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Abstract

Sirtuins play an essential role in the cellular response to environmental stress, promoting DNA repair, telomere stability, cell cycle arrest, cellular 
senescence, and apoptosis. Much attention has been given to the role of sirtuins in aging and cancer development; however, less is known about 
their role in stem cell regulation. This review focuses in this topic and discusses the possible implications in adult stem cell aging.
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Introduction
Epigenetic mechanisms are essential ele-
ments for the regulation of cellular differ-
entiation and the maintenance of cell 
type–specific gene expression patterns. 
They manipulate gene expression directly 
through modification of DNA (DNA 
methylation) or indirectly via modifica-
tion of chromatin. Chromatin functional-
ity and structure are tightly linked to 
covalent modification in histones. These 
modifications are generally classified as 
repressing or activating, correlating with 
gene silencing and gene induction, 
respectively. Among them, histone acety-
lation is associated with gene expression 
and is regulated by the action of histone 
acetyltransferases (HATs) and histone 
deacetylases (HDACs). Thus, the bal-
anced recruitment of HATs and HDACs 
to targeted loci is an essential determinant 
of chromatin functionality.

HDACs are grouped into classes I, II, 
and III based on homology with their 
yeast orthologs Rdp3, HdaI, and Sir2, 
respectively, and class IV, which has 
only 1 member (HDAC11).1,2 The silent 
information regulator (SIR) family of 
proteins was first described in Saccharo-
myces cerevisiae.3 In yeast, these pro-
teins exhibit deacetylase activity and are 
involved in cell cycle regulation, DNA 
repair, and chromatin silencing.4 The 
mammalian homologs of SIR genes are 
the sirtuins (class III HDACs), a family 
of proteins composed of 7 members, 
SIRT1 to SIRT7, with a NAD-dependent 

protein deacetylase activity coupled 
with the ability to form O-acetyl-ADP-
ribose.5 These enzymes are involved in a 
broad range of biological functions that 
includes the regulation of chromatin 
structure and gene expression, metabolic 
homeostasis, apoptosis, senescence, 
DNA repair, and cell differentiation.6-8 
In addition, sirtuins are sensitive to envi-
ronmental stimuli and thus act as stress 
sensors that help to organize the stress 
response in the cell.9 In order to achieve 
this, sirtuins have evolved to have a 
wide range of protein targets and cellu-
lar locations, including the nucleus, 
cytoplasm, and mitochondria, and to 
translocate from one compartment to 
another in response to certain stress 
conditions.

Because sirtuins act as sensors of 
environmental stimuli and coordinate the 
stress response of cells, it is not surpris-
ing that deregulation of these proteins is 
associated with cancer.9,10 Also, some sir-
tuins seem to be involved in aging and 
cell senescence,7,11-15 although some of 
the experimental models reported are 
controversial. Here, we will review the 
evidence linking sirtuins to development 
and cell differentiation and will also dis-
cuss how these processes could be related 
to “stemness” and aging.

Sirtuins and Their Targets
As mentioned above, sirtuins are involved 
in many cellular functions and can target 
a wide array of proteins, both histone and 

nonhistone. The closest homolog to the 
yeast Sir2 gene, and the most widely 
studied, is SIRT1. Many biological func-
tions have been associated with it, 
although its main function seems to be 
linked to gene silencing through hetero-
chromatin formation. SIRT1 preferen-
tially deacetylates lysine 6 of histone H4 
(H4K6) and lysines 9 and 56 of histone 
H3 (H3K9 and H3K56), promoting the 
formation of facultative heterochroma-
tin.16,17 Additionally, SIRT1 can acetylate 
and recruit histone H1 to the chromatin, 
increasing local compaction.18 In addi-
tion, it can deacetylate other nonhistone 
targets that also contribute to heterochro-
matin formation, such as the histone 
methyltransferase Suv39h1, thereby pro-
moting dimethylation and trimethylation 
of lysine 9 in histone H319 and contribut-
ing to heterochromatin formation as the 
transition from acetylation to methylation 
in H3K9 spreads over gene-coding 
regions. Besides its role in gene expres-
sion, SIRT1 contributes to cellular 
homeostasis in response to stress. For 
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instance, in response to genotoxic or oxi-
dative stress, SIRT1 can acetylate pro-
teins such as FOXO, p53, and the 
transcription factor NF-κB, all involved 
in cell cycle progression, DNA repair, 
and apoptosis.20-24

