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Background:MurM utilizes aminoacyl-tRNAs and Lipid II for peptidoglycan biosynthesis in Streptococcus pneumoniae.
Results:MurM deacylates mischarged aminoacyl-tRNAs in the absence of Lipid II.
Conclusion: The ability of MurM to function in quality control can compensate for the absence of AlaXp proteins in
S. pneumoniae.
Significance:MurM can function in translation as a lipid-independent trans editing factor.

Streptococcus pneumoniae is a causative agent of nosocomial
infections such as pneumonia, meningitis, and septicemia. Pen-
icillin resistance in S. pneumoniae depends in part uponMurM,
an aminoacyl-tRNA ligase that attaches L-serine or L-alanine to
the stem peptide lysine of Lipid II in cell wall peptidoglycan. To
investigate the exact substrates the translation machinery pro-
videsMurM, quality control by alanyl-tRNA synthetase (AlaRS)
was investigated. AlaRS mischarged serine and glycine to
tRNAAla, as observed in other bacteria, and also transferred ala-
nine, serine, and glycine to tRNAPhe. S. pneumoniae tRNAPhe

has an unusual U4:C69 mismatch in its acceptor stem that pre-
vents editing byphenylalanyl-tRNAsynthetase (PheRS), leading
to the accumulation of misaminoacylated tRNAs that could
serve as substrates for translation or for MurM. Although the
peptidoglycan layer of S. pneumoniae tolerates a combinationof
both branched and linear muropeptides, deletion of MurM
results in a reversion to penicillin sensitivity in strains that were
previously resistant. However, because MurM is not required
for cell viability, the reason for its functional conservation
across all strains of S. pneumoniae has remained elusive. We
nowshow thatMurMcandirectly function in translationquality
control by acting as a broad specificity lipid-independent trans
editing factor that deacylates tRNA. This activity of MurM does
not require the presence of its second substrate, Lipid II, and can
functionally substitute for the activity of widely conserved edit-
ing domain homologues of AlaRS, termed AlaXPs proteins,
which are themselves absent from S. pneumoniae.

Streptococcus pneumoniae is a Gram-positive diplococcus
that is carried asymptomatically in the nasopharynx of 5–10%
of healthy adults and 20–40% of healthy children. Clinically,
S. pneumoniae is the common causative agent of several com-
munity and hospital acquired infections including pneumonia,
otitis media, meningitis, and septicemia. According to the Cen-
ters for Disease Control (CDC), �5 million fatal cases of pneu-
mococcal pneumonia in children under the age of five are

reported globally each year (37). Pneumococci have an unusual
lifestyle because they produce high levels of hydrogen peroxide
that provides a competitive advantage for the organism during
colonization of the nasopharynx (1, 2). In other organisms, it
has been reported that exposure to increased levels of hydrogen
peroxide can enhance cellular mistranslation rates both in vivo
and in vitro (3, 4). For example, in mammalian cells, �1% of
protein synthesis-directed methionine residues are aminoacy-
lated onto noncognate tRNA molecules. This methionine mis-
aminoacylation is increased as much as 10-fold in the presence
of reactive oxygen species, such as hydrogen peroxide. Substi-
tution of coded amino acids withmethionine is believed to pro-
tect proteins against oxidative damage under stress conditions
(3). In Escherichia coli, exposure to hydrogen peroxide causes
reduction in the fidelity of translation. This effect has been
directly attributed to oxidation of Cys-182 within threonyl-
tRNA synthetase, which subsequently impairs the editing abil-
ity of the enzyme and results in the production of misamino-
acylated Ser-tRNAThr (4). How translation quality control is
maintained in pneumococci, which are routinely exposed to
elevated hydrogen peroxide levels, is unknown.
Aminoacyl-tRNA synthetases are the first step in quality

