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Abstract Based on the partial or complete sequences of 14 plant heat stress transcription factors (Hsfs) from tomato,
soybean, Arabidopsis and maize we propose a general nomenclature with two basic classes, i.e. classes A and B each
containing two or more types of Hsfs (HsfA1, HsfA2 etc.). Despite some plant-specific peculiarities, essential functional
domains and modules of these proteins are conserved among plants, yeast, Drosophifa and vertebrates. A revised
terminology of these parts follows recommendations agreed upon among the authors and representatives from other
laboratories working in this field (see legend to Fig. 1). Similar to the situation with the small heat shock proteins

(sHsps), the complexity of the hsf gene family in plants appears to be higher than in other eukaryotic organisms.

INTRODUCTION

Heat stress transcription factors (Hsfs) are the terminal
components of a signal transduction chain mediating the
activation of genes responsive to heat and a large num-
ber of chemical stressors (Ritossa 1964; Nover 1991;
Morimoto et al 1992). Stress-induced gene expression
leads to the rapid accumulation of heat shock proteins
(Hsps) which belong to 11 conserved multiprotein fami-
lies. As molecular chaperones they play a central role not
only in protection against stress damage but also in fold-
ing, intracellular distribution and degradation of proteins
as well as for the function of signal transduction chains
(Nover et al 1990, Nover 1991, 1994; Gething and
Sambrook 1992; Craig et al 1993; Hartl and Martin 1995;
Kimura et al 1995; Waters et al 1996). Though not under-
stood in sufficient detail, the multiplicity of Hsp isoforms
within cells, the variability of their expression patterns in
different tissues and the complexity of regulatory
elements identified in the promoter regions of the
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corresponding genes are thought to reflect the
pleiotropic and indispensible functions of these proteins
under stress and non-stress conditions.

The initial concept of a single, constitutively expressed
regulatory protein (Hsf) required for ks gene activation in
yeast (Sorger and Pelham 1988; Wiederrecht et al 1988;
Jakobsen and Pelham 1991) and Drosophila (Clos et al
1990) had to be revised because of several important
observatjons:

1. Hsfs are coded by small gene families with up to five
members in plants (Scharf et al 1990, 1993; Hitbel
and Schoffl 1994; Czarnecka-Verner et al 1995;
Gagliardi et al 1995) and 3-4 members in vertebrates
(Rabindran et al 1991; Sarge et al 1991, Schuetz et al
1991; Nakai and Morimoto 1993; see summary by
Scharf et al 1994). '

2. At least in plants, some of the Hsfs are themselves
hs-inducible proteins. This indicates an additional
aspect of stress gene activation, possibly by
sequential exchange of Hsfs at hs promoters during
the stress response.

3. In addition to the control of s gene transcription
during the stress response, Hsfs may have other
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functions. This was noticed very early, when hsf
disruption strains of yeast were found to be inviable
also under non-stress conditions (Sorger and Pelham
1988; Wiederrecht et al 1988; Jakobsen and Pelham
1991). In mammals, the predominant Hsf involved in
stress gene activation is Hsf1. In chicken, Hsf3 seems
to be similar in function, but its expression is limited
to distinct tissues (Nakai et al 1995), whereas Hsf2 is
involved into developmental expression of chaperone-
coding genes during spermatogenesis, hematopoietic
differentiation and in early embryonic stages (Sistonen
et al 1992, 1994; Sarge et al 1994). Interestingly, even
in yeast there are three additional members of the Asf
family as based on homology of the DNA-binding
domain (DBD) (Fig. 3). These are the flocculent
suppressor protein Sfl1 (Fujita et al 1989), a putative
two-component response regulator Skn7 (Brown et al
1993} evidently involved in the oxidative stress
response (Krems et al 1995) and the Mgal protein
found with accession number $47924 in the GenBank.
Despite a remarkable homology of their putative
DNA-binding domains with that of Hsf1, they cannot
replace it functionally.

Piant heat stress transcription factors 217

Following the initial characterization of three tomato
Hsfs (Scharf et al 1990, 1993; Treuter et al 1993)) the
number of ksf clones characterized from plants has
rapidly increased (Hiibel and Schoffl 1994; Czarnecka-
Verner et al 1995; Gagliardi et al 1995; see Table). Based
on structural homology and on the evolutionary lin-
eage, we propose a unified nomenclature for the plant
Hsfs, which also includes a revision of operative terms
used in reference to the functional modules/domains of
these proteins. Because many of them are conserved
between all eukaryotic Hsfs, this revision follows a gen-
eral agreement among the authors and representatives
of other major laboratories working in the field (see
Acknowlegdements).

