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Abstract
Identification of the optimal vaccine allocation for the control of influenza requires consideration
of uncertainty arising from numerous unpredictable factors, including viral evolution and diversity
within the human population’s immunity as well as variation in vaccine efficacy. The best policy
must account for diverse potential outcomes based on these uncertainties. Here we used a
mathematical model parametrized with survey-based contact data, demographic, and
epidemiological data from seasonal influenza in the United States to determine the optimal
vaccine allocation for five outcome measures: infections, hospitalizations, deaths, years of life
loss, and contingent valuation. We incorporated uncertainty of epidemiological parameters and
derive probability distributions of optimal age- and risk-specific allocation of vaccine. Our
analysis demonstrated that previous recommendations of targeting schoolchildren (ages 5–17
years) and young adults (18–44 years) are generally robust in the face of uncertainty. However,
when the outcome measure is to minimize deaths, years of life loss, or contingent valuation,
uncertainty analysis identified scenarios under which it is optimal to target people at high risk for
complications, even when vaccine are in abundance.
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Introduction
Despite long-standing vaccination efforts, seasonal influenza continues to be responsible for
substantial morbidity and mortality in the United States. It is estimated that seasonal
influenza results in an average of 36,000 deaths, more than 200,000 hospitalizations, and an
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economic burden of approximately US$87 billion annually [1,2]. To minimize the economic
and social impact of epidemic and pandemic influenza, optimal allocation of vaccines is
imperative [1–3]. A number of studies have developed mathematical models that identify
and evaluate the effectiveness of vaccine allocation strategies for different public health
objectives such as minimizing mortality, infections, and hospitalizations [3–8].

Previous studies have derived vaccination strategies by using a base-case parameter set [3–
8], even though there is considerable uncertainty in influenza epidemiological parameters
[9,10,11]. Influenza epidemics recur yearly in part due to the cyclical evolution of influenza
viruses from year to year [9]. This rapid evolution of influenza provides limits the foresight
with which a vaccine may be developed and deployed, leading to uncertainty in vaccine
efficacy and availability [10]. This evolution also changes the clinical and epidemiological
parameters of influenza [9], all of which influence influenza severity and spread. To
accommodate this variation, these optimization studies have generally employed a univariate
sensitivity analysis to test the robustness of their results with respect to a given
epidemiological parameter such as the reproductive number [3,4,6]. However, the
performance of models that neglect uncertainty is dependent on assumed parameter values
[7,11,12], particularly in models wherein small changes in parameter values may influence
the effectiveness of individual strategies. Performance in these models may shift from
optimal to highly suboptimal based on real values of parameters within the range of known
uncertainty [12]. Though univariate sensitivity analysis helps to assess potential individual
parameters that could mislead a base case analysis, univariate analysis does not provide
comprehensive study of systems where simultaneous changes in more than one parameter
may result in synergistic shifts in outcome arising from real-world nonlinearities [13]. In
influenza transmission models, the outcome of a given vaccination policy depends on
nonlinear interactions of various factors such as age-specific susceptibility, vaccine efficacy,
transmission rate, and virulence [3,6,14]. To evaluate outcomes in response to imperfect
knowledge, multivariate uncertainty and sensitivity analysis is needed.

In this paper, we apply multivariate uncertainty and sensitivity analysis to assess the
robustness of optimal vaccine allocation policies [3,11] to uncertainty in epidemiological
parameters. For each epidemiological parameter of the model, we estimate a probability
distribution using data from the published literature. Sampling each epidemiological
parameter from the corresponding probability distribution, we identified the optimal vaccine
allocation strategy for each health outcome measure. Our multivariate sensitivity analysis
facilitated an investigation of the effect of parameter uncertainty on vaccination policies and
the identification of the key epidemiological parameters influencing the optimal vaccine
allocation.

Methods
We extended a previous compartmental age-structured SEIR (susceptible, latent, infections,
recovered) model for seasonal influenza epidemics [3] by including high risk group for
complications due to other health conditions such as asthma, heart disease, and pregnancy
(Supplementary Material). The model tracks 17 age groups: ages 0, 1 to 4, 5 to 9, 10 to 14…
70 to 74, and 75 and older. Each age group is subdivided into two risk groups: low risk and
high risk of complication upon influenza infection. Influenza vaccines are not licensed in the
United States for children younger than 6 months of age [15], so we assumed that they are
not vaccinated. We parametrized the model with a distribution of values for the
epidemiological parameters from the published literature (Table 1). We assumed that
vaccine efficacy for high risk group was identical to that of the low risk group. Under this
assumption, how results are conservative, given that vaccine efficacy for people at high risk
for complications is generally expected to be lower than for healthy individuals [16].
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Taking into account these uncertainties, we computed the optimal allocation of varying
number of vaccine doses available for 5000 sets of independently sampled parameter values
[3]. For each set, optimization was performed for five different outcome measures that have
been widely employed to evaluate the effectiveness of influenza vaccination strategies:
infections, deaths, hospitalizations, years of life lost, and contingent valuation [3–6,16–18].
Strategies for administrating vaccine were optimized based on vaccine allocation to five
low-risk age groups 6 months–4 years, 5–17 years, 18–44 years, 45–64 years, and 65+ years,
and a single group of high-risk people of all ages.

