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Summary

Natural killer cells (NKs) areinvolved in every stage of hepatitis C viral (HCV) infection, from
protection against HCV acquisition and resolution in the acute phase to treatment-induced
clearance. In addition to their direct antiviral actions, NKs are involved in the induction and
priming of appropriate downstream T-cell responses. In the setting of chronic HCV, overall NK
cell levels are decreased, altered subset distribution is atered, and changes in NK receptor (NKR)
expression have been demonstrated, although the contribution of individual NKRs to viral
clearance or persistence remains to be clarified. Enhanced NK cell cytotoxicity accompanied by
insufficient interferon-y production may promote liver damage in the setting of chronic infection.
Treatment-induced clearance is associated with activation of NK cells, and it will be of interest to
monitor NK cell responses to triple therapy. Activated NK cells aso have antifibrotic properties,
and the same hepatic NK cell populations that are actively involved in control of HCV may also
be involved in control of HCV-associated liver damage. We still have much to learn, in particular:
how do liver-derived NKs influence the outcome of HCV infection? Do NK receptors recognize
HCV -specific components? And, are HCV-specific memory NK populations generated?
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Hepatitis C viral infection

The hepatitis C virus (HCV) is a positive-stranded RNA enveloped virus, a member of the
flavivirus family (1). The HCV genomeis approximately 9600 nucleotides and encodes a
single polyprotein precursor of approximately 3000 amino acids. The polyprotein is cleaved
by both host and viral proteasesinto structural and nonstructural (NS) proteins (2) (Fig. 1).
Replication is mediated by NS5B, the viral RNA-dependent RNA polymerase that is devoid
of proof-reading capacity, resulting in a high mutation rate. The inherent sequence diversity
of HCV represents one of the most substantial challenges to the development of an effective
HCV vaccine. To date, seven major HCV genotypes demonstrating >30% nucleotide
seguence divergence from each other and numerous subtypes have been identified.
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Approximately 200 million people (an estimated 3% of the world’ s population) throughout
the world have chronic HCV infection (3); HCV persistsin up to 80% of people infected,
whereas only a minority (~20%) of individuals exposed to HCV are able to spontaneously
clear the infection. HCV, primarily transmitted via contaminated blood, is aleading cause of
liver cancer and indication for liver transplantation (3). In the US alone, the burden over the
next 1020 years is expected to reach over $10 billion in direct medical costs and double
thisin overall societal costs (4).

Pegylated interferon-based regimens, with ribavirin, had been the standard of treatment over
the past decade. When results are stratified according to genotype, sustained virologic
response (SVR) was about 40% to 50% in patients with genotype 1 and 75% to 85% in
patients with genotype 2/3 (5-7). Although recent advances in treatment, including the
addition of NS3/4A protease inhibitors, have significantly enhanced SVR, drug toxicities
and costs remain significant hurdles for many patients, and triple therapy may not be
available for the majority of HCV -infected patients (8). The immune responseto HCV is
complex involving multi-cellular division of labor and includes components of innate and
adaptive immunity (3). Enhanced understanding of HCV-host interactions and the
mechanisms that regulate immunity within the liver is required to combat this virus and to
develop improved therapies.

Natural killer cells

Natural killer (NK) cells are considered the principal innate effectors representing the first
line of defense in the control of viral infections (9-11). They provide antiviral protection
through surveillance of danger signals, downregulation of major histocompatibility complex
(MHC) class | molecules ‘ missing-self’ (12), and upregulation of MHC class | homologues
‘induced-self’ ligands (13), in addition to direct recognition of pathogen-associated
molecules (14, 15). Their role may be direct, as NK cells can kill without prior sensitization
viathe release of granzyme and perforin containing cytotoxic granules (16). In addition,
they produce cytokines such asinterferon-y (IFN-y), which can limit viral replication (17).
NKsalso act indirectly by influencing the activation and/or trafficking of other key immune
cell populations (18, 19) including dendritic cells (DCs) (20) and T cells (21, 22). An
appreciation of thisimmune-regulatory function of NKs has provided insight into the critical
role played by NKsin the crosstalk between innate and adaptive immunity and has
highlighted their continuing rolein chronic viral infections) (Fig. 2). The suggestion that NK
memory responses develop and persist, at least in mice (23-25) and that human NK cells
have functional memory-like properties after cytokine activation (26) adds a new level of
complexity to this population opening up exciting possibilities for NK cell-based
immunotherapy or vaccination in cases where more traditional approaches have been
unsuccessful (27).