GENERAL STRUCTURE OF HSFS AND
PLANT-SPECIFIC DIFFERENCES

To our knowledge, Hsfs have been investigated in four plant
species , i.e. Lycopersicon perwvianum (tomato), Arabidopsis
thaliana, Zea mays (maize) and Glycine max (soybean).
Comparison of amino acid sequences and functional mod-
ules allows the definition of two major classes of Hsfs, each

A Lp-HsfA1 i - AD >
(Lp-Hst) DBD L1 A 12 B NLS HR-C
CEe—x T _1TEL jizzzi] |
1 37 13t 163 192 219 245 405 527
Lp-HsfA2 L L. T AD >
(Lp'HSf30) 08D L1 A L2 B fiLS HR-C
T Ee——= [l LI IHH
1 29 123137 166 193 220 316 351
Lp- HSfB 1 DBD H:.NBB :\(_)S
(Lp-Hst24) N i =
17 101 155 183 257 301
B Sc-Hsf1
- AD N : HR-AB AD N
M i DBD J A B" HR-C
C — T iEss |
1 173 276 347 3@2 629 833
HR-AB _ AD -
Dm-Hsf DBD " a B’j‘ HR-C "
[ E = [I[ITA [EHH |
1 47 148 169 214 583 691
Hs-Hsf1 Pl e A >
DBD A E riLS HR-C
(= L HHH ]
1 16 118 140 185 200 383 528

Fig. 1 Basic structure of three types of plant Hsfs. The block diagram above (A) with common functional modules is based on the structure
of the three tomato Hsfs: the new names are used (see Table), but the former names are given in brackets. For comparison, part B
represents three examples of non-plant Hsfs, i.e. those from baker's yeast (Sc), Drosophila (Dm) and human (Hs). DBD, DNA binding
domain; HR-A/B, HR-C, regions with hydrophobic heptad repeats; NLS, nuclear locafization signal; AD, activation domain; L1, L2, linker
sequences explained in the text. The black bar at the C-terminus of the DBD marks the position of the K/R1 motif mentioned in the text.
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A o=y SO-SHY
// 54aa\\\
{:’//?Ea-;\:%Non-pIam Hsf
\ ]
o2 o3 '435'@
Plant Hst
Plant Hsfs T/L
1. Lp-HsfAl . .RQLNT!}—GF-RKV-——Il--WEFA‘ .o
2. Lp-HsfAa2 . .RQLNTY~-GF~RKV--~4~~WEFA. , .
3. At-HsfAl . .RQLNTY~GF-RKV---4--WEFA. ..
4. Lp-HsfBl . .RQLNTY~GF-RKI-~-~4~~WEFA. ..
Non-plant Hsfs
5. Dm-Hsf ..RQLNMXLGF-HKI-—14——IEFSH. .
6. Hs-Hsfl . .RQLNMY-GF~RKV-~15~~TEFQK. .
7. Sp-Hsf . .RQLNMY~-GF~HKV-~16~-LEFA. . .
8. Sc-Hsfl . .ROLNMY~GF-HKV--15--WQFE. ..
Yeast Hsf homologous proteins
9. Sc-Skn7 . .RQLNKY-DF-HKV--16-~WEFQ. . .
10. Sc-Mgal . .RQLHMY-GF-HKL~~-20~-WKFT. ..
11. Sc-Sfl1 . .RQLNIY-GF-HKV--54--WEFK. ..
B

further divided into two subclasses. These are class A with
Hsfs A1 and A2 and class B with Hsfs B1 and B2. Class A
and HsfB1 are common to the four species investigated
but probably also to other plants (Table). However, the
HsfB2-type represents a tentative assignment of three

Cell Stress & Chaperones (1996) 1 (4), 215-223

Fig. 2 Structure of the DNA-binding domain. (A) Molscript pictures
of the solution structure of the DBD of the yeast Hst1 (left) and the
tomato HsfB1 (right) are shown. They are aimost identical except
for a flexible loop with an invariant glycine residue between B3 and
B4 strands found in the yeast and all non-plant Hsfs (left). (B) Block
diagram of the HTH and B3/84 motifs with position of the introns
(arrow) at the end of a3 and the size of the turn/loop (T/L) structure
between B3 and 34. In addition to the only functional Hsf1 in yeast,
there are at least three other proleins with a potential DBD with
high homology to Hsfs (nos 9-11). Two of them have extended
loops of 20 {(Mga1) and 54 residues (Sfi1), respectively.