control of protein synthesis because they are responsible for
amino acid activation and transfer to cognate tRNA (5). Follow-
ing this process, the aminoacyl-tRNA is released from the syn-
thetase and bound by elongation factor Tu (EF-Tu)2 for deliv-
ery to the ribosome and use in protein synthesis (6, 7).
Aminoacyl-tRNA synthetases are usually highly selective for
their cognate tRNAdue to the availability of a large surface area
for recognition, identity elements within the tRNA molecule
itself, and also kinetic proofreading during the aminoacylation
reaction (8–10). In contrast, some amino acids are difficult for
aminoacyl-tRNA synthetases to distinguish with high accuracy
as they can differ by as little as a single methyl group (11). For
example, isoleucyl-tRNA synthetase has difficulty distinguish-
ing between the isosteric amino acids isoleucine and valine,
whereas the active site of alanyl-tRNA synthetase (AlaRS) is
able to accommodate alanine, glycine, and serine (12–16).
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Misactivation of noncognate serine and glycine by AlaRS
occurs at frequencies of 1/500 and 1/250, respectively. This is
higher than the overall error rate for translation, which is typi-
cally from1/3000 to 1/10,000 (10). Amino acid activation errors
can be corrected both by the synthetase itself at a distinct edit-
ing site, as is the case for AlaRS, and also by free-standing
editing domain homologues, as exemplified by the widely con-
served AlaXPs proteins that edit Ser-tRNAAla (17, 18). S. pneu-
moniae encodes no known AlaXPs, suggesting that the genes
encoding these AlaRS editing domain homologues may have
been lost from the pneumococcal genome during gene shuf-
fling, which occurs rapidly within the organism as a result of
exposure to antibiotics (19). This loss would be feasible in the
presence of another conserved protein able to perform the
same function. One such candidate protein is MurM, an Ala/
Ser-tRNA-dependent aminoacyl-tRNA ligase that is involved
in the synthesis of branched structured muropeptides in pneu-
mococcal peptidoglycan (20). MurM catalyzes the transfer of
either alanine or serine to the stem peptide lysine of Lipid II
and, in combination with MurN, generates the substrate for
indirect cross-linking of peptidoglycan. Until recently, the only
aminoacyl-tRNAsubstrates recognized byMurMwere thought
to be Ser-tRNASer, provided by seryl-tRNA synthetase, and
Ala-tRNAAla, provided by AlaRS (38). However, MurM is also
able to efficiently transfer serine to Lipid II frommisaminoacy-
lated Ser-tRNAAla, which is also produced by pneumococcal
AlaRS (21). The observed preference formisaminoacylated Ser-
tRNAAla suggests that MurM could function as a trans editing
factor and influence translation quality control by channeling
appropriate misaminoacylated tRNA species into the pepti-
doglycan biosynthesis pathway. Here we show that pneumo-
coccal AlaRS alsomisaminoacylates an unusual tRNAPhe isoac-
ceptor to generate substrates for MurM, which is able to
catalyze deacylation in the absence of Lipid II.

EXPERIMENTAL PROCEDURES

Strains, Plasmids, and General Protein Expression and
Purification—S. pneumoniae strain D39 chromosomal DNA
for use as a template in the cloning of AlaRS, PheRS, EF-Tu, and
MurM was a gift from B. Lazazzera (University of California,
Los Angeles). An expression construct for producing His6-
tagged E. coli AlaRS and pUC19 containing the E. coli tRNAAla

gene for production by in vitro transcription were gifts from K.
Musier-Forsyth (Ohio State University, Columbus, OH).
The genes encoding S. pneumoniae AlaRS full-length pro-