Until recently, mainly because of the paucity of well described acute HCV cohorts and the
perception that as part of the innate immune response NK cell function would impact only in
the early stages of infection, the role of NK cellsin HCV infection remained relatively
unexplored. We hypothesized that NK cells were likely important at all stages of HCV
infection, not just in the acute setting (28), and since then several studies have supported this
premise. In this article, we review recent data from our own laboratory as well as others that
have contributed significantly to our understanding of the role played by these complex and
versatile immune effector cellsin the setting of infection with HCV.

Natural killer cell activation

NK cell activity is stringently controlled by inhibitory NK receptors (NKRs), which in
steady-state conditions override signals provided by engagement of activating receptors.
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Negative signaling induced by inhibitory receptors opposes NK cell activation and provides
an important safeguard from NK cell reactivity toward normal, healthy cells (29). In the
setting of viral infection, the balance favoring inhibition seen under normal conditionsis
shifted towards activation (30). The main classes of NKRs include the predominantly
inhibitory killer immunoglobulin-like receptors (KIR), C-type lectin-like receptors of the
CD94/ natura killer group 2 (NKG2) family comprising inhibitory (NKG2A) and activatory
(NKG2C/D) isoforms, aswell asthe natural cytotoxicity receptors (NCRs) NKp30 (NCR3/
CD337), NKp44 (NCR2/CD336), and NKp46 (NCR1/CD335) that deliver activation signals
(15, 31-35). Additional surface receptors are involved in the activation of NK cells. Some of
these are not exclusively expressed on NK cells and are mainly involved in NK cell
adhesion to target cells. These include DNAX accessory molecule-1 (DNAM-1) and
NKp80, also known as killer cell lectin-like receptor subfamily F, member 1 (KLRF1),
involved in epithelial and myeloid cell interactions (36). Tumor necrosis factor (TNF)-
related apoptosis-inducing ligand (TRAIL/Apo2L), responsible for extrinsic induction of
cell death, can also be expressed on NK cells. TRAIL has been implicated in
immunosuppressive, immunoregulatory, and immune-effector functions. With respect to
pathological challenges, TRAIL and its receptors have been shown to play important rolesin
the immune response to viral infections (37). The majority of activating NKRs function as
co-receptors requiring a second signal provided by loss of inhibition, cytokine stimulation,
or a second activating receptor (38, 39).

As mentioned above, one of the main classes of NK inhibitory receptorsisthe KIR family.
Diverse and polymorphic, they interact with highly polymorphic MHC class| ligands. Their
main function lies in constitutive inhibition and in the generation of diversity in immune
responses to pathogens and as such have received considerable attention as potential disease
association markers (40). The other dominant NK inhibitory receptor is the evolutionary
conserved NKG2A (38). This receptor forms dimers with CD94 and binds human leukocyte
antigen-E (HLA-E), which presents |eader peptides derived from classical MHC class|
molecules (41). CD94/NGK2A serves to monitor appropriate expression of MHC class | and
senses changes in overall MHC class | expression that may arise from viral infection (36).
Another member of the NKG2 family, NKG2D, is a potent activating receptor on NK cells
(42). Multiple inducible ligands, all of which are homologues of MHC class | molecules are
recognized by NKG2D. Human ligands include MHC class | chain-related A and B (MICA,
MICB) and UL 16-binding proteins (ULBPs) (13, 43). Through recognition of ligands
induced by stress or infection, NKG2D plays an important role in the control of viral
infections. The importance of this receptor in host antiviral defense is emphasized by the
multiple redundant mechanisms viruses, including human cytomegalovirus (HCMV) (44),
human immunodeficiency virus (HIV) (45), and hepatitis B virus (HBV) (46), have evolved
to counteract the NK G2D-dependent immune response. Another important group of
activating receptorsis the NCRs, which include NKp30, NKp44, and NKp46. All three
NCRs are involved in the clearance of both tumor and virus-infected cells (35). Severa
tumor-specific and viral ligands of the NCRs have been described (35). B7-H6 expressed on
transformed cells has been identified as a tumor-specific ligand for NKp30 (47, 48). BCL-2-
associated athanogene 6 (BAG6), also known as HLA-B-associated transcript 3 (BAT3),
released by tumor cells in exosomes binding to NKp30 can activate NK cells (49), and
BAG6 expressed on the membrane of immature DCs (iDCs) isinvolved in the elimination
of iDCs by NK cells (50). NKp30 aso hinds severa viral ligands leading to inhibition
including HCMV pp65 (51) and vaccinia virus haemagglutinin (HA) (52). Unlike NKp30
and P46 which are expressed on both resting and activated NK cells, NKp44 is detected only
on activated NKs (35). Viral HA and HA-neuraminidase (HN) are activating ligands (53,
54), and tumor-derived recently proliferating cell nuclear antigen (PCNA) has been reported
as an inhibitory ligand (55). Among the NCRs, NKp46 is the only receptor that has an
orthologue in other species. This specific evolutionary conservation suggests that NKp46 is

