44 miRNAs out of the total 56 miRNAs in

this study were reported in at least one kind of human cancer. This

indicates most of the differentially expressed miRNAs were closely

related to human cancers and also might be critical to ESCC. The

target genes of these miRNAs were retrieved from miRecords

predicted by at least 4 of 11 programs and filtered by the default

value of programs in miRecords (File S1). To minimize the false

positives resulting from the computational prediction of miRNA

targets, and to build a high-confidence resource for miRNA target

analysis, ESCC mRNA DEGs were obtained by analysis of six

GEO ESCC mRNA microarray profiles. The intersections of

predicted targets and ESCC DEGs were retained for subsequent

subpathway analysis. The miRNA expression trends, the numbers

of presumed target genes and subpathway are shown in Table 1.

In total, we obtained 35942 miRNA-target regulations for these

56 miRNAs. miRNA-subpathway networks were constructed

based on target gene enrichment analysis by the SubpathwayMi-

ner package. In the miRNA-subpathway network, a miRNA and a

subpathway were connected if the target genes of this miRNA

were significantly enriched in this subpathway (P,0.05). To

ensure the reliable of the targets, genes predicted by at least 4 of 11

programs in miRecords were remained, and the tissue specific of

mRNA expression in ESCC has also been considered. Then these

reliable targets of each miRNA were used to identify significant

subpathways. This subpathway mining algorithm has been

successfully to find biological significance disease-related pathways.

For example, local region of tyrosine metabolic pathway was

found closely related with the development of lung cancer [5]. So

the subpathways we identified by subpathwayMiner though

targets of miRNA are strong disordered local regions related to

ESCC. As a result, 7677 significant pairs of miRNA-subpathways

were found, containing 1245 unique subpathways. Interestingly,

the upregulated miRNA-subpathway network comprised 27% of

the subpathways derived from the KEGG human disease

pathways database, whereas the downregulated miRNA-subpath-

way network identified comprised 26% of the subpathways derived

from the human disease pathways database. These results indicate

that the dysregulation miRNAs might also play significant and

extensive roles in the initiation or development of ESCC through

the regulation numerous disease pathways.

miRNA-subpathway Network and its Properties
The miRNA-subpathway network was constructed and visual-

ized by Cytoscape (Figure 2). The total miRNA-subpathway

network contained 7677 significant interactions between 56

miRNA nodes and 1244 unique subpathway nodes (Figure 2A,

File S2). The upregulated miRNA-subpathway network contained

24 miRNA nodes and 976 subpathway nodes, generating 3548

miRNA-subpathway interactions (Figure 2B), and there were 32

miRNA nodes and 1041 unique subpathway nodes, linked by

Figure 1. Schematic presentation of the analysis workflow to construct the miRNA-subpathway, miRNA-miRNA and subpathway-
subpathway sub-networks. miRNA target genes were subjected to subpathway enrichment analysis to generate a miRNA-subpathway network.
Then two sub-networks were constructed by the hypergeometric test.
doi:10.1371/journal.pone.0073191.g001

miRNA-miRNA in ESCC
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4129 edges in the downregulated miRNA-subpathway network

(Figure 2C). In the upregulated miRNA-subpathway network, hsa-

miR-1248 has the largest number of subpathways, while hsa-miR-

320b regulates the largest number of subpathways in the

downregulated miRNA-subpathway network (Table 1, Figure 2).

Compared with the results of retrieving target genes only form

TargetScan (data not shown), hsa-miR-15a and hsa-miR-424 are

still the second and third miRNA have greatest degree in

upregulated miRNA-subpathway network, while hsa-miR-27b

remains the fourth miRNA has greatest degree in downregulated

miRNA-subpathway network. In comparing subpathways of hsa-

miR-1248 and hsa-miR-320b, there were 8, 5 and 19 overlapping

subpathways in the MAPK signaling pathway, Wnt signaling

pathway, and Pathways in cancer, respectively (File S2). This

shows that many overlapping subpathways are regulated by

miRNAs with opposite expression.

We then analyzed the network properties of these three

miRNA-subpathway networks. The distributions of node degree

approximately followed power law distributions, with an

R2 = 0.817, 0.777 and 0.777, respectively (Table 2, Figure 3A).

