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Abstract
Functional connectivity analyses can offer insights into mechanisms of the brain that might not be
revealed by traditional fMRI. These analyses compare seed voxels’ activity over time to the
activity of other voxels over time and identify correlations between regions. This study is the first
to perform functional connectivity analyses in the human medial temporal lobe (MTL) at high
enough resolution to resolve the hippocampal subfields. We calculated the average correlation
coefficients between the MTL cortices, which include the entorhinal (ERC), perirhinal (PRC), and
parahippocampal cortex (PHC), and the hippocampal subfields dentate gyrus/CA3, CA1, and
subiculum. We found that the hippocampal subfields had relatively high correlations with each
other both within and across hemispheres, but did not have exceptionally strong correlations with
the MTL cortices. The opposite was also seen where there was a relatively high correlation
coefficient between the ERC and PRC, but both regions had low correlation coefficients with the
hippocampal subfields. We also found greater functional connectivity within a hemisphere than
across hemispheres. These effects were replicated across multiple datasets which differed in task
demands, participants’ age, and scanner sequence/slice acquisition. Notably, all datasets were
better correlated to these patterns of intrinsic functional connectivity than to a model based on
anatomical constraints. This is consistent with evidence that functional connectivity is not a direct
mapping of anatomical connectivity. These patterns of functional connectivity imply a distinction
between the MTL cortices and the hippocampus and speak to our understanding of the
organization of the MTL.
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INTRODUCTION
Functional connectivity measures the correlation of activity over time across different
neuroanatomical regions (Friston et al., 1993). Most fMRI functional connectivity
investigations have studied correlations of activity in cortical regions (e.g., Biswal, et. al,
1995; Lowe, 2000; Greicius et al., 2003; Fox et al., 2005, 2007; Damoiseaux et al., 2006).
Fewer studies have focused on subcortical areas, in particular the hippocampus and adjacent
cortical regions of the medial temporal lobe (MTL; though see Stein et al., 2000). None have
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been performed in the MTL with high enough resolution to investigate the functional
connectivity of the hippocampal subfields. This study is the first of its kind to do so. We
investigated correlations of activity across subregions of the MTL, including the
hippocampal subfields and the MTL cortices (perirhinal, entorhinal, and parahippocampal).
We are particularly interested in these regions because of their prominent role in memory
processes and the various theories that posit dissociations in function across MTL regions
(Squire et al., 2004).

Although the brain accounts for 20% of the body’s energy consumption, traditional fMRI
activation studies constitute only a 1–5% change in blood-oxygen-level-dependent (BOLD)
activity from baseline (Raichle, 2010). The vast majority of activity is due to spontaneous
firing (Raichle and Mintun, 2006). Therefore, in traditional fMRI activation studies it can be
difficult to identify significant regions of activity in this sea of “noise”. To circumvent this
problem functional connectivity analyses look for correlations in the spontaneous changes in
activity that is ignored in traditional fMRI activation studies. The correlational nature of
functional connectivity analyses can also provide a broader understanding of the brain by
revealing how various parts of the brain potentially interact.

Since the first fMRI functional connectivity study in 1995 (Biswal et al., 1995), functionally
connected regions have been found throughout the cortex in the default mode network,
sensorimotor cortex, visual cortex, auditory cortex, and other regions (for review, see
Rosazza and Minati, 2011). There has been general consistency in functionally connected
networks across studies, with different styles of data analysis (e.g., seed style versus ICA;
Rosazza and Minati, 2011), and across resting state scans versus the residuals of task-related
activity (Fair et al., 2007). In addition, similar functionally connected networks have been
identified in deeply anesthetized monkeys (Vincent et al., 2007).

In this study, we performed seed style functional connectivity analyses in ten fMRI datasets
from ~200 participants collected in our lab over the span of several years. The datasets
differed in task demands, participants’ age, and scanner sequence/slice acquisition (none had
been previously analyzed for this kind of connectivity). Across datasets two patterns of
functional connectivity emerged. The first was relatively high functional connectivity
between the entorhinal (ERC) and perirhinal (PRC) cortex and amongst the hippocampal
subfields. However, there was relatively weak functional connectivity between the MTL
cortices and the hippocampal subfields and between any region and the parahippocampal
cortex (PHC). All datasets were better correlated to this pattern of functional connectivity
than to a model of the known anatomical connections. This is not entirely unexpected as
there is evidence that functional connectivity is not merely a direct mapping of anatomical
connectivity, but rather indicates something specific about functional organization and
activity (Lowe, 2000; Van Dijk et al., 2010). Thus, functional connectivity analyses should
not be viewed as proxies for anatomical analyses. The second pattern revealed that in areas
of high functional connectivity as mentioned above, there was greater functional
connectivity within a hemisphere than across hemispheres. Taken together, these results
have implications regarding the organization of the MTL and hippocampus and how these
regions might interact with each other

METHODS
Participants

Ten fMRI datasets were analyzed. Participants for the first nine datasets were recruited from
the University of California, Irvine (Lacy et al., 2011; Mattfeld et al., 2011; Yassa et al.,
2011). Participants in the 10th dataset were recruited from Johns Hopkins University
(Bakker et al., 2008). Each dataset was comprised of ~20 participants (range n =16–25) for a
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total of 198 participants. All participants were either healthy young adults (age range, 18–
33; mean age, 21) or healthy older adults (datasets, 4 and 6; age range, 60–83; mean age,
71). Written consent was obtained in compliance with the local Institutional Review Boards.
All participants were compensated for their time.