Immunol Rev. Author manuscript; available in PMC 2014 September 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Golden-Mason and Rosen Page 4

the primary NCR involved in tumor and pathogen recognition (35). NK p46 recognizes
unknown ligands on pancregtic p-cells leading to the development of type | diabetes (56).
Engagement of NKp46 by an as yet unidentified ligand on hepatic stellate cells protects
from liver fibrosis (57). NKp46 is important for the recognition of HA from several viruses
including influenza and sendai viruses (58).

The current model of NK cell activation includes loss of constitutive inhibition through
downregulation of MHC class | (59), upregulation of activating receptors and/or their
ligands (30), cell adhesion and, response to inflammatory cytokines including |FNs induced
by viral infection, interleukin-2 (IL-2), IL-15, and IL-12 (38, 60-64)(Fig. 3).

The role of natural killer cells early in HCV infection

Recent studies have implicated NK cells as important playersin host defense in all stages of
HCV infection and suggest that NKs may even protect from HCV acquisition. Genetic
studies have linked KIR and MHC Class | polymorphisms to resistance to HCV (65, 66).
These data suggest that heightened NK cell activity may prevent HCV infection in the
setting of low-dose exposure. However, as KIR can aso be expressed by T-cell subsets, the
direct relevance of some of these datato NK cell biology remains to be fully established
(67). We characterized NK cellsin a unique cohort of prospectively collected periphera
blood samples from HCV-exposed injection drug users (IDUs). NK cell profilesin exposed
individuals who remained uninfected despite being repeatedly exposed to HCV (n=11) were
compared with pre-infection samples (median 90 days prior to HCV seroconversion)
collected from 14 IDUs who were exposed and subsequently became infected. We
demonstrated, in patients who remain protected from HCV infection, enrichment for
CD56/%W effector NK s displaying enhanced IL-2 induced cytolytic activity against the NK-
sensitive cell line K562 and higher levels of the NKp30 activating NCR (68). A role for NKs
in preventing HCV infection is further supported by a recent study from Barbara
Rehermann’s group at the Nationa Institutes of Health (NIH) (69). Eleven healthcare
workers with accidental percutaneous exposure to HCV-infected blood who remained
negative for HCV RNA and HCV -antibodies were studied. All but one of these cases
displayed increased multifunctional NK cell responses with enhanced NCR (NKp44,
NKp46) and NKG2A expression, cytotoxicity (as determined by TRAIL and CD107a
expression), and IFN-y production (69). We have also demonstrated clear race- and gender-
related differencesin expression of NKp46, which correlates with differential HCV natural
history, supporting the biological relevance of NKp46 in innate protection (70). NKp46 is
considered the major human NCR involved in NK cell-mediated killing (58, 71). Taken
together, these data support the hypothesis that NK cell activity contributes to anti-HCV
defensein the earliest stages of infection, providing innate protection from HCV acquisition
and point to asignificant role for NCRs and enhanced cytotoxicity in this process.