Whenever analyzed, an intron was found to separate the coding
parts for the HTH motif at or in the invariant Trp codon from the
upstream coding sequences for 3. In plants and
Schizosaccharomyces (nos 1—4 and 7) this is the only intron
identified so far, whereas additional introns are found in the hsf
genes of Drosophila and man (C. Wu, personal communication).
For references to the sequence data see Introduction and legend
to Figure 3.

Pictures for (A) were kindly provided by J. Schulthei and
O. Kunert (Frankfurt).

soybean #sf clones, which clearly belong to group B but
have no counterpart in the other plant species investigated
so far. In case of multiplicity within one subclass, small-case
letters may be added for identification, e.g. HsfB2a, b and ¢
for Gm-Hsf29, 5 and 31 respectively (Table).

© Pearson Professional Ltd 1996



Fig. 3 Relationship of Hsfs based on amino acid sequence
comparison of the DNA binding domains. The consensus tree for
all Hsfs was conducted with midpoint rooting using the Phylogenic
Analysis Using Parsimony (PAUP) software (Smithonian Institution
1983) with 500 repetitions according to the bootstrap method at the
50% confidence level. Plant Hsf classes A1, A2, B1 and B2 as well
as animal Hsf classes 1, 2 and 3 are marked. The figure is based
on sequences excluding the variable turn/loop structure between
B3 and f4 (Fig. 2). Organisms are abbreviated by a two-letter code
based on their scientific names. Plants: At, Arabidopsis thaliana;
Gm, Glycine max (soybean); Lp, Lycapersicon peruvianum (wild
tomato), Zm, Zea mays (maize); animals: Dm, Drosophila
melanogaster (fruit fly); Gd, Gallus domesticus (chicken); Hs,
Homo sapiens (human); Mm, Mus musculus (mouse); X!, Xenopus
laevis (frog); yeasts: Kl, Kluyveromyces lactis; Sc, Saccharomyces
cerevisiae; Sp, Schizosaccharomyces pombe. References to
sequence information are given in the Table and the Introduction
except for Sp-Hsf (Gallo et al 1994), Sc-Mgat (GenBank acc. no.
S47924) and XI-Hsf (GenBank acc. no. L36924).

The main criteria for the classification are:

1. the assignment to class A and B based on the
parsimony analysis of the DNA-binding domain
(Fig. 3)

2. the mode of expression (constitutive vs. hs-induced)

3. the length and structure of linker regions L1 and L2
(see Fig. 1 and Table)

4. the fine structure of the oligomerization domain
(HR-A/B, Fig. 4)

5. the position of a cluster of basic amino acid residues
(K/R), which in the three tomato Hsfs was shown to
be essential for nuclear import (NLS).

© Pearson Professional Ltd 1996
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A number of structural elements are common to
all Hsfs (Fig. 1). They are briefly described in the fol-
lowing with special emphasis on peculiarities found
in the plant proteins (for reviews see Scharf et al
1994; Wu 1995).

The DNA-binding domain

Consistent with the conserved promoter recognition
sites (HSE) for Hsp coding genes (Nover 1987, 1991), all
eukaryotic Hsfs are characterized by an N-terminal
DBD formed by an antiparallel four-stranded B-sheet
and a three-helical bundle (Fig. 2A). The central, most
conserved portion is a helix-turn-helix motif (HTH)
essential for DNA recognition (Damberger et al 1994,
Harrison et al 1994; Vuister et al 1994a, 1994b;
Schultheiss et al 1996). All genomic clones investigated
so far contain an intron of variable size inserted imme-
diately after the C-terminus of the HTH motif (Fig. 2B).

A remarkable peculiarity of all plant Hsfs is a deletion
of 11 amino acid residues forming an unstructured
loop between B-strands 3 and 4 in all non-plant Hsfs.
Thus, in plants the B3- and p4-strands are connected
by a turn of only four amino acid residues instead of
a loop of variable size in all other proteins of this
family (Fig. 2A, B).