Uncertainty and sensitivity analysis
Uncertainty analysis

Probability distributions of epidemiological parameters were obtained from published
literature (Table 1); distributions used incorporated both biological variations in influenza
and human populations between years, as well as the variation inherent in estimating
population-level quantities from sample statistics. Each input parameter distribution was
sampled 5000 times. For each set of sampled parameters, we computed the optimal vaccine
allocation.

Sensitivity analysis
Building on the uncertainty analysis, we ranked the model parameters according to their
effect on optimal vaccine allocation. For each input parameter (epidemiological parameter)
and output variable (outcome measure), we computed the partial rank correlation coefficient
(PRCC) to measure the strength of monotonic association between the input parameters and
the output variable [29]. The larger the PRCC, the stronger the influence of the model
parameter on the optimal proportion of individuals vaccinated in each group. We used
PRCCs to evaluate the importance of input parameters in contributing to the variability of
the outcome measure. However, PRCCs do not provide quantitative insight into how much
change occurs in an output variable as a result of the uncertainty in a given input parameter.
To address this issue we computed the first-order sensitivity index of input parameters in
contributing to the variability of the optimal vaccine allocation. The first-order sensitivity
index is the expected reduction in the variance of an output variable that would be obtained
if the input parameter were fixed instead of uncertain [30]. For computational efficiency, we
computed the index on a second-order regression model fitting the input parameters and the
output variables of our model.

Reproductive number
To determine the relative contribution of an age group to disease transmission, we computed
the within- and between-group reproductive number. The within-group reproductive number
was defined as the expected number of new infections produced in an age-group by an
infectious individual from the same age-group, and the between-group reproductive number
was defined as the expected number of new infections produced in an age group by an
infectious individual from another age group.

Results
Uncertainty analysis

In the absence of vaccination, the model predicted an attack rate, proportion of the
population infected during the epidemic, of 32% (95% CI: 20%–37%). Empirical estimate
of attack rate is very difficult to determine, as a significant proportion of infections are
asymptomatic and only a proportion of symptomatic cases seek healthcare. However, the
predictions of our model are consistent with that of other models of seasonal influenza in the
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USA [31,32]. The annual influenza vaccination coverage in the United States average 34%
[33], which is approximately equal to an uptake of 100 million doses per year. We showed
that when more than 60 million doses of vaccine were distributed, optimization over
uncertainty robustly yielded prioritization of vaccination to schoolchildren (aged 5–17) and
young adults (18–44) for all five outcome measures considered (Figure 1). When the
optimal outcome minimized the total number of deaths, minimized years of life loss, or was
quantified by contingent valuation, people at high risk should also be prioritized for
vaccination (Figure 1). The optimal vaccine allocation became more sensitive to the
outcome measure for fewer doses of vaccine (Figures S1–S3). As the amount of vaccine
available was reduced, vaccination priority shifted away from young adults (aged 18–44) to
schoolchildren (aged 5–17) when the optimal outcome minimized the total number of
infections or hospitalizations. However, when the optimal outcome minimized the total
number of deaths, minimized years of life loss, or was quantified by contingent valuation,
vaccination priority shifted away from young adults (aged 18–44) to people at high risk for
complications.

Sensitivity analysis
Our multivariate sensitivity analysis demonstrated that the reproductive number and
infectious period are the most important parameters (|PRCC|>0.5) in determining the
optimal vaccine allocation strategy for the five outcome measures (Table 2). The partial rank
correlation coefficients associated with the infection period were highly statistically
significant (p value < 0.001). The reproductive number and infectious period alone
explaining almost 90% of the variability observed in the optimal allocation of vaccines for
the five different outcome measures (Table 3).