Behavioral Tasks
Before any correlational analyses were performed, task events were modeled and then
subtracted from the raw fMRI signal leaving the residual activity of task related scans
(methods described below under Functional Connectivity Analysis). Theoretically,
removing task effects from event-related fMRI data in such a manner leaves residual signal
equivalent to resting state data (Fox et al., 2006; Andrews-Hanna et al., 2007; He et al.,
2007). However, this may not entirely be the case as Fair et al. (2007) caution that although
the functional connectivity in the residuals of event-related activity are qualitatively similar
to true resting state data, quantitative differences can still exist. Moreover, even within
resting state data, quantitative differences in the functional connectivity can be observed
based on whether participants are at rest with their eyes open versus their eyes closed (Van
Dijk et al., 2010). Thus, there may be many factors that contribute to subtle differences in
the output of functional connectivity analyses and we should not assume that we can remove
all modulation by the task. Further, we must also take into account that certain task effects
cannot be removed from the data such as attentional state and internal environment during
task performance. For all the above reasons, it is important to consider the tasks performed
and thus they are described below.

Dataset #1: Image Pair Locations
Twenty-one healthy young adults studied 10 pairs of scene images placed in separate but
random locations on the screen and were then tested on their memory for the spatial
locations of each pair of images (3 s each with a 0.5 s ISI, 5 s study-test interval). The
participants’ task was to indicate via button press whether images were in the same locations
or different locations from the study phase. There were three study/test blocks per run for a
total of 210 pairs of images studied and tested across seven 4-min runs. Task procedures are
further described in Stark et al. (2010).

Dataset #2: Firsts, Lures, and Repeats
Twenty-one healthy young adults incidentally encoded a series of color images of everyday
objects (2.4 s each with a 0.3 s ISI) by indicating via button press whether each was an
indoor or outdoor object. Images could be new images not previously seen (first
presentations), exact repetitions of images previously seen (repetitions), or images similar to
those previously seen, but not the exact same (lures). There were a total of 768 trials (192
first presentations, 96 repetitions, 96 lures, and 384 unrelated foil items) divided into eight
4.5-min runs. Task procedures are further described in Lacy et al. (2011).

Dataset #3: Firsts and Lures (Young Participants)
Similar to dataset 2, nineteen healthy young adults incidentally encoded a series of color
images of everyday objects (2.4 s each with a 0.3 s ISI) by indicating via button press
whether each was an indoor or outdoor object. In this task, images could only be first
presentations or lure items. There were no repetitions. There were a total of 768 trials (192
first presentations, 192 lures, and 384 unrelated foil items) divided into eight 4.5-min runs.
Task procedures are further described in Yassa et al. (2011).
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Dataset #4: Firsts and Lures (Older Participants)
This dataset had the same task and design as Dataset 3, except that it was run in sixteen
healthy older adults. Task procedures are further described in Yassa et al. (2011).

Dataset #5: Resting State (Young Participants)
Eighteen healthy young adults remained in a relaxed awake state for ~2 min of fMRI
scanning. There was no overt task. Some participants had two sessions of resting state scans
on the same day separated by ~40 min of an incidental encoding task similar to the one
described in Dataset #2. For these subjects, their resting state scans were concatenated
together before being preprocessed and analyzed.

Dataset #6: Resting State (Older Participants)
This dataset had the same design and procedures (there was no overt task) as Dataset 5
except that it was run in 18 healthy older adults.

Dataset #7: A or B Associations, 80% Valid Feedback
Twenty-five healthy young adults participated in a continuous learning task where they had
to associate each of four stimuli with either Group A or B. For two of the stimuli,
participants received positive feedback for correct answers, but no feedback for incorrect
answers. For the other two stimuli, participants received negative feedback for incorrect
answers, but no feedback for correct answers. Valid feedback was given on 80% of trials,
and invalid feedback was given on 20% of trials. There were 40 learning trials (10
presentations per stimuli, 3 s each with a 1 s ITI) and 20 perceptual baseline trials per 4-min
run. Participants completed either four or eight runs. A new stimulus set was presented for
every four runs. Task procedures are further described in Mattfeld et al. (2011).

Dataset #8: Four Response Associations, 80% Valid Feedback
Eighteen healthy young adults participated in a continuous learning task where they had to
associate each of four stimuli with one of four button box responses. Participants received
“Yes” or “No” feedback on correct and incorrect trials respectively (trial duration =3 s with
a 1 s ITI). When participants reached criterion on a particular stimulus, that stimulus was
removed from the task and was replaced with a new stimulus. Participants were always
learning four stimuli concurrently. Correct feedback was given on 80% of trials, and
incorrect feedback was given on 20% of trials. Participants learned on average 16.3 stimuli
across six 4-min runs.

Dataset #9: Four Response Associations, 100% Valid Feedback
This dataset has the same task and design as Dataset 8 except that correct feedback was
given on 100% of trials. To match difficulty with the previous task, participants were
required to learn eight stimuli to button box associations at a time. Twenty-two healthy
young adults participated in this task. Participants learned on average 31.9 stimuli across six
4-min runs.