SIRT2 is a cytoplasmic tubulin 
deacetylase that can localize in the 
nucleus during G2/M transition. It is a 
protein that has been well conserved 
throughout evolution, and its main func-
tion is related to cell cycle regulation. In 
vivo, it can deacetylate microtubules and 
chromatin.25-28 Acetylation in α-tubulin 
was reported to stabilize microtubules, 
although SIRT2–/– knockout mice do not 
show clear defects in microtubule orga-
nization, and consequently, the role of 
SIRT2 in microtubule function and orga-
nization remains unclear.29 In chroma-
tin, SIRT2 deacetylates H4K16 at the 
global level to increase chromatin com-
paction during G2/M transition30; the 
molecular mechanism that drives this 
process is, however, unknown.

SIRT3 is involved in metabolism and 
mitochondrial function.31-33 It is primar-
ily located in the mitochondria but can be 
translocated to the nucleus in response to 
genotoxic stress and calorie restriction.34 
In the nucleus, it can deacetylate H4K16 
and H3K9, although specific loci have 
not been described so far. In the mito-
chondria, SIRT3 deacetylates and acti-
vates acetyl-CoA synthetase 2 (AceCS2), 
increasing the metabolic rate in the 
organelle.35,36 It can also increase the 
expression of mitochondrial factors such 
as ATP synthetase, cytochrome C oxidase 
subunits, and the transcription factor 
PGC1α.37 Additionally, SIRT3 can pro-
mote cell survival thorough deacetylation 
of Ku70, involved in DNA repair, in 
response to genotoxic agents.38,39

SIRT6 function has been related to 
genomic stability, DNA repair, and gene 
silencing.15,40 It can deacetylate histones 
in H3K9Ac, a residue located in the his-
tone tail, and H3K56, which is in the 
core of histone H3, in gene promoters 
and telomere chromatin, contributing to 
heterochromatin formation and telomere 
stability.40-42

Not much is known about the remain-
ing sirtuins: SIRT4 is a mitochondrial 
sirtuin without deacetylase activity and 
is apparently involved in the insulin 
metabolism of pancreatic β cells.43 
SIRT5 is another mitochondrial sirtuin 
that targets cytochrome C and carbam-
oyl phosphate synthetase 1.44,45 Interest-
ingly, it has been observed, both in vitro 
and in vivo, that SIRT5 has a very strong 
demalonylase and desuccinylase activ-
ity, which suggests additional functions 
beyond lysine deacetylation.46 Finally, 
SIRT7 is a protein localized in the nucle-
olus that interacts with and activates 
RNA polymerase I but does not deacety-
late Pol I, and its molecular mechanism 
is currently unknown.47

Developmental Role of Sirtuins
Sirtuins have been linked to development 
and cell differentiation through 2 differ-
ent mechanisms: 1) gene expression 
modulation through histone deacetylation 
in targeted loci and 2) deacetylation  
of nonhistone proteins involved in 
differentiation.

The role of sirtuins in development is 
not surprising given the important role of 
histone acetylation in the regulation of 
gene expression. Indeed, histone acetyla-
tion is an important determinant of cell 
fate, and it undergoes dynamic changes 
starting at the early preimplantation 
development stage. Just after fertiliza-
tion, protamines in the male pronucleus 
are exchanged by highly acetylated  
histones.48 Immediately, some of the 
acetylated residues are substituted by 
monomethyl groups such as H3K4me1, 
H3K9me1, and H3K27me1, a process 
that is in part mediated by HDACs.49 
After syngamy and during the cleavage 
stages, global histone acetylation dynam-
ics have been observed, although it is not 
clear how this is correlated with chroma-
tin function.50 During this period, until 
the blastocyst stage, the principal deacet-
ylase has been found to be HDAC1. 
Nonetheless, HDAC1 knockdown in 
mouse embryos does not affect the global 
transcription rate, indicating that the role 

of HDACs in early preimplantation 
embryos is probably restricted to specific 
loci.51 Moreover, no developmental effect 
associated with sirtuins has been 
described during preimplantation, and all 
sirtuin knockout mice reported on to date 
pass through early embryonic sta
ges.15,33,43,46,52-56