tein, AlaRS residues 1–460 (catalytic domain only), EF-Tu, and
MurM were cloned into pET21b (Novagen) by virtue of the
NdeI and XhoI restriction sites. Subsequent expression con-
structs allowed for the production of recombinant proteins
tagged at the C termini with a hexahistidine tag. The genes
encoding S. pneumoniae PheRS � and � subunits were cloned
into pETDuet-1 (Novagen) multiple cloning sites one and two,
respectively, such that the protein was produced with anN-ter-
minal hexahistidine tag. All proteins were overexpressed in
E. coli strain BL21 (DE3) by the addition of a final concentration
of 1 mM isopropyl-�-D-1-thigalactopyranoside at an A600 of
04–0.6 followed by a reduction in growth temperature from
37 °C to 28 °C for 3–5 h. Proteins were purified on BD TALON
cobalt resin using equilibration/wash buffer (50 mM sodium
phosphate, pH 7.2, 500 mM sodium chloride, and 20% glycerol)
containing 250 mM imidazole. MurM was solubilized prior to
purification as described (21, 38). S. pneumoniae tRNAAla and
tRNAPhe (wild type and U4G) and the E. coli wild type equiva-
lents were produced by in vitro T7 RNA polymerase runoff
transcription as described (22).
Site-directed Mutagenesis—Site-directed mutagenesis of

pneumococcal tRNAPhe was carried out by the polymerase
chain reaction using PfuTurbo polymerase. Methodology

FIGURE 1. Cloverleaf structure of pneumococcal tRNAPhe. A and B, cloverleaf structures of pneumococcal (A) and E. coli (B) tRNAPhe (anticodon GAA). The
distorted region in the acceptor stem of pneumococcal tRNAPhe was removed in the mutant species used in this study (termed tRNAPhe U4G) by replacement
of the uracil at position 4 with a guanine.
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was obtained from the Stratagene site-directed mutagenesis
manual.
Aminoacylation—Aminoacylation time courses were carried

out across a time period of 1 h at 37 °C in the presence of 0.1 M

Na-HEPES, pH 7.2, 30mMKCl, 10mMMgCl2, 2mMATP, 7�M

tRNAAla/Phe transcript, 40 or 110 �M [3H]Ser/[14C]Ala/
[14C]Gly (150–200 cpm/pmol), and 310 nM active AlaRS (as
determined by active site titration). Reactions were repeated in
the presence of 50 nM active S. pneumoniae PheRS, 300 nM
S. pneumoniaeMurM, or 3�M activated S. pneumoniae EF-Tu.
EF-Tu was activated in 50 mM Tris-HCl, 1 mM DTT, 68 mM

KCl, 6.7 mM MgCl2, 2.5 mM phosphoenolpyruvate, 0.5 mM

GTP, and 30 mg/ml pyruvate kinase as described (23). 10-�l
samples were taken for each time point and spotted onto 3-mm
Whatman filter paper discs, which were immediately dropped
into 5% TCA. Discs were subjected to further washes with 5%
TCA and ethanol prior to drying and scintillation counting.
Kinetics of Phenylalanylation of tRNAPheWild Type andU4G

by PheRS—To determine Michaelis-Menten kinetics for pneu-
mococcal PheRSwith eitherwild type ormutantU4G tRNAPhe,

phenylalanylation time courses were carried out at 37 °C at
both the lowest (0.05 �M) and the highest (10.0 �M) tRNA con-
centration in the presence of 0.1 M Na-HEPES, pH 7.2, 30 mM

KCl, 10 mM MgCl2, 2 mM ATP, 50 �M [14C]Phe (200 cpm/
pmol), and 50 nM active PheRS (as determined by active site
titration). Because the linear region was determined to be
within the first 2 min, 10-�l samples were spotted onto 3-mm
Whatman filter paper and dropped into 5% TCA at four time
points (0.5, 1.0, 1.5, and 2 min) at each of the tRNA concentra-
tions (0.05, 0.10, 0.20, 0.40, 0.60, 0.80, 1.00, 3.00, 5.00, 10.00�M)
for determination of gradients and key kinetic parameters from
triplicate data sets.
Deacylation Assays—Aminoacylation reactions were set up