Dataset #10: Firsts, Repeats, Lures at Johns Hopkins
Similar to Dataset 2, twenty healthy young adults incidentally encoded a series of color
images of everyday objects (2.5 s each with a 0.5s ISI) by indicating via button press
whether each was an indoor or outdoor object. Images could be first presentations, exact
repetitions, or lures items. There were a total of 1,158 trials divided into eight 5.5-min runs.
Task procedures are further described in Bakker et al. (2008).
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In summary, Dataset 1 can be thought of as a relatively traditional explicit memory task.
Datasets 2, 3, 4, and 10 are variations of an incidental encoding task. Datasets 5 and 6 are
resting state scans. Datasets 7, 8, and 9 are continuous learning paradigms. See Table 1 for a
summary of the datasets.

Scanning Procedures
Three different scanning procedures were used for these studies. All were performed on a
3.0 Tesla Philips scanner with an 8-channel SENSE (Sensitivity Encoding) coil in order to
acquire high-resolution imaging data of the hippocampus (Kirwan et al., 2007). Distortions
of the functional echo-planar image (EPI) signal were controlled by: (1) higher-order shims,
which can directly compensate for local field distortions, (2) SENSE parallel imaging,
which uses multiple surface coils to undersample k-space with fewer phase encoding steps
(Pruessner et al., 2002), and (3) the use of thin slices as artifacts are a function of the number
of slices from the inhomogeneity rather than absolute distance (Buxton, 2001). A whole-
brain 0.75 mm or 1 mm isotropic magnetization prepared rapid acquisition gradient echo
(MPRAGE) structural scan was acquired for datasets 1–9 and dataset 10, respectively.

For Datasets 1–6, oblique EPIs were collected (1.5 mm isotropic voxels, 120 × 120
acquisition matrix, 22 slices) aligned parallel to the principal axis of the hippocampus with a
repetition time of 1,500 ms, an echo time of 26 ms, a flip angle of 70°, and a SENSE
reduction factor of 2.

For Datasets 7–9, oblique EPIs were collected (1.5 × 1.5 × 2 mm3 voxels, 120 × 120
acquisition matrix, 35 slices) aligned perpendicular to the principal axis of the hippocampus
with a repetition time of 2,000 ms, an echo time of 26 ms, a flip angle of 70°, and a SENSE
reduction factor of 2.

For Dataset 10, oblique EPIs were collected (1.5 mm isotropic voxels, 64 × 64 acquisition
matrix, 19 slices) aligned parallel to the principal axis of the hippocampus with a repetition
time of 1,500 ms, an echo time of 30 ms, a flip angle of 70°, and a SENSE reduction factor
of 2.

Cross-Participant Alignment
Cross-participant alignment was performed using Region of Interest—Advanced
Normalization Tools (ROI-ANTS; Avants et al., 2008; Klein et al., 2009; Lacy et al., 2011;
Yassa et al., 2011) based on regional alignment methods developed in our laboratory (Miller
et al., 2005; Yassa and Stark, 2009). An affine registration was applied to bring each
participant’s structural image into the atlas space of Talairach and Torneaux (1988). This
initial registration provides a rough first pass, removing large spatial shifts between
participants prior to subsequent fine-tuned cross-participant alignment using Advanced
Normalization Tools (ANTs), a powerful diffeomorphic alignment algorithm (Avants et al.,
2008). ANTs can be used to create custom central tendency templates as well as to create 3D
vector fields to map each participant’s brain into template space. We used the structural
scans of 20 healthy young participants and 20 healthy older participants to create custom
central tendency templates for young and older participants respectively. Following the
template generation, each participant’s MPRAGE was then warped into the appropriate
custom template space. The resulting transformation parameters were subsequently applied
to the output of analyses of the functional data.

Functional Connectivity Analysis
Data analysis was performed using the Analysis for Functional NeuroImages (AFNI)
software (Cox, 1996). As in traditional fMRI activation studies, images were co-registered
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to correct for within and across-scan head motion. Acquisitions in which a significant
motion event occurred (defined as >3° or 2 mm of movement relative to prior acquisition)
±1 TR surrounding the motion event were excluded.

All task effects, including baseline trials, were modeled via general linear model (GLM)
using AFNI’s 3dDeconvolve command (Cox, 1996; Fair et al., 2007). The model was used
to synthesize the data and this was subtracted from the raw fMRI signal to generate the
residuals. Note that for the resting state datasets (5 and 6) only scanner drift was modeled
and removed from the raw data. We then performed a seed style correlational analysis on the
residual fMRI data. Twelve regions of interest (ROIs) were analyzed: PHC, PRC, ERC,
dentate gyrus, and CA3 (DG/CA3, which are combined due to lack of resolution to
accurately separate these regions), CA1, and subiculum in each hemisphere. ROIs were
anatomically defined with the use of our alignment model. For information on the relative
size of these ROIs please see Supporting Information Table 1.