In embryonic stem (ES) cells, derived 
from the inner mass of the blastocyst, 
the levels of histone acetylation appear 
to be higher than in lineage-restricted 
stem cells or differentiated cells, in 
accordance with the higher levels of 
transcription observed in these cells.57 
Thus, histone deacetylation plays an 
important role in tissue-specific gene 
silencing during cell differentiation. Of 
all sirtuins, SIRT1 seems to be the most 
clearly involved in this process since 
SIRT1 knockout mice die during fetal 
development or soon after birth and 
show severe developmental defects that 
include growth impairment, defects in 
the retina and heart, and abnormal 
cephalic development.52-54 In ES cells, 
SIRT1 is highly expressed but is quickly 
downregulated upon differentiation by a 
mechanism mediated, at least partially, 
by miRNA.58-60 Interestingly, SIRT1 dis-
ruption does not affect cell proliferation 
and does not induce spontaneous differ-
entiation under normal conditions, sug-
gesting that this protein is not an 
essential player in stemness mainte-
nance.58 However, under mild oxidative 
conditions, SIRT1 mediates dependent 
apoptosis by blocking the nuclear trans-
location of p53 and promoting mito-
chondrial translocation instead.61 Since 
nuclear translocation of p53 suppresses 
Nanog expression, which in turn is 
required to maintain stemness in ES 
cells, SIRT1 may play an indirect role in 
preventing differentiation under certain 
stress conditions. SIRT1 is also involved 
in the establishment of development 
programs upon differentiation of ES 
cells. Chip-on-chip analysis has revealed 
that, in undifferentiated ES cells, SIRT1 
binds to the promoter region of many 
genes linked to the differentiation and 
developmental processes, such as PAX6, 
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WNT6, BMP1, and HOXA5.58 Addi-
tionally, SIRT1 is a component of Poly-
comb repressive complex 4 (PRC4), 
which is specific to ES cells.62 PRC4 
adds methyl groups to lysine 27 of  
histone H3 (H3K27), a histone mark 
associated with the repression of devel-
opmental genes, and to lysine 26 in his-
tone H1 (H1K26). Interestingly, H1K26 
is a known target of SIRT1,18 suggesting 
that histone deacetylation in H1 is 
required before methylation by PRC4 
can proceed. Taken together, these data 
suggest that SIRT1 may contribute to 
gene silencing of developmental genes 
in undifferentiated cells and that SIRT1 
downregulation during differentiation 
may contribute to the epigenetic reacti-
vation of these genes.

Beyond its role in gene silencing and 
pluripotency maintenance in ES cells, 
SIRT1 has been also associated with cell 
differentiation. The first evidence came 
from the finding that SIRT1 knockout 
mice show severe encephalic and retinal 
defects, indicating SIRT1’s putative role 
in ectodermal patterning.52-54 During the 
initial steps in neural specification in the 
embryo, SIRT1 downregulation may be 
required to allow the expression of key 
transcription factors, such as PAX6,58 
although a direct role in this process has 
not been reported so far. Furthermore, 
there is strong evidence that links SIRT1 
with the differentiation process of neural 
stem cells into astrocytes and neurons. It 
has been observed that SIRT1 is princi-
pally located in the cytoplasm in neural 
progenitors.63 When these cells are culti-
vated under differentiation conditions, 
SIRT1 quickly migrates to the nucleus, 
where it interacts with the nuclear recep-
tor co-repressor (N-CoR), promoting 
neuronal differentiation63 (Fig. 1). How-
ever, under oxidative stress conditions, 
SIRT1 interacts with Hairy and enhancer 
of split (Hes1), inducing astroglial differ-
entiation and inhibiting neuronal differ-
entiation64 (Fig. 1). Thus, in such 
situations, SIRT1 may promote astroglial 
differentiation in order to facilitate astro-
gliosis and healing, which results in scar-
ring at the damaged site, which is 
commonly observed in brain and spinal 

cord injuries. Interestingly, other differ-
entiation pathways are also affected by 
SIRT1 in stress conditions. Under fasting 
conditions, SIRT1 inhibits myogenin and 
myosin heavy chain genes in myocytes 
through deacetylation of PCAF and 
MyoD, inhibiting muscle differentia-
tion.65 Under the same conditions, SIRT1 
also interacts with N-CoR, suppressing 
adipogenesis via downregulation of 
PPAR-γ.66 Finally, SIRT1 has been linked 
to normal hematopoiesis, although the 
current data are somewhat controversial. 
It has been observed that differentiation 
of human ES cells towards hematoendo-
thelial phenotypes is severely affected by 
SIRT1 disruption.67 Additionally, it was 

recently reported that fetal liver hemato-
poietic progenitors isolated from SIRT1–