Monotonic relationships between outcomes and input variables of the model, assumed in our
sensitivity analysis, were verified (Figures 2–6). The optimal proportion of schoolchildren
(aged 5–17) vaccinated increased as the infectious period of people aged 0–14 increased,
and it decreased as the infectious period of people over 15 increased. For young adults (aged
18–44), the optimal proportion vaccinated increased as the infectious period of people aged
0–14 decreased, and decreased as the infectious period of people over 15 decreased. For a
given value of the reproductive number (R), the relative contribution of each age-group (e.g.
schoolchildren and young adults) to disease transmission increased with its infectious period
(Figures 7 & 8). As expected, the optimal proportion of vaccinated individuals in each age
group increased with its (within- and between-group) reproductive numbers (Figures 2–8).
Therefore, the optimal vaccine allocation strategy between the different age groups would
mainly depend on the relative contribution (within and between group reproductive
numbers) of each age group to disease transmission.

In the absence of considering parameter uncertainty, model results suggest that it would not
be optimal to vaccinate high risk groups when vaccines are in abundance. However,
uncertainty analysis demonstrates that even when vaccines are abundant, there is a high
probability that also vaccinating high risk groups will be optimal. When minimizing the total
number of deaths, minimizing years of life lost, or quantifying outcomes by contingent
valuation, uncertainty analysis illustrated a synergistic dependence of the optimal proportion
of vaccinated individuals in the high-risk group upon the value of the reproductive number
(R) (Figures 2–6). When R was smaller than 1.2, the high-risk group was added to the
vaccination priority groups (schoolchildren and young adults) (Figures 2–6). In scenarios
consistent with these criteria, there are enough vaccines to protect high risk individuals
through direct vaccination as well as by curtailing infection from the schoolchildren and
young adults groups. When R was greater than 1.5, there is not enough vaccine to provide
sufficient indirect protection to the high-risk group through herd immunity. In these cases,
minimizing mortality was best achieved through direct protection of the high-risk group.
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We compared the optimal vaccine allocation strategies with two vaccination strategies based
on the United States Centers for Diseases Control and Preventions’ Advisory Committee on
Immunization Practices (ACIP) recommendations for influenza vaccination [34] and
vaccination strategy based on the 2011 National Health Interview Survey (NHIS) data [35].
The ‘Uniform’ strategy is based on the ACIP recommendations that everyone should get
vaccinated when there is plenty of vaccine. Here, we assumed that all age and risk groups
have equal coverage. The ‘High-risk’ strategy is based on the ACIP recommendations that
high-risk people, children age 0.5–4, and adults age 50+ should get vaccinated when vaccine
is limited. Here, we assumed that these risk and age groups have equal coverage. The
‘NHIS’ strategy is based on influenza vaccine use reported in the 2011 NHIS survey data.
Here, we assumed that the relative proportion of individuals vaccinated in each group
remains fix as the amount of vaccine varies. We showed that our optimal strategies
performed substantially better than these ad hoc strategies (Figure 9).

Discussion
In this study, we incorporated epidemiological parameter uncertainty into the analysis of
optimal allocation of vaccine for the control of seasonal influenza. Using epidemiological
and demographic data on seasonal influenza in the United States, we showed that
vaccinating children and young adults is the best strategy for mitigating the seasonal
influenza. Previous studies have yielded similar result [3,8]. However, the robustness of this
result to factors such as uncertainty of epidemiological parameters has been questioned [11].
Here, we have extended these previous studies by investigating the robustness of this result
to parameter uncertainty.

Using parameter estimates from historical influenza data, we constructed probability
distributions of optimal age-specific allocation of vaccine for the control of seasonal
influenza. In general, vaccinating schoolchildren and young adults was the optimal strategy
for mitigating seasonal influenza due to schoolchildren being most responsible for influenza
transmission, while vaccinating their parents (young adults) serves to block transmission to
the rest of the population. Therefore, prioritizing these age groups for vaccination generates
substantial benefit for the entire population through herd immunity. The prioritization of
schoolchildren and young adults was remarkably robust to uncertainty in influenza
epidemiology, to the metric used to measure outcomes, and, to a lesser extent, to the amount
of vaccine available. However, uncertainty analysis demonstrated that when the optimal
outcome is to minimize deaths, minimize years of life lost, or minimize contingent
valuation, and when vaccines are abundant, people at high risk should also be prioritized for
vaccination.

Sensitivity analysis of our influenza model identified that the reproductive number and the
relative contribution of the age groups to disease transmission (within- and between group
reproductive numbers) as the parameters that most influenced optimal vaccination strategy.
Therefore, better and rapid assessment of these parameters are essential in developing
optimal vaccination strategies for seasonal influenza.

