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Background:GMFregulatesArp2/3complexdebranching.
Results: GMF binds preferentially to ADP-Arp2/3 com-
plex. The phosphomimeticmutation S2E inGMF inhibits
this interaction.
Conclusion: The preference of GMF for ADP-Arp2/3
complex might play a physiological role by promoting
debranching of aged branch junctions without interfering
with nucleation.
Significance: We show that GMF interaction with
Arp2/3 complex obeys similar principles as ADF/cofilin
interaction with actin.

Glia maturation factor (GMF) is a member of the actin-depo-
lymerizing factor (ADF)/cofilin family. ADF/cofilin promotes
disassembly of aged actin filaments, whereasGMF interacts spe-
cifically withArp2/3 complex at branch junctions and promotes
debranching. A distinguishing feature of ADF/cofilin is that it
binds tighter to ADP-bound than to ATP-boundmonomeric or
filamentous actin. The interaction is also regulated by phosphor-
ylation at Ser-3 of mammalian cofilin, which inhibits binding
to actin. However, it is unknown whether these two factors play
a role in the interaction of GMF with Arp2/3 complex. Here we
show using isothermal titration calorimetry that mammalian
GMF has very low affinity for ATP-bound Arp2/3 complex but
binds ADP-bound Arp2/3 complex with 0.7 �M affinity. The
phosphomimeticmutationS2E inGMF inhibits this interaction.
GMFdoes not bindmonomeric ATP- or ADP-actin, confirming
its specificity for Arp2/3 complex. We further show that mam-
malianArp2/3 complexnucleation activatedby theWCAregion
of the nucleation-promoting factor N-WASP is not affected by
GMF, whereas nucleation activated by the WCA region of
WAVE2 is slightly inhibited at high GMF concentrations.
Together, the results suggest that GMF functions by a mech-
anism similar to that of other ADF/cofilin family members,
displaying a preference for ADP-Arp2/3 complex and under-
going inhibition by phosphorylation of a serine residue near
the N terminus. Arp2/3 complex nucleation occurs in the
ATP state, and nucleotide hydrolysis promotes debranching,

suggesting that the higher affinity of GMF for ADP-Arp2/3
complex plays a physiological role by promoting debranching
of aged branch junctions without interfering with Arp2/3
complex nucleation.

Gliamaturation factor (GMF)2 is a 17-kDa protein conserved
from yeast to human (1).Mammals express twoGMF isoforms,
GMF� and GMF�, which share 82% sequence identity but
display different tissue distributions (2). GMF� is expressed
mainly in the brain and has been associated with nervous
system development and degeneration (3). GMF� is expressed in
microvascular endothelial and inflammatory cells and has been
implicated in promoting neutrophil and T cell migration (4,
5). GMF is a member of the actin-depolymerizing factor
(ADF)/cofilin family (1). Thus, human GMF� and GMF�,
which share 17.6 and 15.5% sequence identities with human
cofilin-1, respectively, display a three-dimensional fold sim-
ilar to that of other members of the ADF/cofilin family (6).
Members of this family, including twinfilin, Abp1, drebrin,
and coactosin, are generally implicated in regulation of actin
cytoskeleton dynamics (1).
GMF is unique among ADF/cofilin family members in that it

regulates the activity of Arp2/3 complex (7, 8). Arp2/3 complex
mediates nucleation and branching of actin filaments at the
leading edge of motile cells (9, 10). It consists of seven subunits,
including the actin-related proteins Arp2 and Arp3 and sub-
units ARPC1–5. Multiple factors contribute to activating
Arp2/3 complex, includingATP (11–13), pre-existing (mother)
filaments (14), and nucleation-promoting factors (NPFs) (15,
16). Most NPFs contain a C-terminalWCA (WH2, central, and
acidic domains) region featuring binding sites for actin (W) (17)
and Arp2/3 complex (C and A) (14, 18). In this way, NPFs
recruit actin and Arp2/3 complex and promote the formation
of a branch filament that grows at a 70° angle relative to the
mother filament (19, 20).
Both Arp2/3 complex and actin use nucleotide hydrolysis as