/– mice have a significantly lower 
hematopoietic potential than normal pro-
genitors, suggesting that SIRT1 may be 
necessary to maintain stem cell pools.68 
In a recent report, however, no adverse 
effect on the adult hematopoietic stem 
cell pool was observed when bone mar-
row–derived cells from SIRT1–/– mice 
were transplanted into irradiated ani-
mals.69 Thus, the role of SIRT1 during 
fetal and adult hematopoiesis remains 
unclear, although it is unlikely that  
SIRT1 is essential in this process since 
knockout mice display an almost normal 
hemogram result and are not 

Figure 1.  SIRT1 during neurogenesis. SIRT1 disruption alters the differentiation potential of 
neural progenitor cells (NPCs). Two different models have been proposed. (A) In NPCs under 
differentiation conditions, SIRT1 transiently translocates to the nucleus, where it interacts with 
N-CoR. The N-CoR/SIRT1 complex binds to the promoter region of the Hes1 gene, a downstream 
target of the Notch signaling pathway, promoting neuronal differentiation. (B) Differentiation 
potential of NPCs is affected by the redox status via SIRT1 activation. In a reducing environment, 
Hes1 recruits transcription activators such as CREB binding protein (CBP) to the Mash1 promoter, 
a key transcription factor during neuronal differentiation. Under oxidizing conditions, Hes1 recruits 
SIRT1 to the Mash1 promoter, inducing histone deacetylation. This represses the transcription of 
Mash1 and promotes astroglial differentiation.
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immunocompromised, at least under nor-
mal conditions.69

SIRT2 is also clearly associated with 
neural and fat differentiation and has 
been shown to function as an α-tubulin 
deacetylase and key regulator of cell 
division.25-28 It is expressed in all tissues 
but is particularly abundant in the brain, 
especially in myelin sheaths and in 
mature and premyelinating oligodendro-
cytes.70 During the differentiation of 
glial progenitors into premyelinating 
oligodendrocytes, both levels of SIRT2 
and microtubule acetylation increase, 
which appears to be contradictory since 
SIRT2 is the major microtubule deacety-
lase in oligodendrocytes.71 Nonetheless, 
SIRT2 does seem to be involved in the 
differentiation process since siRNA 
silencing reduces tubulin acetylation 
and enhances the morphological differ-
entiation of oligodendrocyte precursors, 
while overexpression suppresses oligo-
dendroglial differentiation.71 Thus, the 
role of SIRT2 in this process is not clear, 
although it may be required to counter-
balance microtubule acetylation during 
differentiation in order to keep morpho-
logical changes under control. In addi-
tion to its role in oligodendroglial 
differentiation, SIRT2, like SIRT1, is a 
suppressor of adipogenesis under fasting 
conditions, although SIRT2-dependent 
suppression is mediated by FOXO1 
deacetylation, which in turn represses 
PPAR-γ expression.72,73 Finally, it has 
been reported that SIRT2 is a regulator 
of NF-κB, through deacetylation of 
p65.74 Since NF-κB is a major regulator 
of hematopoiesis,75 it is likely that 
SIRT2 is also involved in this process; 
this possible role has nevertheless not 
been reported to date.

Less is known about the other sirtuins 
during development and cell differentia-
tion. Knockout mice have been reported 
for SIRT2, SIRT3, SIRT4, SIRT5, 
SIRT6, and SIRT7, but none of them is 
born with any clear developmental def
ect.15,33,43,46,55,56 However, some of these 
animals do develop significant patholo-
gies before adulthood. These are espe-
cially severe in the case of SIRT6–/– mice, 

which are smaller at birth and quickly 
develop lymphopenia, loss of subcuta-
neous fat, lordokyphosis, and metabolic 
defects.15 This phenotype is similar to 
some progeria syndromes, and it has 
been linked to defects in DNA repair and 
gene instability rather than with cell dif-
ferentiation.40-42 In in vitro models, only 
SIRT3 has been observed to be associ-
ated with differentiation. Although 
SIRT3-deficient mice show normal 
adaptive thermogenesis and are meta-
bolically unremarkable, SIRT3 is appar-
ently necessary for in vitro differentiation 
of brown adipocytes.76 Thus, SIRT3 
might be a positive regulator of adipo-
genesis, in contrast to SIRT1 and SIRT2, 
which are negative regulators. Finally, in 
the particular case of SIRT7–/– mice, 
severe heart hypertrophy has been 
observed, but this defect was associated 
with inflammation and apoptosis.56 Nev-
ertheless, SIRT7 can deacetylate p53 in 
a similar fashion to SIRT1,56 which sug-
gests that the developmental role of p53 
could also be affected by this protein, 
although further studies are necessary to 
fully explore the biological function of 
SIRT7.