in four 200-�l reactions each consisting of 30 mM HEPES, pH
7.6, 15 mM MgCl2, 10 mM DTT, 2 mM ATP, 110 �M [3H]serine
or [3H]alanine (with a specific activity of �300 cpm/pmol), 10
�M S. pneumoniae tRNAAla transcript (prior to use, stock was
resuspended in 4 mM MgCl2 and heated at 80 °C for 10 min
followed by slow cooling to room temperature to allow refold-
ing), 2 �molmin�1 ml�1 inorganic pyrophosphatase, and 3 �M
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FIGURE 2. Error-prone aminoacylation of tRNAAla and tRNAPhe by full-length pneumococcal AlaRS. A–F, aminoacylation time courses in the presence of
40 �M [14C]alanine (A and B), [14C]serine (C and D), or [14C]glycine (E and F) for 310 nM active full-length pneumococcal AlaRS. Wild type pneumococcal tRNAAla

(A, C, and E) or tRNAPhe (B, D, and F) were used at a concentration of 7 �M. Data sets are the average of three independent experiments. Error bars indicate S.E.
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alanyl-tRNA synthetase catalytic domain. The reactions were
incubated at 37 °C for 2 h and then quenched by the addition of
20�l of 3 M sodiumacetate, pH 4.5. [3H]Aminoacyl-tRNApuri-
fication was achieved by the addition of 220 �l of phenol, pH
4.5, to each of the four reactions followed by mixing and cen-
trifugation at 13,000 rpm for 5 min. After centrifugation, the
aqueous phase was retained, and an equal volume of 24:1 chlo-
roform isoamyl alcoholwas added. 550�l of�20 °CRNase-free
ethanol was added to the aqueous phase, which was subse-
quently incubated at �80 °C for 1 h. The precipitated amino-
acyl-tRNA was pelleted by centrifugation at 13,000 rpm for 30
min and washed with 1 ml of 70% ethanol. After a final centrif-
ugation step at 13,000 rpm for 30 min, the pellet was dried at
room temperature for 5 min and resuspended in 50 �l of 3 mM

sodium acetate, pH 4.5. At this point, all four reactions were
pooled, yielding 200�l of [3H]Ser or [3H]Ala-tRNAAla, the con-
centration of which was determined by 5% TCA precipitation
of 2 �l of the stock and scintillation counting. Deacylation
assays were carried out by incubation of 50 pM [3H]Ser or Ala-
tRNAAla in buffer composed of 0.1 MNa-HEPES, pH 7.2, 30mM

KCl, and 10 mM MgCl2. In addition, 0.5 �M AlaRS, 0.5 �M

MurM, or an equal volume of protein storage buffer was added
to the reaction, whichwasmonitored byTCAprecipitation and
scintillation counting.
Due to our inability to successfully isolate sufficient yields

of misaminoacylated tRNAPhe, an aminoacylation-coupled
deacylation reaction was developed. 100-�l aminoacylation
reactions were incubated at 37 °C in the presence of 0.1 M Na-
HEPES, pH 7.2, 30 mM KCl, 10 mM MgCl2, 2 mM ATP, 7 �M

tRNAAla/Phe transcript, 100 �M [3H]Ser (PerkinElmer)/[3H]Ala
(Moravek Biochemicals) at a specific activity of 200–300 cpm/
pmol, and 0.5–1.0 �M active AlaRS catalytic domain (or full-
length AlaRS in the case of cognate Ala-tRNAAla). After a 1-h
incubation, sodium chloride (final concentration 100 mM) and
adenosine 5�-triphosphatase from porcine cerebral cortex
(final concentration of 0.5 units, Sigma-Aldrich) were added to
the reaction. Incubation at 37 °C was continued for an addi-
tional 30min to the plateau of aminoacylation prior to the addi-
tion of the potential deacylation factor (enzyme storage buffer
in the case of the control, full-length AlaRS, PheRS, or MurM)
in a 34-�l volume where 4 �l was composed entirely of 100mM