Our results provide guidelines on how to adjust allocation efforts in response to the variable
yield of yearly vaccine development. If the amount of available vaccine is low (less than
20% of amount necessary to cover the entire population), the optimal vaccination strategy
should be adjusted, and the adjustment depends on the outcome measure used. When the
objective is to minimize infections or hospitalizations, vaccination priority should be given
to schoolchildren. When the outcome measure is to minimize deaths, years of life loss, or
contingent valuation, vaccination priority should progressively be shifted away from young
adults toward people at high risk of complications. Therefore, in the presence of low vaccine
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uptake among young adults, people at high risk should be targeted for vaccination.
Achieving high vaccination coverage among children, six months through 18 years of age,
remains a very challenging task [37,38]. In the United States, the existing pediatric
immunization infrastructure does not have the capacity to vaccine a high proportion of
children each year [37,38]. Increasing the level of vaccination coverage among school
children would require additional development of the vaccination infrastructure and an
increase of parental consent for yearly vaccination of their children through school-located
vaccination programs [36–38].

Ideally, our analysis would have used United States data for seasonal influenza. However,
age- specific contact data for the United States are not available. Instead, we used the
European POLYMOD contact survey data to parameterize the age-specific mixing matrix of
our model. We anticipate that there would be little difference between the European age-
specific mixing matrix and one generated from US data, but such data would be welcome.
Our study could be extended by investigating the impact of uncertainty associated with the
mixing matrix on the optimal vaccine allocation for the control of influenza.

Our results show that vaccinating schoolchildren against influenza can substantially reduce
disease morbidity and mortality within the entire population despite the inherent uncertainty
in influenza epidemiology and vaccination. Furthermore, our study illustrates the importance
of incorporating parameter uncertainty into the analysis of mathematical models of public
health interventions.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Highlights

We develop a mathematical model of seasonal influenza in the United States

We identify optimal vaccination allocation strategies under parameter uncertainty

Strategies targeting schoolchildren and young adults are robust to uncertainty

Parameter uncertainty is vital to the evaluation of public health interventions
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Figure 1.
The optimal allocation of 80 million vaccine doses for the five different outcome measures.
The box-plot shows the median (red line), the interquartile range (blue box), and the
minimum and maximum values (black bars) of the optimal proportion of individuals
vaccinated for each group.
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Figure 2.
Relationship between the three parameters whose uncertainty exhibited the greatest impact
on outcome and the optimal proportion of vaccine allocated to groups when minimizing the
number of deaths. Optimization was performed for 80 million doses of vaccine. Solid lines
are medians; dotted lines are 25th and 75th percentiles.
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Figure 3.
Relationship between the three parameters whose uncertainty exhibited the greatest impact
on outcome and the optimal proportion of vaccine allocated to the different groups when
minimizing the number of years of life lost. Optimization was performed for 80 million
doses of vaccine. Solid lines are medians; dotted lines are 25th and 75th percentiles.
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Figure 4.
Relationship between the three parameters whose uncertainty exhibited the greatest impact
on outcome and the optimal proportion of vaccine allocated to the different groups when
quantifying outcome by contingent valuation. Optimization was performed for 80 million of
vaccine doses. Solid lines are medians; dotted lines are 25th and 75th percentiles.
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Figure 5.
Relationship between the three parameters whose uncertainty exhibited the greatest impact
on outcome and the optimal proportion of vaccine allocated to the different groups when
quantifying outcome by number of infections. Optimization was performed for 80 million of
vaccine doses. Solid lines are medians; dotted lines are 25th and 75th percentiles.
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Figure 6.
Relationship between the three parameters whose uncertainty exhibited the greatest impact
on outcome and the optimal proportion of vaccine allocated to the different groups when
quantifying outcome by number of hospitalizations. Optimization was performed for 80
million of vaccine doses. Solid lines are medians; dotted lines are 25th and 75th percentiles.
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Figure 7.
Relationship between the reproductive numbers (R), of the age group 5–17 and the other age
groups, and the infectious period (1/recovery rate). The blue and green lines show
respectively the within- and between-group reproductive number of age group 5–17. The
light blue and red lines represent respectively the within- and between-group reproductive
number of the other age groups.
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Figure 8.
Relationship between the reproductive numbers (R), of the age group 18–44 and the other
age groups, and the infectious period (1/recovery rate). The blue and green lines show
respectively the within- and between-group reproductive number of age group 18–44. The
light blue and red lines represent respectively the within- and between-group reproductive
number of the other age groups.
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Figure 9.
Comparison of outcomes between optimal and alternative vaccination strategies. We
compare reduction in infections from the optimal allocation of different amount of vaccine,
relative to three different alternative strategies: the 2011 vaccination coverage in the USA
(NHIS); uniform coverage for all age and risk groups (Uniform); and uniform coverage of
high-risk group, age 0–4, and age 50+ (High-risk).
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Figure 10.
Comparison of outcomes between optimal and alternative vaccination strategies. We
compare reduction in deaths from the optimal allocation of different amount of vaccine,
relative to three different alternative strategies: the 2011 vaccination coverage in the USA
(NHIS); uniform coverage for all age and risk groups (Uniform); and uniform coverage of
high-risk group, age 0–4, and age 50+ (High-risk).
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Table 1