For each functional connectivity analysis, seed regions’ average time series were generated.
Global signal, white matter, and cerebral spinal fluid (CSF) time series were also generated
and were added to the regression model of each seed region to account for any physiological
and any other possible sources of noise that might cause artifactual correlations across
regions. The assumption being that physiological noise, e.g. cardiac and respiratory effects,
should be captured across the brain in the global signal and there should be little to no true
“activity” in the white matter and CSF. Thus, the signal from these regions should be
primarily noise. The noise regressors were created for each subject by averaging time series
across all voxels in a mask of the brain, white matter, and CSF on their MPRAGE. In one
analysis, white matter and CSF regressors were created for each slice to account for possible
local physiological noise. Adding additional regressors into the model did not prove to be
any more robust than using a single white matter and CSF regressor for the entire acquisition
window (see Results).

For each subject, the average correlation coefficient between every pair of ROIs was
calculated by finding the average correlation between the time series of seed regions and all
the individual voxels in other ROIs. This style of analysis does not provide the noise
reduction that averaging time series within ROIs would and thus results in small correlation
coefficients. However, we choose this style of analysis because it is not subject to
correlations being driven by a few outlier voxels that could dominate a region’s average
time series. Instead, by correlating a seed region’s time series to every voxel in another ROI
and then averaging over these correlations, each voxel is weighted equally in this overall
correlation. Thus this method is more assumption-free than correlating two average time
series from different ROIs. We did not perform the even more assumption free analysis of
correlating every voxel in a seed region to even voxel in another ROI due to the large
number of calculations that would require. These correlation coefficients were then Fisher’s
z transformed and averaged across all voxels within each ROI. For each subject, this
resulted in a vector of transformed correlation coefficients that corresponded to all possible
pairs of ROIs. Group analysis began by averaging correlation coefficients across participants
within a dataset and then comparing each dataset to each other via correlation and Pearson’s
r.

Permutation Analysis
In order to test the patterns of functional connectivity within each dataset, we performed two
permutation analyses. The first analysis was to test the internal consistency of the emergent
pattern in each dataset. This began by randomly splitting the participants from each dataset
into two halves and creating an average correlation coefficient vector for each half of
participants. We randomly permuted the average correlation coefficient vector from the first

Lacy and Stark Page 6

Hippocampus. Author manuscript; available in PMC 2013 September 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



half of participants 10,000 times and correlated each random permutation with the unaltered
vector from the second half of participants. Thus, we created a chance distribution of
correlation coefficients between the two halves of the datasets. We then correlated the
unaltered vector from the first half of participants to the unaltered vector from the second
half of participants to find the true correlation between the two halves of the datasets. Using
the mean and standard deviation of the chance distribution of correlation coefficients, we
calculated the z score and respective P-value of the real correlation of interest, that is
between the unaltered halves of each datasets.

We next sought to determine whether the same patterns that emerged in Dataset 1 were
reliably present in each of the other datasets. We created two models of these patterns plus
an anatomical model of the connections reported in Lavenex and Amaral (2000; Fig. 1). The
first model allowed us to test for the distinction between the MTL cortices and the
hippocampal subfields, coding for strong ERC/PRC interactions and strong within-
hippocampal interactions only. The second model tested the hemispheric effect within each
region. To create a chance distribution of correlation coefficients between the models and
the data, we first performed 10,000 permutations of each model and correlated these
permutations with each dataset. We then calculated the correlation coefficient between each
average dataset and the unaltered models and compared this to the previously generated
distribution of chance correlation coefficients to obtain z scores and P-values. Since the
models were built off of general observations from Dataset 1, the fit of Dataset 1 to the
models was expected and the correlation coefficients of Dataset 1 to the models are simply
reported for descriptive purposes. The importance of these models is in testing the reliability
of this pattern in the remaining nine datasets. This same sort of permutation analysis was
also used to test the correlation between each dataset and the anatomical model.

Lastly, we created a fake dataset by scrambling the average correlation coefficients from
dataset 1 twenty times to create 20 fake “participants” and then we averaged the correlation
coefficients of these “participants” to create dataset 11. We ran the above mentioned
permutation analyses on this averaged scrambled dataset 11.

RESULTS
All participants’ vector of correlation coefficients for Dataset 1 were averaged together and
displayed in matrix form (Fig. 2 left). Two patterns of functional connectivity emerged. The
first was relatively high correlation coefficients between left and right PHC, between
bilateral PRC and ERC, and amongst the hippocampal subfields (Fig. 2 left, boxes outlined
in red). Notably, however, there was relatively weak functional connectivity between the
MTL cortices and the hippocampal subfields. The second pattern was that in areas of high
functional connectivity, there was also a hemispheric effect such that seed regions were
better correlated with ROIs within the same hemisphere than the opposite hemisphere (e.g.,
left DG/ CA3 and left CA1 are better correlated than left DG/CA3 and right CA1).