a timer to regulate their transition in and out of filamentous
networks. Thus, nucleotide hydrolysis on actin controls tread-
milling, whereby polymerization of ATP-actin at the barbed
end of the filament is followed by fast hydrolysis and slow phos-
phate release, resulting in the accumulation and subsequent
dissociation of ADP-actin at the pointed end (21). Similarly,
Arp2/3 complex nucleation occurs in the ATP state (11–13),
and nucleotide hydrolysis promotes debranching (22–24). In
actin, the nucleotide state also regulates its interactions with
actin-binding proteins through subtle conformational changes
(25). Specifically, most ADF/cofilin family members interact
with both monomeric and filamentous actin with higher affin-
ity in the ADP state than in the ATP state (26–30). In this way,
the primary role of ADF/cofilin is to stimulate the depolymer-
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ization of aged ADP-containing actin filaments by promoting
either filament severing (31–34) or monomer dissociation at
the pointed end (35). This raises important questions. Is the
interaction of GMF with Arp2/3 complex also stronger in the
ADP state? If so, how does GMF inhibit the nucleation of
Arp2/3 complex in the ATP state as suggested by some studies
(7, 8, 36)? These questions are addressed here in an attempt to
understand the role of GMF in Arp2/3 complex assembly
dynamics.
Phosphorylation of a serine residue near the N terminus

(Ser-3 inmammalian cofilin) inhibits the interactions of several
ADF/cofilin family members with monomeric actin, as well as
their filament disassembly activities (37–39). The structure of a
complex of actinwith theC-terminalADFhomology domain of
twinfilin shows that the N-terminal region is directly involved
in interactions with actin (40), explaining how phosphorylation
at this site can play a regulatory role. GMF also contains con-
served serine residues at positions 2 and 4. Phosphorylation of
these two sites has been confirmed in cells, although only phos-
phorylation of Ser-2 appears to play a regulatory role (4). How-
ever, contrary to ADF/cofilin, it was initially reported that
phosphorylation of Ser-2 increased the affinity of GMF� for
bothArp2/3 complex andF-actin (4). In contrast, another study
found that GMF� and GMF� carrying the phosphomimetic
mutation S2E inhibited yeast Arp2/3 complex nucleation to a
lesser extent than the wild-type proteins, suggesting weaker
affinity for the complex (8). A third study found that this muta-
tion had no effect on yeast cell growth and did not affect the
debranching activity of yeast GMF in vitro (36). Because of
these conflicting results, we revisit here the role of N-terminal
phosphorylation in the interaction of GMF with Arp2/3
complex.

EXPERIMENTAL PROCEDURES

Proteins—The cDNA encoding human GMF� (UniProt
O60234) was synthesized (GENEWIZ, Inc.) and cloned
between the NdeI and SapI sites of the pTYB1 vector (New
England Biolabs). This vector comprises a chitin-binding
domain for affinity purification and an intein for precise self-
cleavage of the purification tag such that no extra residues
remain after purification that could interfere with GMF activ-
ity. Point mutants GMF�S2E and GMF�S2A were generated
using the QuikChange mutagenesis kit (Qiagen). WCA frag-
ments ofmouseWAVE2 (residues 433–497;UniProtQ8BH43)
and N-WASP (neural Wiskott-Aldrich syndrome protein; res-
idues 426–501; UniProt Q91YD9) were cloned between the
NdeI and EcoRI sites of the pTYB12 vector (New England Bio-
labs). Expression was carried out in BL21(DE3) cells (Invitro-
gen), grown in Terrific Broth medium at 37 °C for 6 h, and
induced by the addition of 0.5 mM isopropyl �-D-thiogalacto-
pyranoside at 20 °C overnight. All proteins were first purified
on a chitin affinity column (New England Biolabs). Affinity
purification was followed either by HPLC purification on a
reverse-phaseC18 columnusing aCH3CNgradient of 0–90 and
0.1% TFA (WCA constructs) or by gel filtration on a HiLoad
26/600 Superdex 200 column (GMF�). Arp2/3 complex was
purified from bovine brain as described (41), but in the absence

of nucleotide. Actin was purified from rabbit skeletal muscle
(42).
Preparation of Different Nucleotide States of Arp2/3 Complex