Figure 2. Graphic representation of three miRNA-subpathway networks. (A) Downregulated miRNA-subpathway network. (B) Upregulated
miRNA-subpathway network. (C) Total miRNA-subpathway network. Nodes colored in green are downregulated miRNA, and red nodes are
upregulated miRNAs. Blue nodes represent the subpathways. The size of the miRNA nodes correspond to the node degree (the number of
subpathways that miRNA connected). P-value strength is represented by edge line width, with wider edges representing more significant
interactions. Hsa-miR-320b and hsa-miR-1248 had the biggest degree are shaded in yellow.
doi:10.1371/journal.pone.0073191.g002

miRNA-miRNA in ESCC
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Thus, these three miRNA-subpathway networks were scale-free,

which is one of most important characteristics of true complex

biological networks [33]. These results suggest that only a few

subpathway nodes are linked by many miRNAs, and that a few

miRNA nodes act as hubs with a large number of links to

subpathway nodes (Table S2). Compared with the results of only

obtaining target genes form TargetScan (data not shown), the

parameters of network properties do not change greatly (Table 2).

These indicate that our analysis method was reliable.

MiRNA-miRNA and Subpathway-subpathway Network
Generation

To understand the internal relationships of dysregulated

miRNAs and subpathway relationships in an ESCC background,

two biologically relevant sub-networks, the miRNA-miRNA

network and subpathway-subpathway network, derived from the

miRNA-subpathway network, were constructed. In the miRNA-

miRNA network, two miRNAs as two nodes were defined as

connected if they significantly co-regulated common subpathways,

as analyzed by the hypergeometric test in which subpathways from

both miRNAs were significantly enriched (P#0.01) (File S3). The

total miRNA-miRNA network contained 790 pairs miRNA-

miRNA interactions of 56 unique miRNAs (Figure 4C).

Previous research has emphasized the co-regulation of func-

tional modules and subpathways by the cooperation of multiple

miRNAs [3,7]. In addition, another kind of miRNA-miRNA

interaction appeared between miRNAs with opposite expression

trends regulating the same molecules, such as mRNAs and

pathways, generating reverse biological effects. For example, it has

been reported that adipogenic differentiation is impaired by miR-

369-5p, whereas such differentiation is highly increased by miR-

371. DNMT3A and DNMT3B are up-regulated by miR-371,

whereas DNMT3A is down-regulated by miR-369-5p. This result

proves miR-369-5p and miR-371 are up-stream regulators of

adipogenic differentiation with opposite expression levels [34]. In

this study, many overlapping subpathways were regulated by

miRNAs with opposite expression, such as for hsa-miR-1248 and

hsa-miR-320b, as described above. To separately detect how

ESCC-upregulated and -downregulated miRNAs regulate the

subpathways, and identify interactions between the ESCC-

upregulated and -downregulated miRNAs, ESCC-upregulated

and -downregulated miRNAs were constructed in two sub-

networks. The upregulated miRNA-miRNA network contained

24 miRNAs and 103 edges, while there were 31 miRNAs and 190

edges in the downregulated miRNA-miRNA network (Figure 4A

and 4B). We found that the edges of the total miRNA-miRNA

network were greatly increased compared to that of either the

upregulated or downregulated miRNA-miRNA network, indicat-

ing increasing numbers of interactions between some upregulated

and downregulated miRNAs (Table S2). For example, upregulated

miR-21 had only 1 edge in the upregulated miRNA-miRNA

network, but 15 edges in the total miRNA-miRNA network, in

which the ratio of between upregulated and downregulated

miRNAs was 5:10 (Figure 4D). This indicates certain miRNAs

are inclined to interact with miRNAs in an opposing manner.

Similarly, in the subpathway-subpathway network, a subpath-

way pair was defined if they were significantly co-regulated by two

common miRNAs as also calculated by the hypergeometric test

(P#0.001) (File S4). There were 817 unique subpathways and

4134 edges in the total subpathway-subpathway network (Figure

S1C). On the other hand, the downregulated subpathway-

subpathway network derived from the downregulated miRNA-

subpathway network contained 457 subpathways and 1057 edges,

while the upregulated subpathway-subpathway network derived

from the upregulated miRNA-subpathway network contained 362

subpathways and 869 edges (Figure S1A and S1B).