Natural killers in the acute phase

Littleis known of the role of NK cells in determining the outcome of acute HCV infection.
It isthought that NK cells are activated early in acute HCV infection, although the precise
role they play is unclear (72—74). Functionally, NK cell IFN-y production (72) and
cytotoxicity or degranulation were higher in individuals with acute HCV infection than in
healthy controls (72, 73). In another study, the absolute percentage of circulating NK cells
was significantly elevated in the acute phase of HCV infection compared to HCV-negative
controls. In addition, NK cells from acutely infected patients showed increased
degranulation in response K562 target cells (74). In the studies above, the activity of NK
cells did not correlate with subsequent outcome. However, an indirect role for NKs through
induction and priming of T-cell responses was suggested by the finding that peak NK cell
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activation and degranulation preceded peak T-cell responses and, of note, NK cell
degranulation correlated with the magnitude of HCV -specific T-cell responses (73).
Phenotypic alterations of NK cellsin acute HCV infection have been reported but are
difficult to interpret. Amadei ef &. (72) observed an increased expression of NKG2D on NK
cells, irrespective of the outcome, as compared with healthy controls which is consistent
with activation. Alter er a. (74) showed that NK cells from acute infected patients
demonstrated lower frequencies of NKp46- and NK p30-expressing NK cells, and these
lower levels correlated with HCV clearance. Thisfinding is somewhat counterintuitive, as
high levels of NKp30 (68) and NKp46 (69) expression have recently been associated with
protection against HCV infection in exposed uninfected individuals and as NKp46
expression correlates with anti-HCV activity /n vitro (70, 75, 76). The authors suggest that
activation-induced downregulation of NCRs may account for the diminished percentage of
NK cells expressing NKp46 and NKp30 in patients who resolve acute infection and may
reflect that early NK cell activation resultsin the onset of an effective innate immune
response that participatesin viral clearance (74). Further studies using well defined cohorts
of patients with acute HCV infection are needed to define the contributions of individual
NKRs to resolution.

Studies to date suggest direct involvement of NK cellsin the acute phase of HCV infection;
NK cell activation and phenotypic alterations have clearly been demonstrated. A direct role
for NK cellsin resolution of acute HCV infection has yet to be demonstrated. Activation of
NK cellsearly in HCV infection likely favors induction and priming of downstream T-cell
responses and HCV clearance (77).

Natural killer cell levels and phenotype in chronic HCV infection

Significantly moreis known of therole played by NK cells in the outcome of chronic HCV
infection. NK cell frequency is reduced in chronic HCV compared to healthy controls (78—
81). Thereason for this decreaseis currently unknown but is probably not due to NK cell
recruitment to and compartmentalization in the liver as hepatic NK cell levels are also
decreased (79, 82, 83). In humans, NK's can be identified by the expression of N-CAM
(CD56) and relative expression of this antigen identifies functionally distinct immature/
regulatory (CD56P19) and effector (CD569M) NK subsets. The CD569™ subset, which are
strongly cytolytic mature effector cells characterized by high perforin expression, account
for the majority of circulating NK cells. In contrast, CD5619" NK cells are focused on
production of cytokines such as IFN-y (84). This subset is considered |ess mature and can
give rise to the CD569™M NK cells (85). In addition to these conventional NK cell subsets, a
highly dysfunctional subset of CD56™9CD16P°S NK's has been described that appears to be
terminally differentiated, has impaired cytolytic function, and poor cytokine production (86).
Altered subset distribution (decreased CD569™ and/or increased CD56119M) is a consistent
finding in several chronic HCV cohorts (79, 87). Increased circulating levels of
dysfunctional CD56"®9CD16P°S have also been reported (88, 89) (Fig. 4). While changesin
phenotype are clearly demonstrated in chronic HCV, conflicting data exist with respect to
the expression of NKRs. These variances may arise from differences in methodol ogies,
control groups used, the use of fresh or frozen blood samples, and small sample sizes (90).
Increased NKG2A expression (79, 91-93) isa consistent findings in chronic HCV, which
suggests inhibition of NK function, although this may simply reflect altered subset
distribution as CD56119" NK s express high levels of this receptor. The evidence with
respect to NCR expression in chronic HCV is conflicting as both decreased expression (94)
and increased expression (91, 95, 96) have been reported. A significant role for the NKG2D
pathway in the defense against HCV infection is suggested by severa studies, although the
overall contribution of the NKG2D pathway in the control of HCV infection is not fully
elucidated (81, 91). The HCV-NS5A protein downregulates expression of NKG2D on NK
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cellsviatheTLR4 pathway, thus impairing their function. The suggested mechanism is that
NSBA triggers IL-10 secretion from monocytes, which in turn promotes TGFp production,
which leads to downmodulation of NKG2D expression and impaired effector functions both
IFN-y and CD107adegranulation (97). In adirect infection system (HL7702 cells infected
with HCV-positive serum), the HCV protease NS3/4A was shown to reduce the expression
of NKG2D ligands MICA and MICB (98). Direct contact with HCV-infected cellsimpaired
NK cell degranulation, lysis activity, and IFN-y production, and this inhibition was
associated with downregulation of NKG2D and NKp30 on NK cells. These observations
suggest that direct cell-to-cell interaction between NK cells and HCV-infected hepatocytes
may impair NK cell function /n vivoand thereby contribute to the establishment of chronic
infection (99). Augmentation of NKG2D activity may enhance immunity to some cancers or
infections. For thisto be possible, more research is needed to further understand
mechanisms that regulate NKG2D function, expression, and signaling (43). NKG2D
expression has been reported to be upregulated or downregulated or unchanged in HVC
infection (91, 92, 95).