and Actin—Tissue-purified Arp2/3 complex is in a nucleotide-
free state (43). After purification, the complex was dialyzed for
72 h against Arp buffer (20 mMHEPES (pH 7.5), 100 mM KCl, 1
mM MgCl2, 1 mM EGTA, and 1 mM DTT) supplemented with
0.2 mM ADP (or ATP). In one of the experiments, ATP-bound
Arp2/3 complex was converted to the ADP state in two dialysis
steps: first, against Arp buffer supplemented with a high
amount of ADP (2 mM) to ensure complete exchange, followed
by dialysis against 0.2mMADP (as in other experiments). Actin
is a very slow ATPase and is purified as ATP-bound actin. To
obtain the ADP-bound state, actin was dialyzed against 5 mM

HEPES (pH 7.5), 0.2 mM CaCl2, and 1 mM DTT supplemented
with 0.2 mM ADP, with the addition of 20 units ml�1 hexoki-
nase and 1 mM glucose, as described previously (44).
Isothermal TitrationCalorimetry (ITC)—ITCmeasurements

were performed on a MicroCal VP-ITC calorimeter at 20 °C.
The duration of each injection was 7 s, with an interval of 200 s
between injections. Arp2/3 complex (ADP- or ATP-bound) in
the cell (1.44ml at 8–10 �M concentration) was titrated in 7-�l
injections with a 14-foldmolar excess of GMF�. The same con-
ditions were used in titrations of GMF� into ADP- or ATP-
actin (1.44 ml at 13–15 �M concentration), which was kept
monomericwith the addition of latrunculin B. Each experiment
was corrected for the small exothermic heat of injection result-
ing from the titration of GMF� into buffer. Data were analyzed
using the MicroCal Origin program.
Actin Polymerization Assay—Actin polymerization was

measured as the fluorescence increase resulting from the incor-
poration of pyrene-labeled actin into filaments using a Cary
Eclipse fluorescence spectrophotometer (Varian). Prior to data
acquisition, 2�MMgATP-actin (6% pyrene-labeled) wasmixed
with different components, including Arp2/3 complex, WCA,
and GMF (as indicated in Fig. 2) in 5 mM Tris (pH 8.0), 1 mM

MgCl2, 50 mM KCl, 1 mM EGTA, 0.1 mM NaN3, 0.02 mg ml�1

BSA, and 0.2 mM ATP. Data acquisition started 10 s after mix-
ing. Allmeasurementswere done at 25 °C.Control experiments
were carried out with the addition of buffer alone. Polymeriza-
tion rates were calculated as the slope at 50% polymerization
and converted to nM s�1 (nM monomers adding to filaments
s�1), assuming a total concentration of polymerizable actin of
1.9 �M (45).

RESULTS

The Interaction of GMFwithArp2/3ComplexDepends on the
State of theNucleotide—Previous studies have reported binding
of yeast GMF to yeast Arp2/3 complex with widely diverging
affinities: 1.0 �M (8) or 13 nM (36). One of these studies addi-
tionally reported that there were two binding sites for GMF on
Arp2/3 complex (36). Moreover, these studies did not consider
the nucleotide state of Arp2/3 complex, which, by analogy with
other ADF/cofilin familymembers, should play a critical role in
the interaction. Here, we used ITC to analyze the interaction of
mammalian GMF� with mammalian Arp2/3 complex in the
ADP- and ATP-bound states. We found that ADP-Arp2/3
complex bound GMF� with 0.7 �M affinity (Fig. 1A). In con-
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trast, GMF� interacted veryweakly withATP-Arp2/3 complex,
and the data could not be fit to a binding isotherm (Fig. 1B).
Note, however, that the titration of GMF� into ATP-Arp2/3
complex had an endothermic profile, whereas that of GMF�
into buffer was exothermic (Fig. 1, compare B and C), suggest-
ing some binding, albeit very weak. Of note, the heats of titra-
tion for ATP-Arp2/3 complex were similar to those observed at
saturation for ADP-Arp2/3 complex. The parameters shown in
Fig. 1A are the average of four different experiments, including
one experiment in which ATP-Arp2/3 complex was recovered
after the titration, converted to ADP-Arp2/3 complex (see
“Experimental Procedures”), and re-titratedwithGMF�, which
resulted in very similar binding. In contrast to a previous study
(36), we observed only a single binding site forGMF�onArp2/3
complex, which is consistent with a recent crystal structure of
this complex (46). The interaction was also specific for Arp2/3
complex because GMF� did not bind to either ADP- or ATP-
bound actin (Fig. 1D).