We next analyzed the topological properties of three subpath-

way-subpathway networks by NetworkAnalyzer plugin. The

degree of distribution approximately followed power law distribu-

tions with an R2 = 0.767, 0.652 and 0.852, respectively. This

indicates the three subpathway-subpathway networks are also

scale-free complex biological networks (Figure S2).

The Clique Analysis of Networks
For the miRNA-miRNA network, the k-clique method was

applied to predict functional modules, which would provide

important insight to the miRNAs involved. These miRNA-

miRNA and subpathway-subpathway networks were mapped

and colored according to the communities found by CFinder. This

algorithm identifies the maximally complete subgraphs (k-cliques,

in which any two nodes have edges) in the networks or the

communities in which two k-cliques share exactly k-1 nodes [29].

In the downregulated miRNA-miRNA network, a k = 12 clique

community consisted of 14 downregulated miRNAs, which

included let-7c, miR-1261, miR-143, miR-145, miR-200b, miR-

200c, miR-203, miR-27b, miR-30a, miR-320b, miR-571, miR-

604, hsa-miR-617 and miR-671-5p (Figure 5). Ten of these 14

miRNAs were human cancer-related miRNAs. To understand

how these miRNAs were connected, we surveyed the subpathways

regulated by these 14 miRNAs and found that there were at least

four significant pathways derivative subpathways that were co-

regulated by this clique, including Pathways in cancer, Focal

adhesion, and ErbB signaling pathway and MAPK signaling

pathways. These four pathways were co-regulated by all 14

Table 2. Network parameters of miRNA-subpathway and subpathway-subpathway networks.

Nodes Edges y = bxa R2 Correlation

miRNA-subpathway network

Total miRNA 1300 7677 y = 207.49x21.084 0.777 0.971

Upregulated miRNA 1000 3548 y = 158.94x21.039 0.777 0.967

Downregulated miRNA 1073 4129 y = 184.42x21.082 0.817 0.989

Subpathway-subpathway network

Total miRNA 817 4143 y = 462.59x21.428 0.852 0.866

Upregulated miRNA 362 869 y = 133.43x21.261 0.652 0.947

Downregulated miRNA 451 1057 y = 293.56x21.574 0.767 0.865

doi:10.1371/journal.pone.0073191.t002
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miRNAs of this clique (Figure 5). It has been acknowledged that

these four pathways play critical roles in the development of ESCC

[35,36,37]. Of these 14 miRNAs, 8 miRNAs (let-7c, miR-27b,

miR-30a, miR-143, miR-145, miR-200b/200c and miR-203)

have been found to play significant roles in ESCC, serving as

prognostic markers, tumor suppressors or oncogenes [38].

Therefore, it was presumed that the all 14 miRNAs in this

k = 12 clique co-operatively regulate critical pathways (subpath-

ways) ESCC. Similarly, a k = 9 clique, also consisting of 14

miRNAs, was found by CFinder in the upregulated miRNA-

miRNA network, which included miR-103, miR-107, miR-1248,

miR-146b-5p, miR-152, miR-15a, miR-181a, miR-25, miR-424,

Figure 3. Power law of node degree distribution for the miRNA-subpathway networks. (A) Degree distribution of the downregulated
miRNA-subpathway network. (B) Degree distribution of the upregulated miRNA-subpathway network. (C) Degree distribution of the total miRNA-
subpathway network.
doi:10.1371/journal.pone.0073191.g003