Epidemiological parameters of the seasonal influenza model and their distributions

Variable Distribution References

Infectious period (ages 0–14) Gamma(Mean 3.6, Std 1.9) 19

Infectious period (ages 15+) Gamma(Mean 3.9, Std 1.9) 19

Latent period Triangular(Min 1, Mode 2, Max 3) 20–23

Susceptibility (ages 0–3) Normal(Mean 0.83, Std 0.369) 24

Susceptibility (ages 4–17) Normal(Mean 0.49, Std 0.5) 24

Susceptibility (ages 18+) Normal(Mean 0.53, Std 0.49) 24

Reproductive number (R) Normal(Mean 1.3, Std 0.15, Min 1) 25

Case mortality (ages 0–4) Normal(Mean 4×10−5, Std 10−5, Min 0) 2

Case mortality (ages 5–17) 10−5 2

Case mortality (ages 18–49) Normal(Mean 9×10−5, Std 3×10−5, Min 0) 2

Case mortality (ages 50–64) Normal(Mean 134×10−5, Std 45×10−5, Min 0) 2

Case mortality (ages 65+) Normal(Mean 117×10−4, Std 39×10−4, Min 0) 2

Case hospitalization (ages 0–4) Normal(Mean 0.0141, Std 0.0047, Min 0) 2

Case hospitalization (ages 5–17) Normal(Mean 0.0006, Std 0.0002, Min 0) 2

Case hospitalization (ages 18–49) Normal(Mean 0.0042, Std 0.0014, Min 0) 2

Case hospitalization (ages 50–64) Normal(Mean 0.0193, Std 0.0064, Min 0) 2

Case hospitalization (ages 65+) Normal(Mean 0.0421, Std 0.0140, Min 0) 2

Proportion high risk (ages 0.5–1) Normal(Mean 0.0415, Std 0.0044, Min 0) 26

Proportion high risk (ages 2–5) Normal(Mean 0.0883, Std 0.0051, Min 0) 26

Proportion high risk (ages 5–18) Normal(Mean 0.1168, Std 0.0030, Min 0) 26

Proportion high risk (ages 19–24) Normal(Mean 0.1235, Std 0.0055, Min 0) 26

Proportion high risk (ages 25–49) Normal(Mean 0.1570, Std 0.0027, Min 0) 26

Proportion high risk (ages 50–64) Normal(Mean 0.3056, Std 0.0044, Min 0) 26

Proportion high risk (ages 65+) Normal(Mean 0.4701, Std 0.0050, Min 0) 26

High-risk relative mortality (ages 0–19) Triangular(Min 0.4, Mode 0.6, Max 21.9)/Triangular(Min 0.041, Mode 0.07,
Max 0.30)

17

High-risk relative mortality (ages 20–64) Uniform(Min 0.8, Max 24.9)/Triangular(Min 0.21, Mode 0.31, Max 0.41) 17

High-risk relative mortality (ages 65+) Uniform(Min 23, Max 29.6)/Triangular(Min 2.3, Mode 3.51, Max 4.52) 17

High-risk relative hospitalization (ages 0–19) Uniform(Min 6.0, Max 21.4)/Uniform(Min 0.57, Max 6.9) 17

High-risk relative hospitalization (ages 20–64) Uniform(Min 6.9, Max 22.3)/Uniform(Min 1.5, Max 12.0) 17

High-risk relative hospitalization (ages 65+) Uniform(Min 33.3, Max 68.4)/Uniform(Min 12.5, Max 15.8) 17

Vaccine efficacy against infection (ages 0.5–15) Uniform(Min 0.54, Max 0.8) 27,28

Vaccine efficacy against infection (ages 16–64) Uniform(Min 0.54, Max 0.7) 27,28

Vaccine efficacy against infection (ages 65+) Uniform(Min 0.33, Max 0.66) 27,28

Vaccine efficacy against mortality Uniform(Min 0.39, Max 0.54) 16

Vaccine efficacy against hospitalization Uniform(Min 0.21, Max 0.73) 16,27
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Std = standard deviation; Min = minimum; Max= maximum; Normal (Mean m, Std s, Min a) is the standard Normal (Mean m, Std s) random
variable censored so that it has minimum a.
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