The Phosphomimetic Mutation S2E Inhibits Binding of
GMF� to ADP-Arp2/3 Complex—Previous studies have pro-
duced conflicting results regarding the role ofN-terminal phos-
phorylation in the interaction of GMFwith Arp2/3 complex (4,
8, 36). These studies used the phosphomimetic mutation S2E.
By ITC, we found that this mutation strongly inhibited binding
toADP-Arp2/3 complex (Fig. 1E), resulting in a titration profile
similar to that observed with ATP-Arp2/3 complex (Fig. 1,
compare B and E). In contrast, the GMF�S2A mutant bound
ADP-Arp2/3 complex with similar affinity to wild-type GMF�
(Fig. 1F), suggesting that the inhibitory effect of the S2E muta-
tion was due to the additional charge and not to the removal of
the serine side chain.
GMF� Does Not Interfere with the Nucleation Activity of

Mammalian Arp2/3 Complex—Previous studies have sug-
gested that both yeast and mammalian GMFs inhibit yeast and
mammalianArp2/3 complex nucleation (7, 8, 36). Arp2/3 com-
plex requires ATP for nucleation (11–13), and polymerization

FIGURE 1. Analysis by ITC of the binding of GMF� to Arp2/3 complex. Experiments were conducted at 20 °C. Arp2/3 complex (or actin-latrunculin B) in the
cell at 8 –10 �M (or 13–15 �M) was titrated with a 14-fold molar excess of GMF� in 7-�l injections (7-s injections, with an interval of 200 s between injections).
A, titration of GMF� into ADP-Arp2/3 complex. The data were fit to a binding isotherm derived from the integrated heats of binding plotted against the molar
ratio of ligand (GMF�) added to ADP-Arp2/3 complex in the cell after subtracting the heat of dilution. The best fit parameters (solid black line) correspond to a
one-site binding model with a dissociation constant of 0.7 �M. B, titration of GMF� into ATP-Arp2/3 complex. The data could not be fit to a binding isotherm.
C, titration of GMF� into buffer (control experiment). D, titration of GMF� into ADP-actin (black squares) and ATP-actin (green squares). Note that these two
titrations look similar to that of GMF� into buffer, indicating a complete lack of interaction. E, titration of GMF�S2E into ADP-Arp2/3 complex. The data could not
be fit to a binding isotherm. F, titration of GMF�S2A into ADP-Arp2/3 complex. Each titration was repeated at least two times, and four times for that shown in
A. In A, errors are reported as S.E., whereas for the other titrations, errors were derived from curve fitting.
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assays are always conducted in the presence of ATP. In light of
our finding that GMF� has very low affinity for ATP-Arp2/3
complex, we questioned whether it could interfere with nucle-
ation. We conducted pyrene-actin (6% pyrene-labeled) poly-
merization assays using mammalian Arp2/3 complex and the
WCA regions of two NPFs, N-WASP and WAVE2, in the
absence or presence of increasing concentrations of GMF�
(Fig. 2). Compared with control experiments with actin alone,
polymerization was strongly stimulated in the presence of
20 nM Arp2/3 complex and 200 nM WCAN-WASP. The addition
of increasing concentrations ofGMF� orGMF�S2E (up to 4�M)
had no effect on this activity (Fig. 2A). In the case ofWCAWAVE,
we observed a small inhibitory effect at high concentrations of
GMF�, as reflected by somewhat lower polymerization rates
and increased lag times of polymerization (Fig. 2B).