The activity of natural killer cells in chronic HCV infection

In chronic HCV infection, overall levels of NK cells are decreased, the NK cell subset
distribution is perturbed, and NKR expression is atered possibly reflecting activation in
response to chronic virus-induced stimulation. The question remains, how do these changes
impact on activity, and, does the functionality of NKs influence the outcome of infection.
Severd /n vitroand ex vivo studies suggested that NK cell activity was inhibited in chronic
HCV infection (100-104). However, the reported depressed activity of NK cellsin chronic
HCV may be a consequence of decreased levels of CD5649™ effector cells, as more recent
studies suggest that activity on aper cell basisisintact (78, 87). Several lines of evidence
suggest that skewing or polarization of NK cell function away from IFN-y production
towards cytotoxicity may promote viral persistence and liver damage (81, 95, 105-106).
Polarization of NK cell function towards cytokine production or cytotoxicity is clearly
demonstrated /n vitro. Cytokine stimulation (IL-12/IL-15) of isolated human NKs induces
production of IFN-y but not degranulation, whereas, phorbol myristate acetate (PMA) and
calcium ionophore ionomycin stimulation induces degranulation (70). An NK cell
polarization model as a mechanism of HCV evasion of effective NK cell responses and
promotion of liver injury is supported by the available data. This phenomenon may be linked
to the requirement for caspase activation for IFN-y and TNF production, whichis
dispensable for cytotoxicity (107). Insufficient IFN-y responses may result in increased vira
replication, as IFN-y has direct anti-viral properties and can control viral replication /n vitro
in a dose-dependent manner (108, 109). In addition to antiviral activity, IFN-y isimportant
for the differentiation and trafficking of appropriate helper T-cell responses (110, 111).
Enhanced NK cell cytotoxicity accompanied by insufficient IFN-y production may promote
liver damage (95).

The above studies suggest that in addition to a decrease in overall levels of NK cells that

NKR expression is altered reflecting activation in response to chronic virus-induced
stimulation. The contribution of individual NKRs to viral clearance or persistence remainsto
be clarified. Data with respect to the functionality of NK cellsin the setting of chronic HCV
infection favors a polarization model. More research is needed to further understand
mechanisms that regulate NK cellsin the setting of HCV infection.

Natural killer cells in treatment

As antiviral therapy for chronic HCV infection continues to evolve, IFN-a remains as an
integral component of current therapies. NK cells are one of the primary cell populations

Immunol Rev. Author manuscript; available in PMC 2014 September 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Golden-Mason and Rosen Page 7

responding to IFN-a.; therefore, it islogical to assume that NKswill be intimately involved
in the response to antiviral therapy for chronic HCV. Human NK cells recognize HCV -
infected hepatoma cells after IFN-a stimulation in a DNAM-1-dependent manner.
Furthermore, interaction of IFN-a-stimulated NK cells with HCV -infected hepatoma cells
efficiently reduces HCV replication (112). IFN-a also induces TRAIL expression on NK
cells and increased expression of TRAIL on NK cells has been associated with control of
HCV infection; these observations might account for the second-phase declinein HCV-
RNA levels during pegylated-1FN-a therapy (113).