Sirtuins, Life Span, and Aging: 
Are Adult Stem Cells Involved?
The aging process involves a complex 
combination of genetic, environmental, 

and stochastic factors, whose relative 
contributions are still not clearly defined. 
The stem cell theory of aging suggests 
that an important mechanism of aging 
involves a progressive decline in the 
self-renewal of adult stem cells and their 
potential to differentiate into specific 
cell types in order to replenish the tis-
sues of an organism77,78 (Fig. 2). 
Although the age-dependent loss of 
function of different types of adult stem 
cells, such as hematopoietic, mesenchy-
mal, neural, muscular, or melanocytic, 
has been reported, the molecular mecha-
nisms involved in this process are  
not yet fully understood. It has been  
suggested that stem cell attrition pro-
duced by DNA damage and telomere 
shortening could play a significant 
role.78 Moreover, not only genetic but 
also epigenetic mechanisms could be 
implicated in stem cell dysfunction over 
time,79-81 such that the accumulation of 
epigenetic alterations might favor their 
aging.82

Sirtuins were first proposed to play a 
role in aging in studies of Saccharomy-
ces cerevisiae, where Sir2, Sir3, and 
Sir4 showed a negative regulation func-
tion.11 Subsequently, several works 
reporting on different species, such as 
Caenorhabditis elegans83 and Drosoph-
ila melanogaster,84 showed associations 
at different levels between sirtuins and 
life span and aging. In mammals, 

Figure 2.  The stem cell theory of aging. With age, adult stem cells accumulate DNA, and 
chromosomal damage results in the failure of proper stem cell functions and, consequently, 
tissue regeneration. It is suggested that SIRT1 participates in both self-renewal and differentiation 
processes in adult stem cells and therefore could be an important component of the mechanisms 
that cause adult stem cells to grow old.
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sirtuins have also been associated with 
extending life spans. Evidence comes 
from several studies in mice, where lack 
of SIRT1 was related to a reduced life 
span,85,86 or conversely, SIRT1 overex-
pression led to an increased life span.87 
It has been proposed that the effects of 
sirtuins on life span could be explained 
by calorie restriction, which increases 
life spans in lower organisms and mam-
mals.88,89 Several studies have shown 
that sirtuins are activated in the calorie 
restriction response and play an impor-
tant role in life-span regulation.84,90-92 
This function of sirtuins is partially 
mediated by their capacity to detect 
changes in the cellular nutritional status 
based on the ratio of NAD+/NADH and, 
in effect, promote survival mecha-
nisms.88,93 However, recent studies cast 
doubt on the associations of Sir2 with 
life span or at least suggest that the asso-
ciations found so far had been overesti-
mated.94,95 In mammals, the role of 
SIRT1 in regulating life span is also 
unclear,96 but new evidence has shown 
that SIRT6 might be a good candidate.97 
A still poorly explored possibility is that 
the role of sirtuins in aging is also medi-
ated by their role in adult stem cells. 
SIRT1 is the sirtuin member that has 
been most extensively studied and may 
control stem cell aging through the 
appropriate maintenance of telomeres 
and reactive oxygen species.98 Several 
studies in hematopoietic and neural stem 
cells suggest that SIRT1 regulates self-
renewal and differentiation processes in 
response to environmental conditions 
and that this regulation becomes more 
important with age.81 SIRT1 activity is 
probably important to offset the aging 
process triggered by oxidative stress, but 
the implication of SIRT1 in cell differ-
entiation also indicates that sirtuins are 
involved in stem cell function in adult 
tissues, especially under stress condi-
tions (Fig. 2). Future studies, including 
more stem cell types and other sirtuin 
members, will help to elucidate the role 
of sirtuins in the maintenance of adult 
stem cell functions and, consequently, in 
the aging process.
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