Figure 4. Visualization of miRNA-miRNA networks by Cytoscape. (A) Downregulated miRNA-miRNA network. (B) Upregulated miRNA-miRNA
network. (C) Total miRNA-miRNA network. (D) The miRNA-miRNA interaction of hsa-miR-21. Green nodes represent downregulated miRNAs, while
upregulated miRNAs are colored red. The size of the miRNA nodes corresponds to the node degree (the number of miRNAs that are connected). P-
value strength is represented by edge line width, with wider edges representing more significant interactions.
doi:10.1371/journal.pone.0073191.g004
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Figure 5. The k = 12 clique from the downregulated miRNA-miRNA network and its co-regulated subpathways. Green nodes represent
downregulated miRNAs, while upregulated miRNA is colored red. The size of the miRNA nodes corresponds to the node degree. P-value strength is
represented by edge line width, with darker edges representing more significant interactions.
doi:10.1371/journal.pone.0073191.g005
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miR-93, miR-1246, miR-22, miR-381 and miR-142-5p. Of these

miRNAs, only miR-1246 and miR-1248 have not been reported

in miR2disease. This clique co-regulates the neurotrophin and

Insulin signaling pathways, which are co-regulated by 14 and 12

miRNAs from this clique (Figure S3).

To also test if there was an antagonistic effect between the

dysregulated miRNAs, k-clique analysis was also performed on the

total miRNA-miRNA network. An interesting k = 6 clique was

found, which consisted of 53 miRNAs (Figure 6). To our surprise,

two significant pathways were also co-regulated by 12 miRNAs of

this clique. For the Pathways in cancer, it was co-regulated by 31

downregulated miRNAs, and 21 upregulated miRNAs. The Focal

adhesion pathway was also co-regulated by 22 downregulated

miRNAs and 19 upregulated miRNAs (Figure 6). These results

indicate the subsequent biological effects depend on the extent

regulated by the dysregulated miRNAs (downregulated miRNA

and upregulated miRNA).

Effect of miRNA-miRNA Interaction on ESCC Patient
Survival

Since close connections were found in the miRNA-miRNA

network, especially in the total miRNA-miRNA network, certain

Figure 6. The k = 6 clique from total miRNA-miRNA and its co-regulated subpathways. Red nodes represent upregulated miRNAs, while
blue nodes are downregulated miRNAs. The size of the miRNA nodes corresponds to the node degree. P-value strength is represented by edge line
width, with wider edges representing more significant interactions.
doi:10.1371/journal.pone.0073191.g006
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miRNAs interacted with other miRNAs in opposing fashion. This

phenomenon was also found in the k-clique analysis of the

miRNA-miRNA network. These results revealed the existence of

miRNA-miRNA interactions between the miRNAs with opposite

expression changes. To test if this type of miRNA-miRNA

interaction affects the survival of ESCC patients, the expression

of the miR-31 and miR-338-3p interacting pair (P = 0.0057,

Supplementary file S3) detected by QRT-PCR in 89 matched

pairs of ESCC clinical samples reported previously were clustered

using Cluster 3.0 [11,29]. One critical reason to choose this

miRNA pair is that they have opposite expression trends in ESCC.

The expression level of miR-31 was increased 1.58-fold while

miR-338-3p was decreased 0.88-fold [11]. The cluster result

showed that the 89 ESCC patients could be classified into two

groups according to the expression levels of miR-31 and miR-338-

3p (Figure 7A). One group contained 42 patients with high miR-

338-3p and low miR-31 expression levels, while the other group

was comprised of 47 patients with low miR-338-3p and high miR-

31 expression levels. Survival analysis of the patients by Kaplan–

Meier analysis and the log-rank test showed that the group with a

higher expression level of miR-31 and lower expression level of

miR-338-3p had shorter survival, compared to the group with a

lower expression level of miR-31 and higher expression level of

miR-338-3p (Figure 7B). These results suggest that certain

miRNA-miRNA interactions between miRNAs with reverse

expression trends might play a significant role in the initiation

and development of ESCC, and ESCC patient survival.

Discussion

ESCC is one of the most deadly malignant tumors in the world,

with an overall 5-year survival rate less than 20% [39]. miRNA

has been proven as the most important post-transcriptional

regulator in the initiation and development of a variety of tumors,

including ESCC. However, a system-wide level analysis of miRNA

in ESCC is not currently available. Accumulated evidence proves

that miRNAs regulate diverse biological pathways [40]. Previous

studies demonstrate that a subpathway-based approach is more

precise and flexible in annotation and identification of pathways.

