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Paenibacillus larvae is a Gram-positive bacterium that causes American foulbrood, an important disease in apiculture. We re-
port the first complete genome sequence of a P. larvae phage, phiIBB_Pl23, isolated from a hive in northern Portugal. This
phage belongs to the family Siphoviridae.
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American foulbrood is a bacterial disease caused by Paenibacil-
lus larvae, a Gram-positive bacterium wherein the spore is the

infectious form. P. larvae causes hive destruction and conse-
quently important economic losses in apiculture worldwide (1).
Moreover, a European Community regulation (no. 2377/90) lim-
its the presence of antibiotics in honey, excluding its use for ther-
apy. Therefore, the development of alternative antimicrobial
methods is of utmost importance. Bacteriophages, viruses that
infect and lyse bacteria, have shown great efficacy in controlling
bacterial diseases in animal production (2–5).

The phage phiIBB_Pl23 was isolated after culturing of strain
H23 (host) found in honeybee larvae from a Portuguese hive. This
phage formed plaques on most of the P. larvae strains tested. Mor-
phologically, it is from the Siphoviridae family.

PhiIBB_Pl23 was propagated in H23 under incubation at 37°C
with 5% CO2, and afterward the phage DNA was extracted. The
genome was sequenced using Roche/454-recommended proce-
dures at the Plateforme d’analyses génomiques of the Institut de
Biologie Intégrative et des Systèmes (Laval University, Québec,
Canada). Shotgun reads were assembled using the gsAssembler
module of Newbler v 2.5.3. Potential open reading frames (ORFs)
were annotated using myRAST (6). The presence of Shine-
Dalgarno sequences upstream of each ORF and the search for
additional ORFs were checked manually in Kodon (Applied
Maths, Austin, TX). Putative protein functions were assigned us-
ing BLASTP (7) and Pfam (8) with databases available on April
2013. Transmembrane domains were predicted using Phobius (9)
and TMHMM (10). Putative host-dependent (SigA) promoters
were discovered with their consensus sequence TTGACA-N14-
tgnTATAAT (11). The Rho-independent terminators and calcu-
lations of the free energy of their secondary structures were pre-
dicted using ARNold (12) and Mfold (13), respectively.
tRNAscan-SE (14) and ARAGORN (15) were used for tRNA de-
tection.

The genomic double-stranded DNA of phiIBB_Pl23 consists
of 41,294 bp, with a GC content of 40.9%. The latter value is less
than that for the host at 44 GC mol%. The genome was scanned

for coding DNA sequences (CDS) resulting in 68 CDS, ranging
from 117 bp (39 codons) to 2,928 bp (976 codons). The initiation
codon of 81% of the predicted CDS is ATG, while 10% of the CDS
start with GTG and 9% with TTG. Based on BLAST and Pfam
analysis, 51% of the proteins have been assigned functions; 18%
were defined as conserved hypothetical proteins and 31% are
unique. The presence of a serine recombinase/resolvase (gp30),
repressor (gp31), and antirepressor (gp39) indicates that this is a
temperate phage (16). The endolysin of this phage is an
N-acetylmuramoyl-L-alanine amidase, identified as an amidase_2
domain, common to other Bacillus spp. (17). It also encodes a
975-amino-acid protein (gp26) possessing several ricin-type beta-
trefoil lectin domain-like domains (pfam14200) identical to
Paenibacillus larvae toxin 1 (AGJ74029), suggesting that like many
temperate phages, phiIBB_Pl23 is capable of lysogenic conversion
(18, 19).

Two putative promoters were identified as having homology
with SigA Bacillus promoters and three rho-independent termi-
nators but no tRNAs.

Nucleotide sequence accession number. This whole genome
shotgun project has been deposited at GenBank under the acces-
sion no. KF010834. The version described in this paper is the first
version.
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