unlabeled serine or alanine as appropriate. After equilibration
for 2 min, a 10-�l volume was taken from the reaction and
spotted onto 3-mmWhatman filter paper, which was immedi-
ately dropped into 5% TCA. This was used as the zero time
point, and the deacylation reaction was monitored for an addi-
tional 10 min with samples taken at 1, 2, 4, 8, and 10 min. After
all time points had been taken, filter papers were washed a fur-
ther two times in 5% TCA and then once in 100% ethanol prior
to drying and liquid scintillation counting. All samples were
repeated in triplicate. Full-length AlaRS, PheRS, and MurM
were at final concentrations of 0.6, 1, and 1 �M, respectively.

RESULTS

Pneumococcal AlaRS Displays Relaxed Specificity for Amino
Acid and tRNA Recognition—The ability of AlaRS to misacti-
vate both serine and glycine is well documented, as is its high
specificity for cognate tRNAAla, which results from recognition

of the conservedG3:U70 base pair in the acceptor stem (14, 24).
The potential ability of pneumococcal AlaRS to utilize noncog-
nate tRNAPhe as a substrate was investigated here due to the
presence of an unusual U4:C69 mismatch within the acceptor
stem of the molecule, which may affect the ability of AlaRS to
accurately discriminate against it (Fig. 1). In vitro assays showed
that pneumococcal AlaRS was able to aminoacylate both
tRNAAla and tRNAPhe with any of Ala, Gly, or Ser (Fig. 2). As
expected, an equivalent active concentration of the isolated cat-
alytic domain of AlaRS, which has no editing function, was
more efficient in tRNAmisaminoacylation than the full-length
editing-proficient enzyme (Fig. 3).
To determine whether aminoacylation of tRNAPhe by AlaRS

is a unique feature of the pneumococcal system, alanylation
time courses were carried out with an equivalent concentration
of full-length E. coli AlaRS and either the cognate E. coli
tRNAAla or the noncognate E. coli tRNAPhe (data not shown).
E. coli AlaRS does not use tRNAPhe as a substrate, consistent
with the absence of either the G3:U70 alanylation identity ele-
ment or other atypical structures such as the U4:C69mismatch
present in S. pneumoniae tRNAPhe (Fig. 1). Previous studies
have indicated that mutation of E. coli tRNAPhe to contain the
G3:U70 identity element is required for aminoacylation by
E. coli AlaRS (24).
Pneumococcal PheRS Is Unable to Edit Misaminoacylated

tRNAPhe—The ability of pneumococcal PheRS to aminoacylate
both wild type pneumococcal tRNAPhe and mutant tRNAPhe

U4G
was tested. In the later species, the distorted region of the acceptor
stem was replaced by a Watson-Crick base pair conformation,
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FIGURE 3. Error-prone aminoacylation of tRNAAla and tRNAPhe by cata-
lytic domain of pneumococcal AlaRS. Aminoacylation time courses in the
presence of 40 �M [14C]alanine, [14C]serine, or [14C]glycine for 310 nM pneu-
mococcal AlaRS catalytic domain. A and B, wild type pneumococcal tRNAAla

(A) or tRNAPhe (B) was used at a concentration of 7 �M. Data sets are the
average of three independent experiments. Error bars indicate S.E.
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making the structure more closely resemble that of E. coli
tRNAPhe (Fig. 1). The tRNAPhe

U4G mutant was aminoacylated
�5-fold more efficiently than the wild type species by PheRS
(Fig. 4A), whereas full-length AlaRS was able to alanylate both
tRNAs equally efficiently (Fig. 4B). Kinetic characterization of
PheRS with both wild type and mutant tRNAPhe indicated that
this effect was not caused by a change in Km but rather by an
approximate 2.5-fold increase in kcat for tRNAPhe