DISCUSSION

Together, the results presented here show a parallel between
the ways in which GMF interacts with Arp2/3 complex and
ADF/cofilin interacts with actin.We have demonstrated for the
first time that GMF� has a clear preference for ADP-bound
versus ATP-bound Arp2/3 complex, which could have impor-
tant physiological implications. Indeed, in vitro branches
formed by Arp2/3 complex persist for hundreds of seconds
(47), whereas branch turnover in cells occurs within a few sec-
onds (48), implying the existence of cellular factors that accel-
erate debranching. One mechanism for debranching has been
proposed to involve cofilin-mediated disassembly of the
mother filament (49). However, by interacting directly with
Arp2/3 complex, GMF acts in amore specificmanner, inducing
debranching at low concentrations (7, 36). While Arp2/3 com-
plex nucleation requires ATP (11–13), nucleotide hydrolysis
occurs almost immediately after nucleation and promotes deb-
ranching (23, 24). It thus appears that the higher affinity of

GMF for ADP-Arp2/3 complex is specifically tailored for dis-
assembly of older ADP-containing branches. The weak affinity
for ATP-Arp2/3 complex is equally important, as it reduces the
likelihood of GMF interfering with the nucleation step, i.e. the
formation of new branches. ATP binding to Arp2/3 complex
may also provide a mechanism for GMF dissociation, freeing
both Arp2/3 complex and GMF for new rounds of nucleation
and debranching.
Another way in which GMF might be prevented from inter-

fering with the nucleation step is by competition with NPFs.
Indeed, a recent crystal structure shows that GMF binds at the
barbed end of Arp2 (46), whereas various studies have sug-
gested thatNPFs deliver an actinmonomer at the barbed end of
Arp2 during the first steps of nucleation (41, 50, 51). Thus,
although our results generally contrast with previous reports of
strong inhibition of nucleation by GMF (8, 36), we observed
some inhibition of nucleation induced by WCAWAVE but not
WCAN-WASP, which can be explained by competition. Indeed,
actin-WCAWAVE has 50-fold lower affinity for the site on Arp2
than actin-WCAN-WASP.3 Similarly, differences in affinity
between Arp2/3 complex and NPFs and/or GMF may also
explainwhy the yeast system analyzed previously (8, 36) ismore
susceptible to inhibition by GMF. It is important to point out,
however, that the slight inhibition observed with mammalian
WCAWAVE occurred at high GMF concentrations, which are
probably irrelevant in the cellular context, particularly consid-
ering themarked preference ofGMF forADP-Arp2/3 complex.
We also found that GMF� binds to ADP-Arp2/3 complex

with 1:1 stoichiometry, not 2:1 as suggested by a recent study
(36). The crystal structure of GMF� bound to Arp2/3 complex
shows a single binding site at the barbed end ofArp2, consistent

3 M. Boczkowska, G. Rebowski, and R. Dominguez, unpublished data.

FIGURE 2. GMF� does not inhibit actin polymerization by Arp2/3 complex. Shown are the time courses of the fluorescence increase upon polymerization
of 2 �M actin (6% pyrene-labeled) alone (black line) and with addition of the indicated proteins (colored lines). A, effect of different concentrations of GMF� on
actin polymerization induced by 20 nM Arp2/3 complex activated by 200 nM WCAN-WASP. Polymerization rates at 50% polymerization are shown. The lag time
(measured as the time to 10% polymerization) was 190 s. B, effect of different concentrations of GMF� on actin polymerization induced by 20 nM Arp2/3
complex activated by 200 nM WCAWAVE. Lag times were 229, 245, 277, and 292 s for 0, 1, 2, and 4 �M GMF, respectively. Each measurement was performed three
times; one representative curve is shown. Errors are reported as S.E. a.u., arbitrary units.
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with our results. The protein-protein contacts appear to be
highly specific for GMF-Arp2 and cannot be reproduced on
Arp3, where the corresponding binding interface is very differ-
ent.We also note that this structurewas determined in theATP
state, which we found binds very weakly to GMF�. However,
the interaction is made possible by the high protein concentra-
tion used in crystallization. Curiously, the only existing struc-
ture of a complex of actin with a member of the ADF/cofilin
family was also determined in the ATP-bound state (40).
Therefore, there is a clear need for a structure of a complex
showing the higher affinity ADP-bound state.
Finally, through the study of the S2E phosphomimetic

mutant (and a control S2A mutant), we found that phosphory-
lation at the N terminus of GMF inhibits its interaction with
ADP-Arp2/3 complex.We thus conclude that striking parallels
exist betweenGMFandADF/cofilin, both in theway they select
for their ADP-bound partners and in the way they are regulated
by phosphorylation.
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