The key argument for the organization of the plant
Hsfs into two classes stems from the parsimony analysis
of amino acid residues of the DBD. The assumption that
underlies this method is that the primary amino acid
sequences, e.g. of the Hsf DBDs, contain information
regarding specific aspects of protein structure and func-
tional specialization. Interpretation of this type of analy-
sis must take into account the fact that the derived
groupings or proteins reflect both the uniqueness of
functional classes and the evolutionary distances
between various organisms. One measure of the useful-
ness of this method is that the expected groupings are
observed for Hsf types 1 and 2 of vertebrates where
functional classes are represented by a single gene. This
result also indicates that information regarding func-
tional classes can be obtained from the analysis of the
DBD alone.

Phylogenic trees of Hsfs constructed either by the
neighbor joining approach of the CLUSTAL W program
(Thompson et al 1994, data not shown) or the parsi-
mony approach of the PAUP program consistently indi-
cated that all cloned plant Hsfs can be assigned to one
of two groups, A or B (Fig. 3), which are distinct from
any of the previously characterized proteins of non-
plant origin. No major differences were seen when the
analysis included the variable loops between §-strands
3 and 4 or not.

Cell Stress & Chaperones (1996) 1 (4), 215~-223
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The hydrophobic heptad repeat region

A linker region of variable length and sequence (L1, Flick
et al 1994) connects the DBD with a region of hydropho-
bic heptad repeats (HR-A/B) evidently responsible for the
oligomerization of Hsfs (Sorger and Nelson 1989;
Peteranderl and Nelson 1992; Zuo et al 1994; K.D. Scharf,
unpublished data). This function and the particular hep-
tad repeat pattern of large hydrophobic amino acid
residues led to speculations about two adjacent peptide
motifs (A and B) with potential for coiled-coil interac-
tions. Both are connected by a short flexible linker
(Sorger and Nelson 1989; Rabindran et al 1993; Zuo et al
1994, 1995). In support of the functional separation of
the two parts, the plant class A Hsfs are discriminated
from all others by an insertion of 21 amino acid residues
in this linker, which gives rise to a second heptad repeat
pattern (stars and open circles in Fig. 4). In contrast to
this, class B Hsfs and all non-plant Hsfs characterized so
far lack this insertion and have a single, continuous hep-
tad repeat pattern (closed circles in Fig. 4), such that the
entire region could form a single coiled-coil structure,
although there is no direct evidence to support this (R H.
Peterander] and H.C.M. Nelson, personal commununica-
tion). In view of the important function of this region not
only for oligomerization but evidently also for the activ-
ity control (Jakobsen and Pelham 1991; Chen et al 1993;
Zuo et al 1994), it will be interesting to characterize the
structure of the more extended version of the HR-A/B
region of class A plant Hsfs and to elaborate the role of
the highly conserved charged residues in Figure 4.

Potential nuclear localization signals motifs

Practically all Hsfs contain two clusters of basic amino
acid residues (K/R motifs) considered as putative nuclear
localization signals (NLS, see Fig. 1). K/R1 represents the
conserved C-terminal part of the DBD, whereas K/R2 is
positioned in the activator domain either adjacent to the
HR-A/B region (proximal position) or, in the class B Hsfs,
more distal, ie. close to the C-terminus. The proximal
position of the K/R2 muotif is also typical for vertebrate
Hsfs. Functional tests of the human Hsfs 1 and 2 with
mutation or deletion of the potential NLS motifs led to
the conclusions that both K/R motifs (Sheldon and
Kingston 1993), or only the K/R1-motif is required for
nuclear import (Zuo et al 1995). In contrast, our studies
with mutants of the tomato Hsfs Al and A2 identified the
K/R2 motif as the only NLS (Lyck et al submitted). In
addition, a mutant form of the tomato HsfB1 with a dele-
tion of the distal K/R2 motif is defective in nuclear
import. Unfortunately, other plant Hsfs were not investi-
gated in this respect, ie. identification of the putative
NLS motifs is based on sequence comparison only.

Cell Stress & Chaperones (1996) 1 (4), 215-223

HR-A/B region

HsfA

Lp-Hsf8 (163)
At—-Hafl (174}

Lp~Hs£30(137)
Gm-Hs£21(118)
Zm-Hsfb (117)
At—-Hsf21(tr.)
Zm—Hsfc (tx.)

HsfB

Lp-Hs£24 (148)
At-Hsf4 (156)
Gm—~Hs£34 (144)

Gm-Hsf% (180}
Gm~Hs£f31 (tr.)