Thus, in this study the rules of miRNA regulatory influences on

subpathways are explored in ESCC.

First, differentially expressed miRNAs were mined from three

ESCC miRNA expression profiles, and their presumed target

genes, obtained from the intersections of predicted targets and

ESCC DEGs, were subjected to subpathway analysis to generate a

miRNA-subpathway network. Hsa-miR-320b and hsa-miR-

1248 had the highest degree, meaning that it regulates the largest

number of subpathways in the miRNA-subpathway network,

respectively. However, detailed biological functions of these two

miRNA have yet to be reported. Hsa-miR-203 has the third

Figure 7. ESCC patient clusters and survival analysis. (A) The cluster of miR-31 and miR-338-3p in 89 ESCC patients. The prefix 0 represents
deceased ESCC patients, while the prefix 1 represents living ESCC patients. (B) Survival of grouped ESCC patients is analyzed by Kaplan-Meier analysis
and the log-rank test.
doi:10.1371/journal.pone.0073191.g007
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highest degree. miR-203 represses TP63 expression at the

posttranscriptional level and inhibits the proliferation of ESCC

cells through the TP63-mediated signal pathway [41]. In the

miRNA-subpathway network, some subpathways are uniquely

regulated by certain miRNAs (Table S1). For example, KEGG

pathway path:00020 (Citrate cycle (TCA cycle)) can only be

regulated by hsa-let-7c, which is involved in essential amino acid

synthesis. Zhang et al. report significant changes of TCA cycle in

esophageal cancer patients compared with the healthy controls

using both 1H NMR and UHPLC to detect the metabolomics of

esophageal cancer blood serum [42]. This indicates that certain

differentially expressed miRNAs might play specific roles in ESCC

through the regulation of unique subpathways.

We constructed two biologically relevant networks derived from

the miRNA-subpathway, the miRNA-miRNA network and

subpathway-subpathway networks to provide complementary

information to miRNA regulatory influences on subpathways,

and allow us to understand the interactions between miRNAs or

between subpathways. Our results indicate that the three kinds of

miRNA-subpathway networks are true complex biological net-

works, rather than random networks [43].

Xu et al. demonstrated the miRNA-miRNA cooperation

network based on Gene Ontology and protein–protein interaction

networks [3], and Li et al. analyzed miRNA-miRNA interaction

based on classification of disease and non-disease subpathways [7].

Moreover, it has been shown that the combination of several

miRNAs may work together to affect multiple target genes in the

same or different biological pathways [44]. Similar results are

found in this study. For example, a k = 12 clique community,

consisting of 14 downregulated miRNAs, is found in the

downregulated miRNA-miRNA network, and at least four

significant pathways derivative subpathways are co-regulated by

this clique, including Pathways in cancer, Focal adhesion, and

ErbB signaling, and the MAPK signaling pathway. Also, a k = 9

clique is found in the upregulated miRNA-miRNA network.

miRNAs in this clique co-regulate Neurotrophin signaling

pathway and Insulin signaling pathways. These results suggest

that cooperative miRNA-miRNA interactions with the same

changes in expression level are also critical in ESCC.

However, the effect of miRNA-miRNA interaction between

miRNAs opposite changes in expression level has not been

emphasized in previous network research. In this study, multiple

evidence supports miRNA-miRNA interaction between miRNAs

with opposite trends in expression in ESCC. First, the edges of the

total miRNA-miRNA network are greatly increased compared to

that of either upregulated or downregulated miRNA-miRNA

networks. This might partly result from the addition of miRNA

nodes, but also from the miRNA-miRNA interactions with

opposite expression levels. We find upregulated hsa-miR-21

interacts with more downregulated miRNAs than upregulated

miRNAs in the total miRNA-miRNA network. It should also be

pointed out that hsa-miR-21 is the most upregulated miRNA in

our ESCC miRNA expression profile, increasing 24.5-fold on

average [10]. This indicates that hsa-miR-21 might interact with

certain downregulated miRNAs, whose downregulation might

facilitate upregulated hsa-miR-21 to promote the initiation or

development of ESCC. Recent research shows that hsa-miR-21

plays critical roles in ESCC. Upregulation of hsa-miR-21

promotes the proliferation, migration and inhibition of apoptosis

of ESCC cells through activating the ERK1/2/MAPK pathway,

while its knockdown suppresses cell growth, invasion and induced

apoptosis by targeting FASL, TIMP3 and RECK genes [45,46].