U4G (Table 1).
To test whether pneumococcal PheRS could hydrolyze mis-

aminoacylated Ala-, Ser-, and Gly-tRNAPhe, AlaRS-catalyzed
misaminoacylation reactions were repeated in the presence of
PheRS (Fig. 4,C–E). PheRS addition caused amarked enhance-
ment ofAla-tRNAPhe production by pneumococcal AlaRS, sug-
gesting that PheRS binds and protects this misaminoacylated
tRNA from spontaneous deacylation (Fig. 4C). Someprotection
was also demonstrated for Gly-tRNAPhe (Fig. 4E) but not for
Ser-tRNAPhe (Fig. 4D). In the absence of a successful procedure
for isolating adequate yields of misaminoacylated tRNAPhe, a
coupled aminoacylation/deacylation assay was developed to

assess the ability of PheRS to edit both wild type and mutant
Ala- and Ser-tRNAPhe. PheRS addition had no effect on the
deacylation of either Ser-tRNAPhe species (Fig. 5, A and B,
respectively). For Ala-tRNAPhe, PheRS addition led to deacyla-
tion of Ala-tRNAPhe

U4G but not wild type Ala-tRNAPhe (Fig. 5,
D andC, respectively). This suggests that theU4:C69mismatch
in wild type pneumococcal tRNAPhe is an anti-determinant for
PheRS-mediated editing of Ala-tRNAPhe.
The Effect of Pneumococcal EF-Tu on tRNA Misamino-

acylation—The sequence of pneumococcal EF-Tu is diverged
from that of other bacteria at four conserved positions: P129K,
M140L, T230S, and E234D. Of particular interest is the substi-
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FIGURE 4. The effect of the U4:C69 wobble on aminoacylation of tRNAPhe by PheRS and AlaRS. A, comparison of the ability of pneumococcal PheRS to
aminoacylate wild type and mutant U4G pneumococcal tRNAPhe. Time courses were carried out in the presence of 40 �M [14C]phenylalanine with 500 nM active
full-length pneumococcal PheRS and either 7 �M wild type tRNAPhe or 7 �M mutant tRNAPhe

U4G. B, comparison of the ability of pneumococcal full-length AlaRS
to aminoacylate wild type and mutant U4G pneumococcal tRNAPhe. Time courses were carried out in the presence of 110 �M [14C]alanine and either 7 �M wild
type tRNAPhe or 7 �M mutant tRNAPhe

U4G. C–E, misaminoacylation time courses for 310 nM active full-length pneumococcal AlaRS in the presence of 50 nM

active pneumococcal PheRS and 7 �M wild type pneumococcal tRNAPhe. The concentration of [14C]alanine (C), [3H]serine (D), and [14C]glycine (E) used was 110
�M. Data sets are the average of three independent experiments. Error bars indicate S.E.

TABLE 1
Kinetic parameters for phenylalanylation of tRNAPhe wild type of U4G
by PheRS

Km Vmax kcat kcat/Km

�M �M/min/mg s�1

Wild type tRNAPhe 1.05 � 0.19 0.15 � 0.04 0.32 � 0.09 0.30
Mutant tRNAPhe

U4G 1.09 � 0.30 0.38 � 0.06 0.78 � 0.10 0.72
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tution of Thr-230 with Ser in the third � strand of the second
domain of the protein, which comprises the aminoacyl-tRNA
binding pocket (25). The effects of pneumococcal EF-Tuaddition
on the generation of misaminoacylated tRNAAla and tRNAPhe by
AlaRS were investigated. EF-Tu addition resulted in modest
enhancement of theproductionofGly-tRNAAla bypneumococcal
AlaRS (Fig. 6) but had no significant effect on other AlaRS-cata-
lyzed reactions (data not shown).
MurM Functions as a trans Editing Factor in Pneumococci—