To verify that this was not a coincidental pattern and that each dataset was internally
consistent, we performed a permutation analysis. Note that the vector of correlations
coefficients used in this analysis (described in Methods) equals one half of each correlation
matrix as each matrix is necessarily symmetric. We found that the emergent pattern of
functional connectivity in all datasets was statistically significant (all datasets z > 4.8, P <
0.0001, Fig. 3, Table 2). A fake “Dataset 11” did not reveal a significant pattern when tested
against itself (z = −0.11, P =0.91, Fig. 1 right). Thus, it is clear that the patterns of functional
connectivity seen in Datasets 1–10 did not arise by chance and that each dataset is internally
consistent.
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We next sought to determine whether the same general patterns that emerged in dataset 1
were reliably present in each of the other datasets. We created two simplified models of
these patterns (Fig. 1) and performed a permutation analysis comparing each dataset to each
model (see Methods). Since the models were built off of general observations from Dataset
1, there will necessarily be a clear correlation between Dataset 1 and the models (albeit not a
perfect correlation as the models are based on general patterns and not the specific data).
The remaining nine datasets, however, were not used to generate the models and are
therefore independent of them. Datasets 2–10 were significantly correlated with both models
(all z > 3.61, P < 0.0001, Table 3, see Supporting Information Figure 1 for better
visualization of the hemispheric effects). Thus, the observed correlation of each dataset to
the two models was not the result of chance. The fake “dataset 11” did not correlate with
either model (z = −0.17, P =0.87 and z =0.07, P =0.95 respectively, Table 3).

These patterns of functional connectivity were robust across datasets as all datasets were
highly correlated with the models. However, differences still remained amongst the datasets;
some datasets were more strongly correlated with the models than others. To further
examine these differences and to compare across datasets, we correlated every participants’
vector of correlation coefficients with Model 1. It is clear that even when the correlation to
the model was done at the individual subject level, all datasets (save the scrambled “Dataset
11”) showed reliable high correlations (Fig. 4). A one-way ANOVA across Datasets 1–10
showed that there were indeed differences across datasets (F9,187 =12.88, P < 0.0001). Post-
hoc Bonferroni’s multiple comparison tests were performed on all pairs of datasets;
however, only pairwise tests of specific interest are reported here. There was a significant
difference between younger and older participant datasets during an incidental encoding
task. Younger participants in Dataset 3 were significantly better correlated to Model 1 than
older participants in Dataset 4 (t33 =4.28, P < 0.01). However, there was no difference
between how well younger and older participants (Datasets 5 and 6, respectively) were
correlated to Model 1 during a resting state scan (t33 =1.89, n.s.). It is also interesting to note
that young participants in an incidental encoding task (Dataset 3) were significantly better
correlated with Model 1 than an equivalent population of young participants during an
resting state scan (Dataset 5; t35 =5.05, P < 0.001), but no difference was seen between older
participants during an incidental encoding task or resting state scan (Datasets 4 and 6,
respectively; t31 =1.24, n.s.). A two-way ANOVA on these four datasets (3, 4, 5, and 6)
revealed a significant task (incidental encoding vs. rest) by age (younger vs. older
participants) interaction (F1 =16.49, P < 0.001).

Last, we wanted to evaluate how well each dataset’s pattern of functional connectivity
correlated with the known anatomical connectivity of the MTL. We created a model (Fig. 1
right) based on the known anatomical connections of the MTL (Lavenex and Amaral, 2000).
We then correlated every participants’ vector of correlation coefficients with the anatomical
model (Fig. 4). We performed a two-way ANOVA on the correlation of each participants’
vector of coefficients to both Model 1 and the anatomical model to directly compare the fit
of each dataset to each model. Post-hoc Bonferroni’s multiple comparison tests revealed that
each dataset was better correlated to Model 1 than to the anatomical model (all t > 4.08, all P
< 0.001), suggesting that Model 1 is a better representation of the pattern of functional
connectivity within each dataset than known anatomical connections. A permutation
analysis was also performed on the anatomical model. Only three of the ten datasets were
significantly correlated with the anatomical model (z >2.15, P < 0.05, Supporting
Information Table 2).

Manipulation Checks
Although the pattern of results was remarkably consistent both within and across datasets,
there are several possible sources of artifacts that could lead to the observed patterns. We
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should note, however, that the findings were replicated across several datasets which
included participants of different ages, different tasks (or in the case of the resting scans, no
task), and different scan sequences/slice acquisitions. One of these datasets was even
collected at a different scanning facility. Furthermore, the MTL cortices vs. hippocampal
subfields pattern exists across hemispheres. Although in the rat there are massive
commissural connections in the dentate gyrus, this is not the case in primates (Amaral et al.,
1984). Thus, the finding that hippocampal ROIs are better correlated to hippocampal ROIs
in the opposite hemisphere than MTL cortex ROIs in the same hemisphere (and vice versa)
suggests that the correlations are not due to mere proximity. Nevertheless, to account for
possible sources of artifact, we performed a number of manipulation checks, all of which
were performed on Dataset 1, comparing the resulting correlation between the manipulation
check and Dataset 1 with the distribution of chance coefficients.

Physical Proximity of ROIs
It is possible that spurious correlations between ROIs could be induced by neighboring
voxels. For example, CA1 is physically closer to the subiculum than it is to the PHC and any
spatial blur can induce a correlation among proximal voxels. Note, however, that this clearly
cannot account for the cross-hemisphere effects mentioned above. To address this potential
concern, we analyzed the data using eroded versions of the ROIs [the outermost voxel (0.75
mm) along the edges of each ROI were removed from the ROI masks] so that no voxels
were touching other ROIs or gray matter/white matter/CSF outside of the ROIs. Using the
permutation analysis described earlier to compare the correlation coefficient vectors of
eroded ROIs to noneroded ROIs, the results were virtually identical (Fig. 5A; z =7.72, P <
0.0001).