Different NK cell levels and phenotypic and functional features in patients with chronic
hepatitis C treated with standard therapy (pegylated IFN-a) and ribavirin observed between
non-responder versus SVR patients supports arole for NK cellsin the response to treatment
(114). Baseline frequencies of CD569™ NK cells and perforin content were significantly
higher in SVR vs. non-responder subjects. NK cells were more activated, as evidenced by
increased expression of CD69, in rapid virological responders (RVR). Moreover, higher
natural and antibody-dependent NK cytolyticity were associated with SVR (114). We have
demonstrated higher expression levels of inhibitory NKG2A in patients who failed to
achieve SVR (89). Levels of NK cells and the IFN-y expression upon stimulation with
K562 were reversed after successful treatment with pegylated IFN-a and ribavirin; however,
these skewed functions were not recovered in treatment-resistant patients (105). Circulating
CD56"® functionally impaired NK cells are increased in chronic HCV -infected patients
compared to uninfected controls with the highest levels seen in those who fail to respond to
standard pegylated IFN-a and ribavirin therapy. Higher levels of these dysfunctional NK
cells also correlate with poor early viral kinetics (viral decline < 1.410g10 in the first 28
days of treatment) (89). Successful antiviral therapy restores NK cell levelsin the liver.
Analysis of paired liver biopsy samples has shown that SVR is associated with an increase
in the total number of intrahepatic NK cells following treatment with IFN-a. aone or
combined with ribavirin (115, 116).

Taken together, the above studies suggest that activation of NK cells by IFN-a isimportant
to achieve treatment-induced viral clearance. It will be of interest to monitor NK cell
responses to triple therapy.

Hepatic NK cells and HCV

The human liver is relatively enriched in NK cells (117-119). The role of liver-derived NKs
has been studied extensively in animal models, but their functions in human liver disease are
largely unexplored (118, 119). Hepatic NKs comprise 30-50% of lymphocytes in the liver
(117, 119). The relative enrichment and constitutive activation of NKsin normal liver
reflects their role in immune surveillance and elimination of pathogens encountered in the
liver (119). Phenotypic studies are limited but have shown that hepatic NK cells differ from
peripheral NK cellsin that the majority do not express CD16 (120). Increased
CD94:NKG2A and decreased KIR expression is also characteristic of hepatic NK cells
(121). Two recent comprehensive reviews highlight the paucity of data on human liver-
derived NK cells (90, 122).

Intrahepatic NK cells may behave differently to NK cellsin other areas due to the
‘tolerogenic’ environment in the liver (117). Murine intrahepatic NK cells express high
levels of NKG2A and are hyporesponsive. They are less cytotoxic and have an altered
cytokine profile producing lower levels of IFN-y and greater levels of immunoregulatory
cytokines, such as 1L-10, compared to periphera blood and splenic NK cells (123). This
hyporesponsive state has been described in the early stages of hepatitis B virusinfection and
may contribute to the establishment of chronic vira infection (124). Similar studieson
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human liver-derived NK cellsin chronic HCV infection have yet to be carried out. Much of
what we know about hepatic NK cellsin chronic HCV isinferred from our knowledge of the
altered expression of important NK cell ligandsin infected liver and cell culture systems.
Direct contact with HCV-infected cellsresultsin impaired NK cell degranulation and IFN-y
production. The observed inhibition was associated with a decrease in NK-activating
receptor (NKG2D and NKp30) surface expression on NK cells. These observations suggest
that direct interaction between NKs and HCV-infected hepatocytes may impair NK cell
function /n vivo contributing to the establishment of chronic infection (99). In HCV
infection, there is an impairment of MIC-A/B expression which may result in lower levels of
NK cell activation viathe NKG2D ligand (97, 98, 125). The increased expression of
NKG2A on hepatic NK cells (79) may be important, asHCV can upregulate HLA-E, the
ligand for NKG2A, /n vivoand in vitrothus representing a mechanism by which HCV may
modul ate the hepatic NK cell response (125, 126). HCV core protein can upregulate MHC
class | expression on hepatocytes (127), which acts asaligand for inhibitory KIR, another
potential NK inhibitory strategy at play in the liver.