Pneumococcal peptidoglycan is unusual in that it typically con-
sists of a combination of both branched and linear muropep-
tides. Within the structure, branched muropeptides consist of
either a serine-alanine or an alanine-alanine dipeptide bridge
attached to the stem peptide lysine of Lipid II. This dipeptide
bridge is synthesized by the action of the MurM and MurN
proteins (26–28). The substrates for MurM include pneumo-
coccal Ser-tRNASer and Ala-tRNAAla provided by seryl-tRNA
synthetase and AlaRS, respectively. Previous work also demon-
strated that the catalytic efficiency of MurM is greater when
Ser-tRNAAla is provided as a substrate as opposed to Ala-
tRNAAla (21). The ability of MurM to utilize Ser-tRNAAla and
the absence of any genome-encoded AlaXPs proteins in
S. pneumoniae prompted us to investigate the ability of MurM
to trans edit mischarged tRNAs. In the case of AlaRS synthesis
of Ser-tRNAAla, the addition ofMurM suppressedmischarging
for the first 15 min of the reaction (Fig. 7A). After this time,
product formation increased, possibly due to a loss of MurM
stability during incubation for prolonged time periods at 37 °C.
The initial suppression of mischarging suggests that MurM
may act as a trans editing factor capable of hydrolyzing Ser-
tRNAAla in the absence of its second substrate, Lipid II. AlaRS
generation of Ala-tRNAPhe was also reduced by the addition of
MurM to the mischarging time course, providing additional
support for a trans editing function (Fig. 7E). The ability of

MurM to hydrolyze Ser-tRNAAla and Ala-tRNAAla was investi-
gated in the absence of Lipid II (Fig. 8, A and B, respectively).
The addition of MurM led to rapid deacylation of both Ala-
tRNAAla and Ser-tRNAAla, consistent with trans editing activ-
ity. Direct deacylation assays could not be performed with
MurM and Ala-tRNAPhe due to the comparative instability of
this mischarged tRNA species (see above).

DISCUSSION

Pneumococcal AlaRS Is Error-prone during Aminoacylation—
Extensive studies on E. coli AlaRS have indicated that the
G3:U70 wobble base pair in the acceptor stem of tRNAAla is a
critical identity element for alanylation by AlaRS (24, 29–32).
In addition to this, it has been demonstrated that E. coli
tRNAPhe can only be alanylated by E. coli AlaRS if the acceptor
stem is mutated so that it contains the G3:U70 base pair (24,
29). The predicted cloverleaf structure of pneumococcal
tRNAPhe indicates the presence of an unusual wobble base pair
in its acceptor stem, U4:C69, which is not found in E. coli

FIGURE 5. The U4:C69 mismatch is an anti-determinant for PheRS editing of Ala-tRNAPhe. A–D, deacylation time courses for AlaRS-generated Ser-tRNAPhe

wild type (A), Ser-tRNAPhe
U4G (B), Ala-tRNAPhe wild type (C), and Ala-tRNAPhe

U4G (D) in the presence of 0.6 �M active PheRS. Aminoacylation reactions were
carried out using 0.5 �M AlaRS catalytic domain, 7 �M tRNA transcript, and 100 �M [3H]serine or [3H]alanine. Data sets are the average of three independent
experiments. Error bars indicate S.E.
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FIGURE 6. The effect of EF-Tu on Gly-tRNAAla misaminoacylation by AlaRS.
Misaminoacylation time courses for generation of Gly-tRNAAla by 310 nM full-
length pneumococcal AlaRS in the presence or absence of 3 �M activated pneu-
mococcal EF-Tu are shown. The concentration of wild type pneumococcal
tRNAAla used was 7 �M. The concentration of [14C]glycine used was 110 �M. Data
sets are the average of three independent experiments. Error bars indicate S.E.
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tRNAPhe (Fig. 1) (33, 34). In addition to misaminoacylating
tRNAAla, pneumococcal AlaRS is also able to charge tRNAPhe

with alanine, serine, and glycine. Production of high levels of
hydrogen peroxide during the life cycle of pneumococcus could
potentially acceleratemisaminoacylationof tRNAAla and tRNAPhe