Noise Varying Across Slice
Second, it is possible that the noise injected into our data might have a component that is
consistent within each slice but that varies across slices. This would induce an elevated
correlation within each slice and a reduced correlation across slices. As our slices are
typically oblique axials aligned with the hippocampus, this would separate the hippocampus
and MTL cortical structures across slices. It is also possible that the global white matter and
CSF regressors do not properly account for residual noise and that they might be biased
towards or against some regions. To address these potential concerns, we created a white
matter and CSF regressors for each slice to replace the global ones used in the initial
analysis. The results were again unchanged (Fig. 5B; z > 7.72, P <0.0001).

Bandpass Filtered Data
Last, another common technique for processing event-related fMRI data in functional
connectivity analyses is to bandpass filter the data instead of modeling events and removing
them via deconvolution as we have done here. To verify that the patterns of functional
connectivity revealed were not a result of our method of deconvolution, we bandpass filtered
our data from 0.01 to 0.1 Hz instead of removing task effects via deconvolution and then
repeated our correlational analyses. Again, the same pattern emerged (Fig. 5C; z > 7.191, P
> 0.0001).

Despite these controls, the same two patterns of functional connectivity emerged in all
datasets: there was relatively strong functional connectivity between the ERC and PRC and
between the hippocampal subfields, but not across the MTL cortices and hippocampal
subfields and in the mentioned areas of strong functional connectivity, there was greater
functional connectivity within a hemisphere than across hemispheres.
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DISCUSSION
We observed two patterns of functional connectivity in the human MTL. The first was
relatively high functional connectivity between the left and right PHC, the ERC and PRC
bilaterally, and amongst the hippocampal subfields (DG/CA3, CA1, and subiculum) both
within and across hemispheres. However, there was relatively weak functional connectivity
between the MTL cortices and the hippocampal subfields. Second, we saw greater
functional connectivity within a hemisphere than across hemispheres. These patterns were
consistent across 10 datasets despite the fact that these datasets differed in task demands,
participants’ age, and scanner sequence/slice acquisition. Additionally, only three out of the
ten datasets reported were significantly correlated with a model based on the known
anatomical connections in the MTL. All ten datasets were more strongly correlated with
Model 1 than the anatomical model, suggesting that Model 1 is a better representation of the
pattern of functional connectivity in the human MTL than the known anatomical
connections. The observed patterns of functional connectivity were not necessarily expected
a priori (we would have been less surprised to see a pattern of functional connectivity
similar to the anatomical connectivity). However, the robustness of the observed patterns
across datasets and the lack of correlation between many datasets and the anatomical model
suggest that the observed patterns of functional connectivity represent a real phenomenon.
These results have implications regarding the organization of the MTL and hippocampus
and how these regions might interact with each other.

Functional Connectivity Versus Anatomical Connectivity
The current findings might lead some to wonder why known anatomical connections, such
as those between the ERC and DG or between the PRC and PHC (Amaral, 1993; Lavenex
and Amaral, 2000), do not appear to be represented in the functional connectivity of the
MTL. Functional connectivity and anatomical connectivity are thought to be highly related
as suggested by simultaneous fMRI and DTI studies which show similar functionally and
anatomically connected networks (Koch et al., 2002). Additionally, disruptions in
anatomical connectivity typically lead to disruptions in functional connectivity (Quigley et
al., 2003; Johnston et al., 2008). However, it is possible for regions to have high functional
connectivity without direct anatomical projections to each other (Damoiseaux and Greicius,
2009). For example, the default mode network is routinely identified as a functionally
connected network despite the lack of a full set of direct anatomical connections (Greicius et
al., 2003; Fox et al., 2005).

Functional connectivity should not be thought of as synonymous with anatomical
connectivity as previous studies have shown that task effects can change the strength of
functional connectivity between regions while the underlying anatomical connections
remain constant (Lowe, 2000). Similarly the strength of functional connectivity during
resting state scans can be influenced by subtleties such as whether participants are at rest
with their eyes open versus their eyes closed—which is obviously unrelated to anatomy
(Van Dijk et al., 2010). Similarly, neuromodulatory effects or inhibition of an area could
affect the functional connectivity with a downstream region without effecting the underlying
anatomy. Further, it is quite possible that the pattern of functional connectivity that one
would predict from the anatomy exists, but only for brief periods of time (e.g., as regions
become synchronous), with the dominant mode being uncorrelated. Functional connectivity
may be described as being anatomically constrained as there must be at least an indirect
anatomical connection between functionally connected regions. However, functional
connectivity reflects something more than basic structural connectivity. This gives it
numerous potential uses as a dependent measure of brain function.
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Last, perhaps the anatomical model better captures functional connectivity during task
demands and the data driven model is a result of removing task effects. We have evidence
that this is unlikely to be the case. When we analyzed dataset 1 with task effects removed
and task effects left in, the results are strikingly similar to each other (see Fig. 5D). This
suggests that the great majority of correlated activity across regions is not due to the task
effects, but rather is more likely driven by some underlying activity. A second possibility is,
perhaps, the anatomical model is a true indication of the connectivity between regions
during task demands; however, this “true” connectivity is very transient and cannot be
picked up with the slow time scale of fMRI. Future experiments with electrophysiological
recordings would be better suited to address this possibility.