Non-plant Hsfs

Dm~Hsf (169) X6M6ELEM.
Hs-Hsfl (140) LEMEM&M:

Fig. 4 Sequence comparison of the HR-A/B regions. The amino
acid residue in the HR-A/B region used to define the fength of L1 is
indicated by an arrow. As indicated in some cases, the heptad
repeat pattern may extend beyond this position, e.g. in the At-Hsf1
or the non-plant Hsfs. The heptad repeat positions are marked.
Formally, two overlapping repeat patterns are found in class A Hsfs
(stars and open circles respectively), whereas all others have a
single continuous pattern (closed circles). Highly conserved
residues which are not in the frame of the repeats are marked by
shading. The characteristic 21 amino acid residue insert of the
class A Hsfs is boxed. tr, some sequences are incomplete in their
N-terminal or C-terminal parts.

The activation domain

The region C-terminal to the oligomerization domain of
the Hsfs contains the NLS and the transcriptional activa-
tion domain (AD). The AD is not as well defined as other
parts of the Hsf. Frequently, it comprises positive (activa-
tor) and negative (repressor) elements (Nieto-Sotelo et al
1990; Nakai and Morimoto 1993; Rabindran et al 1993;
Hoj and Jakobsen 1994; Shi et al 1995; Zuo et al 1995;
Wisniewski et al 1996; Lyck et al, unpublished data).
Though evident similarities are almost lacking, Hsfs were
shown to function more or less properly in heterologous
systems, e.g. the Drosophila Hsf and the tomato Hsfs Al
and A2 in yeast (O. Boscheinen et al, unpublished data),
the human Hsf1 and the Drosophila Hsf in tobacco pro-
toplasts (Treuter et al 1993), the human Hsfl in
Drosophila cells (Clos et -al 1993), and the Arabidopsis
HsfA1l in mammalian and insect cells (Hiibel et al 1995).
The essential functional elements seem to reside in or
close to a third hydrophobic heptad repeat region (HR-C)
which is also found in the plant class A Hsfs. Most
intriguing are short peptide motifs rich in aromatic, large

© Pearson Professional Ltd 1996



HsfA1

o o o o
(399) DMIMPELSQL2I2EIDVSFMDT
(365)DTIMPETSQI2L2E3IDF4YMDT

Lp~Hs£8 (270) ADGQIVKYQP
At-Hsf1(287) SDGQIVKYQP

Lp-Hs£8 (327) VSGVTLQEVPPTS
At-Hsfl (325) VSGVTLOEVLPTT

(459) DIQEFPS2DPFWEKFL2PSSP
(425) EIDELMS2E~FLEEYM1PESP
| VR —

Trp2

HsfB1

Lp-Hs£24 (192} KVAPDMINRIMSQGT
Gm-Hs£34 (195) MVCPDQIDRIMRQGS
At-Hsf4 (193)KVRPEQIDKMIKGG-

R O

Lp-Hs£24 (244 ) GDTLKLFGVLLK -~ EKKK-~KRGPDENI 3GGRAK1VDY3WMKIKVCN*
Gm~Hs£34 (222) GDCLKLFGVWLKG4DKRNNHKRGREDOM3GPR4K2VDF4 IM-4RVCN*
At-Hsf4 (233)GEGLKLFGVWLKG~ERKK~-RDRDEKNY3GSRAK1VDF3LW-3KVCN?

NLS

Fig. 5 Sequence conservation in the C-terminal parts of Hsfs A1
from tomato and Arabidopsis (above) as well as of Hsfs B1 from
tomato, Arabidopsis and soybean (below).

The C-terminal parts are shown as block diagrams based on the
two tomato Hsts. Sequences are given with numbers indicating the
starting positions in the given Hsf (for references see Table).

hydrophobic and acidic amino acid residues (Treuter et
al 1993). They were shown to be important for the activ-
ity, at least of the tomato Hsfs Al and A2. These AHA
motifs are also found in the center of activation domains
of the human Hsfl {(Newton et al 1996), the yeast Hsf
(Chen et al 1993) and an increasing number of other
transcription factors, e.g. GAL4, GCN4, VP16, Sp1, Rela,
C/EBP, p53 and others {for a summary see Nover and
Scharf 1997).

Considering our very limited knowledge about the
functional elements of the activation domains in other
plant Hsfs, it is worth noticing that there are marked
regions of sequence homology between tomato and
Arabidopsis Hsfs A1 on the one hand and among class B1
Hsfs from Arabidopsis, soybean and tomato on the other
hand (Fig. 5). The close relatedness of the latter three is
also evident from Figure 3 and from sequence conserva-
tion in the L1 region. The functional significance of these
conserved regions remains to be investigated.
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