by AlaRS. In support of this hypothesis, it has been shown that
exposure of E. coli threonyl-tRNA synthetase to hydrogen perox-
ide results in exacerbated production of misaminoacylated Ser-
tRNAThr.This isdue tooxidationofanediting site cysteine residue
and subsequent loss of zinc ion coordination (4). Therefore, in the
absence of free-standing homologues of the editing domain of
AlaRS (AlaXPs proteins), pneumococcus may require MurM to
maintain translation quality control, particularly if tRNA mis-
charging is elevated under oxidative stress as has been previously
observed in other organisms (3, 4).
Evolution of Pneumococcal tRNA for Dual Functions in Pro-

tein and Peptidoglycan Biosynthesis—The peptidoglycan struc-
ture of pneumococcus is particularly unusual in that it contains

a combination of both branched and linear muropeptides. The
MurMN proteins are responsible for the synthesis of branched
muropeptides and are one of the requirements for high level
penicillin resistance within this bacterium (27, 28). Therefore,
the mechanisms used by pneumococcus to ensure sufficient
division of aminoacylated tRNA species between peptidoglycan
biosynthesis and protein synthesis are of great interest.
In Staphylococcus aureus, pentaglycine bridge formation is

essential for cell viability and is catalyzed by the Gly-tRNAGly

requiring FemXAB proteins (35). In S. aureus, four annotated
tRNAGly isoacceptors have been identified in addition to a
pseudogene encoding an unusual fifth tRNAGly isoacceptor.
Although all five tRNAGly isoacceptors have been shown to
be substrates for the S. aureus glycyl-tRNA synthetase, the
pseudogene and two of the other tRNAGly isoacceptors with
the same anticodon were shown to possess sequence identity
elements favoring weak binding interaction with EF-Tu.
This allows S. aureus to ensure proper division of Gly-
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FIGURE 7. MurM decreases production of serylated tRNAAla/Phe and alanylated tRNAPhe by AlaRS. A–E, misaminoacylation time courses for generation of
Ser-tRNAAla (A), Ser-tRNAPhe (B), Gly-tRNAAla (C), Gly-tRNAPhe (D), or Ala-tRNAPhe (E) by 310 nM active full-length pneumococcal AlaRS in the presence of 300 nM

MurM. The concentration of wild type pneumococcal tRNAAla or tRNAPhe used was 7 �M. The concentration of [14C]alanine, [3H]serine, and [14C]glycine used
was 110 �M. Data sets are the average of three independent experiments. Error bars indicate S.E.
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tRNAGly between protein synthesis and peptidoglycan bio-
synthesis (36).
In pneumococcus, no unique tRNAAla or tRNASer isoaccep-

tors have been identified that would enable the bacterium to
achieve division of aminoacylated tRNA between protein syn-
thesis and peptidoglycan biosynthesis in the sameway S. aureus
does. The inability of pneumococcal PheRS to edit misamino-
acylated Ala- and Ser-tRNAPhe may ensure that these species
are potential cellular substrates for the peptidoglycan biosyn-
thesis pathway. This is supported by the finding that the mis-
matchwithin the acceptor stemof pneumococcal tRNAPhemay
allow AlaRS to compete with PheRS for this substrate by com-
promising the aminoacylation activity of the latter protein. Our
data suggest that, once released fromAlaRS, misaminoacylated
tRNA species can be hydrolytically cleaved by MurM, but it
remains unclear whether they are specifically diverted away
from the translation machinery as is the case for some forms
of Gly-tRNAGly in S. aureus. Further characterization of
these and other adaptations pneumococci have made to
ensure that the fidelity of protein synthesis and peptidogly-
can biosynthesis are maintained during antibiotic and oxi-
dative stress may enable new drug targets to be identified in
the future. This has the potential to result in subsequent
restoration of the potency of penicillin in the treatment of
infections by this bacterium.
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