Hepatic NK cell numbers are decreased in chronic HCV and further decreased in cirrhosis
(79, 82, 83). NK cells comprise 38% of lymphocytesin HCV-infected liver compared to
55% in non-HCV liver and have similar activation status, as evidenced by the expression of
CD69. In chronic HCV infection, NK cell populations do not correlate with histological
parameters (128) and decrease with histological progression (82, 129), suggesting they may
not be directly involved in liver damage, making them an attractive popul ation for immune
intervention. NK cells are localized to necrotic areas in liver biopsy specimensin chronic
HCV, but not chronic HBV (79). Increased proportions of CD56P19M NK cells, increased
expression of NKG2A in the liver of chronic HCV-infected patients (compared to chronic
HBYV infection) has been demonstrated which inversely correlated with viral load (79).
Successful antiviral therapy restores the NK cell levelsin the liver. Analysis of paired liver
biopsy samples has shown that SVR is associated with an increase in the total number of
intrahepatic NK cells following treatment with IFN-a. aone or combined with ribavirin
(115, 116).Activated NKskill hepatocytes by releasing TRAIL in mice (130), and an HBV
study suggests that thisis also true for humans (131). IFN-a induces TRAIL expression on
NK cells and increased expression of TRAIL on NK cells has been associated with control
of HCV infection (113). Therefore TRAIL expression by hepatic NK cells may be important
for HCV clearance (132). A recent study from Jacob Nattermann’s group (75) found an
intrahepatic accumulation of highly cytolytic NK cells expressing high levels of NKp46. Of
note, the frequency of intrahepatic NKp46Hi9h NK cells was inversely correlated with HCV-
RNA levels. This observation suggests that hepatic NK cell populations are actively
involved in control of HCV.

Natural killer cells and fibrosis

In the face of heightened immunity, control of immune responses to limit collateral damage
is asimportant as sustaining anti-viral defense, and NK cells may be central to maintaining
this balance (27, 133). Chronic liver injury leadsto liver fibrosis that is associated with
accumulation of collagen in the liver (134). Immune cells play important and opposing roles
in the regulation liver fibrosis, CD8" T cells promote (135) and NK cells inhibit fibrosis. In
addition to their role in protection against pathogens and tumor transformation, intrahepatic
NK cells have been demonstrated to have anti-fibrotic functions viainhibition of hepatic
stellate cells (HSCs). They are capable of directly inducing HSC apoptosisin a TRAIL and
NK G2D-dependent manner (136). Early activated stellate cells (HSCs) express increased
levels of the NKG2D ligand MICA (136) (137) and upregulate TRAIL receptors upon
activation (138). IFN-a treatment enhances while other factors (e.g. acohol, TGF-B)
attenuate the cytotoxicity of NK cells against HSCs, thereby differentially regulating liver
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fibrogenesis (118). Production of IFN-y by NK cells directly inhibits HSC activation (139,
140). Inhibitory KIR knockdown stimulates NK cells and promotes their anti-fibrogenic
activity in mice and in human cell co-cultures. These findings have implications for possible
immune therapeutic strategies in patients with advanced liver disease (141). These studies
have revealed that human NK cells can kill primary human HSCs. The ability of NK cells
from HCV patientsto kill HSCsis enhanced and correlates inversely with the stages of liver
fibrosis (78). As mentioned above, an intrahepatic accumulation of NK p46M9h was
demonstrated in chronic HCV. The frequency of this population not only inversely
correlated with HCV-RNA levels but also with fibrosis stage (75). This finding suggests that
the same hepatic NK cell populations that are actively involved in control of HCV may also
beinvolved in control of HCV-associated liver damage.