Organization of the MTL
These patterns of functional connectivity may provide insight into the inherent organization
of the MTL. The distinction between the MTL cortices and the hippocampal subfields
suggests that these two regions are largely in communication with themselves and less so
between each other. That is not to say they are not communicating across the hippocampus
versus cortex border, but rather simply that there is a greater correlation of activity within
the MTL cortex or the hippocampus than across regions.

This difference in inherent connectivity is consistent with many notions of a division of
labor amongst the structures in the MTL as historically, the components of the MTL have
often been organized along these lines. For example, Squire et al. (2004) point to the notion
that the anatomy suggests the hippocampus “combines and extends” the processing carried
out in the MTL cortices. While the specifics of the extension are not clear, this is not a
hypothesis of equipotentiality, but rather that the hippocampus is set apart from the MTL
cortical structures. Eichenbaum and Cohen’s “relational memory theory” also separated the
PRC and PHC (which are thought to encode elements of an event) from the hippocampus
(which is thought to encode the relationship between those elements; Eichenbaum et al.,
1992; Eichenbaum, 2000). Moreover, Brown and Aggleton (2001) described the PRC and
hippocampus as interacting but dissociated units which differed in both the type of memory,
recognition and recollection respectively, as well as the level of subjective experience,
familiarity and conscious remembering respectively. Computational modeling’s
“complementary learning systems” distinguishes the neocortex and hippocampus by their
computational processes and thus the speed and efficiency with which these regions can
learn new associations. According to this model, the neocortex is a slow, statistical learner
that is unable to resolve catastrophic interference. However, the hippocampus rapidly
acquires information by assigning distinct representations to stimuli, thus avoiding these
interference issues (McClelland et al., 1995; Norman and O’Reily, 2003).

In addition to the MTL cortex versus hippocampus distinction, we also saw that the PHC
had relatively weak functional connectivity with all other ROIs including the PRC. This
raises the possibility that the PHC performs a function unique to itself that is different from
the functions of the PRC. This observation is consistent with the “binding of item in
context” (BIC) model which suggests a distinction between the functions of the PRC, PHC,
and hippocampus. The BIC model posits that the PRC is involved in item representations,
the PHC is involved in context representations, and the hippocampus binds those items in
context (Diana et al., 2007; Ranganath, 2010).

The results shown here, that an initial differentiation can be drawn between the
hippocampus and the MTL cortical structures and that a secondary differentiation would
further separate the PHC, are therefore consistent with many theories of function of MTL.
This basic pattern does not speak strongly to which theory is a better account. However,
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these results do open up a new avenue for hypothesis testing since the datasets differed not
only in their design but also in the degree to which the various patterns were shown.

Differences Amongst Datasets
As noted, although all datasets were highly correlated with the models, they were not
equally so. One place in which we saw a significant difference was between younger and
older participants during an incidental encoding task (Datasets 3 and 4). The pattern of
functional connectivity in younger participants was significantly more correlated with
Model 1 than the pattern of functional connectivity in older participants. In other words,
there was less of a distinction between the MTL cortices and the hippocampus in older
participants than younger participants (see Fig. 2). Whether this is beneficial or detrimental
is currently unknown because we did not have a behavioral measure of performance and
thus cannot evaluate how this relates to functional connectivity. Other studies on
Alzheimer’s Disease (AD) patients, however, suggest that behavior and functional
connectivity are related since AD patients are reported to have impaired functional
connectivity compared to healthy controls (Li et al., 2002; Greicius et al., 2004).

It is interesting to note that we did not see a difference between younger and older
participants during resting state scans (Datasets 5 and 6, respectively), but we did see a
difference between equivalent populations of younger participants during an incidental
encoding task vs. rest (Datasets 3 and 5, respectively). This difference between the younger
participant datasets might stem from the fact that resting state scans are intrinsically
different from task related activity. Participants are not cognitively inactive during rest, but
rather appear to have high levels of activity, which could be due to mind-wandering or self-
referential thought (Stark and Squire, 2001). Since there are fewer constraints on
participants’ thought processes during rest than during task, it would not be surprising to see
greater variance in the BOLD activity of resting state scan participants than task-performing
participants. There was a significant task (incidental encoding vs. rest) by age (younger vs.
older participants) interaction, suggesting that perhaps the functional connectivity of the
MTL changes with age, but only during task-related activity and not so during rest. Future
studies with more direct comparisons between age and task may better elucidate how these
variables affect patterns of functional connectivity.

Last, Datasets 7, 8, and 9 were less correlated with Model 1 than other datasets (e.g., Dataset
1), which might be due to the continuous learning paradigm that was unique to these
datasets. Even though task effects were removed by GLM, task may still have some effect
on the emergent patterns of functional connectivity that is unaccounted for, e.g., via
attentional state that the task properties set.