To our great interest, we find hsa-miR-21 interacts with hsa-miR-

203 (P = 0), which is the most downregulated miRNA, with an

average decrease of 4.4-fold according to our previous ESCC

miRNA expression profile [10]. Moreover, TP63, a target of

hsa-miR-203, has also been reported to be regulated by miR-21 in

glioblastoma [47]. These results indicate that most downregu-

lated and most upregulated miRNAs extensively interact in the

same biological event by targeting the same genes, or even

subpathways.

To further understand the biological effect of miRNA-

miRNA, with opposite changes in expression levels, on the

clinicopathology of ESCC, 89 matched pairs of ESCC clinical

samples reported previously were clustered and classified into

two groups according to the expression level of the miR-31-

miR-338-3p miRNA-miRNA pair. Survival analysis shows the

ESCC patient group with a higher expression level of miR-31

and lower expression level of miR-338-3p had a shorter survival

time than the group with a lower expression level of miR-31 and

higher expression level of miR-338-3p. These results suggest

that the interaction between miRNAs with reverse expression

levels have a significant impact on the survival of ESCC

patients. In contrast, in our previous results, miR-31 and miR-

338-3p did not show any significance when using the expression

levels of these two miRNAs to classify and analyze the survival

of ESCC patients [11]. Nevertheless, the significant biological

effect of both miRNAs on ESCC patient survival time was

revealed when the same ESCC patients were grouped and

analyzed according to the clustering of miR-31-miR-338-3p

interaction. It has been previously reported that miR-31 is up-

regulated in ESCC tissues and serum. ESCC patients with high-

levels of serum miR-31 also have a poorer prognosis in relapse-

free survival [48]. Recently, miR-338-3p has also been proven

to be downregulated in ESCC, and its aberrant expression

increases the risk of ESCC [20]. Our research reveals significant

biological effects of miR-31-miR-338-3p interaction that simul-

taneously occur in ESCC patients.

In summary, based on subpathway analysis of miRNA target

genes, we define the interactions between dysregulated miRNAs

with the same expression trend or opposite expression trend in

ESCC. Our results indicate that the biological effects of miRNA-

miRNA interaction might not only reflect common targets and

common pathways, but also the clinical pathology of ESCC.

Supporting Information

Figure S1 The visualization of subpathway-subpathway
networks in Cytoscape. (A) Downregulated subpathway-

subpathway network. (B) Upregulated subpathway-subpathway

network. (C) Subpathway-subpathway network of total miRNA.

The size of the subpathway nodes corresponds to the node degree

(the number of subpathways connected). P-value strength is

represented by edge line width, with wider edges representing

more significant interactions.

(TIF)

Figure S2 Power law of node degree distribution for the
subpathway-subpathway networks. (A) Degree distribution

of the downregulated subpathway-subpathway network. (B)

Degree distribution of the upregulated subpathway-subpathway

network. (C) Degree distribution of the total subpathway-subpath-

way.

(TIF)

Figure S3 The k = 9 clique from the upregulated
miRNA-miRNA network and its co-regulated subpath-
ways. The size of the miRNA nodes corresponds to the node
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degree. P-value strength is represented by edge line width, with

wider edges representing more significant interactions.

(TIF)

Table S1 Unique subpathways regulated by dysregulat-
ed miRNAs.
(DOC)

Table S2 Degrees of miRNAs in the total miRNA-
subpathway and miRNA-miRNA networks.
(DOC)

File S1 The miRNAs target genes retrieved from
miRecords predicted by at least 4 of 11 programs.
(XLS)

File S2 The subpathways of miRNA target genes.
(XLS)

File S3 miRNA-miRNA network.
(XLS)

File S4 Subpathway-subpathway network.

(XLS)

Text S1 The 11 algorithms in miRecords apply different
weighted and ranked systems for the predicted target
genes.

(DOC)
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