Overall, the patterns of functional connectivity revealed were remarkably consistent both
within and across datasets despite the fact that these datasets differed by task demands,
participants’ age, and scanner sequence/slice acquisition. However, there are many factors
that may contribute to subtle differences in the output of functional connectivity analyses.
Future directions include further exploring these dataset differences. For example, in certain
datasets there appear to be relatively stronger correlation coefficients between the ERC and
subiculum (see Fig. 2). We propose using statistical modeling to find the best fit model for
individual datasets as well as modulating different components of the models to see how
each is affect by participants’ age or task. Further analysis of functional connectivity
patterns and better statistical modeling could eventually let to diagnostic capabilities.
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CONCLUSIONS
Functional connectivity analyses can inform us in ways that traditional univariate activation-
based fMRI cannot. This study is an initial foray into investigating the functional
connectivity of the MTL at high enough resolution to visualize the hippocampal subfields.
The results of this analysis indicate that there is stronger connectivity within the MTL
cortices and the hippocampal subfields than across the MTL cortex and the hippocampus.
This does not suggest that the MTL cortex and hippocampus are not communicating with
other or even that they might not be highly correlated. It is possible that these regions are
highly correlated but only transiently. If this were the case, fMRI may not be adequate to
pick up these transient effects, but they could perhaps be observed with electrophysiology.
The current results indicate that there is greater overall correlation within these regions than
across these regions and that the degree to which this is shown can vary. Notably, this
pattern was more robust than an anatomical model of the MTL. Although this pattern of
functional connectivity may be initially surprising, these findings have implications for our
understanding of the inherent organization of the MTL and suggest a tripartite organization
such that the hippocampus, the perirhinal, and entorhinal cortices, and the parahippocampal
cortex perform functions that interact with each other but are functionally dissociable.
Future research will further elucidate the role of age and task effects on of the functional
connectivity of the MTL.
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FIGURE 1.
Model 1 models strong functional connectivity between left and right PHC, between
bilateral PRC and ERC, and amongst the hippocampal subfields, but weak functional
connectivity between the MTL cortices and the hippocampal subfields. Model 2 models
strong functional connectivity within hemisphere and weak functional connectivity across
hemisphere in areas of high functional connectivity as modeled in Model 1. The Anatomical
Model is representation of the anatomical connections of the primate MTL as reported in
Lavenex and Amaral (2000).
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FIGURE 2.
(Left) Z-transformed correlation coefficients averaged across all participants in Dataset 1 for
all possible pairs of ROIs. The diagonal is grayed out since seed regions are perfectly
correlated with themselves. Regions of high functional connectivity are outlined in red for
visualization. Notably, there is relatively weak functional connectivity between the MTL
cortices and the hippocampal subfields. (Right) A dataset of 20 fake participants created by
scrambling the average correlations coefficients of dataset 1 twenty times. The scrambled
“Dataset 11” does not show the same patterns of functional connectivity as dataset 1 or the
other datasets (see Fig. 3). L, left; R, right; PHC, parahippocampal cortex; PRC,. perirhinal
cortex; ERC, entorhinal cortex; DG, dentate gryus; Sub, subiculum.

Lacy and Stark Page 17

Hippocampus. Author manuscript; available in PMC 2013 September 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIGURE 3.
Z-transformed correlation coefficients averaged across participants in Datasets 2–10 for all
possible pairs of ROIs. Diagonals are grayed out since seed regions are perfectly correlated
with themselves. Regions of high functional connectivity are outlined in red for
visualization. All datasets show similar patterns of functional connectivity.
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FIGURE 4.
(Left) The average correlation of every participants’ vector to model 1 for each dataset.
Since model 1 was built off of general observations from dataset 1, the high correlation of
dataset 1 to model 1 is expected and the correlation coefficients of dataset 1 to model 1 are
simply reported for descriptive purposes. All datasets were highly correlated with model 1,
especially compared to a scrambled dataset “11”, but not all datasets were equal (one-way
ANOVA across Datasets 1–10, F9,187 = 12.88, P <0.0001). Post-hoc Bonferroni’s multiple
comparison tests were performed on all pairs of datasets; however, only tests of specific
interest are reported here. Young participants (Dataset 3) in an incidental encoding task were
significantly better correlated to Model 1 than older participants (Dataset 4) in the same
exact task (t33 = 4.28, P <0.01). There were also differences in task-related versus resting
state data in similar participants. Dataset 3, an incidental encoding task, was significantly
better correlated to Model 1 than Dataset 5, a resting state scan (t35 = 6.57, P <0.001),
despite both datasets being collected in healthy young adults with the same scanner
sequence at the same MRI facility. (Right) The average correlation of every participants’
vector to an anatomical model representing the anatomical MTL connections reported in
Lavenex and Amaral (2000). A two-way ANOVA on the correlation of each participants’
vector of coefficients in Datasets 1–10 to Model 1 and the anatomical model was run to
compare the fit of each dataset to each model. Post-hoc Bonferroni’s multiple comparison
tests revealed that each dataset was better correlated to Model 1 than to the anatomical
model (all t >4.08, all P <0.001), suggesting that Model 1 is a better representation of the
pattern of functional connectivity within each dataset than known anatomical connections.
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FIGURE 5.
Dataset 1 (A) analyzed with noneroded ROIs, (B) with an additional white matter and CSF
regressors for each slice of acquisition, (C) with bandpass filtered (0.01–0.1 Hz) data instead
of data with task effects removed via deconvolution, and (D) with task effects left in. All
analyses produced similar patterns of functional connectivity and were highly correlated
with the original Dataset 1 analysis (see Fig. 1, all z >7.19, all P <0.0001).
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