Regulatory natural killer cells

Theimmune-regulatory role of NK cells appearsto play acritical role in shaping subsequent
T-cell responses. IFN-y, produced by NK cells, can promote the development of appropriate
inflammatory T-helper 1 (Thl) responses (142). NK cells through interaction with DCs may
also be required for theinitiation of T-cell responses (143). DCs can be broadly classified
into two major subsets myeloid and plasmacytoid (mDC and pDCs, respectively), which
play distinct roles in the immune system. As major antigen-presenting cells (APCs), mDCs
are critical for the priming of virus-specific CD4* and CD8* T cells (144). Upon activation,
they produce IL-12 and IL-15, which can activate NK cells (145, 146) in addition to
promoting the differentiation of pathogen-specific CD4* Thi cells and cytotoxic CD8* T
cells (CTLS) (147). Upon pathogen sensing, pDCs produce type | and type I11 IFNs (148),
which aso play arolein the activation and expansion of NK cells (149). Crosstalk between
NKsand DCsis bidirectional: DCs activate NK cells (150, 151), and NK cells induce the
maturation of DCs (152). Maturation of immature DCs (iDCs) into efficient APCs capable
of initiating effective T-cell responsesis dependent on NK cells through cell surface contact
and cytokine secretion (153, 154). Moreover, DCs might also activate NK cellsindirectly by
promoting the expansion of antigen-specific T cells, which secrete IL-2, which in turn
activates NK cells. IL-2-activated NK cells eliminate iDCs and thus may aso play arolein
downregulation of immune responses, as IL-2 is primarily produced by activated
inflammatory T cells (155, 156). Bidirectional crosstalk between DCsand NK cellsis
important for the priming, activation, and expansion of T-cell responses (157), and
disruption of this pathway is emerging as an important immune evasion mechanism
employed by several viruses and direct infection of DCs appears to be an important factor
(158-161). It isunlikely that DCs support replication of HCV, athough HCV RNA has been
detected in both mDCs and pDCs (162, 163) while other studies have not been able to detect
viral replication or protein synthesisin DCs after co-culture with infectious recombinant
HCV (164). A recent study suggests that exosomal transfer of HCV RNA occurs between
hepatocytes and DCs that would explain the presence of HCV RNA in cells that do not
support replication (165). DCs have been shown to be defective in chronic HCV (166-170),
although the mechanism has not been fully elucidated. Circumstantial evidence, such as
downregulation of MICA/B and defective IL-15 production (125, 171) by DCs, suggests
that dysregulation of NK:DC crosstalk may be involved further studies are required to
provide direct evidence for dysregulation of this pathway in HCV infection. The numerous
mechanisms evolved by viruses to inhibit NK cell activity may not be directed at the innate
immune response but may represent a strategy to prevent effective induction of adaptive
immune responses (172). Defective T-cell or DC activity observed in viral infection may
represent a bystander effect of viral NK cell inhibition (28).
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Memory NK cells

Evidence of NK cell memory populations involved in antiviral immunity is accumulating in
murine studies (173-177). Adoptive transfer experiments demonstrate that hepatic NK cells
are sufficient and required for anti-viral recall responses to vesicular stomatitis virus (VSV),
influenza A, and HIV (174). NK cell memory of haptens and at least some viruses are
dependent on CXCR6, a chemokine receptor on hepatic NK cells that was found to be
required for the persistence of memory NK cells but not for antigen recognition. Thus,
hepatic NK cells can develop adaptive immunity to structurally diverse antigens, an activity
that may depend on NK cell-expressed CXCR6 (178). Murine cytomegalovirus (MCMV)-
experienced NK cells confer 10-fold the level of protection from infection when transferred
into newborn MCMV -susceptible mice. However, MCMV -specific NK cells are not
confined to the liver (24). Identification of these long-lived memory NK cell populationsin
humansis more challenging and datais sparse (179). Human NK cells have functional
memory-like properties after cytokine activation, which provides a novel rationale for
integrating preactivation with combinations of cytokinesinto NK cell immunotherapy
strategies (26). It has been suggested that in humans, that NKG2CP% NK cells represent a
CMV -specific memory NK cell population. NKG2CP NK cells transplanted from
seropositive donors exhibit heightened function in response to a secondary CMV event
compared with NKG2CP®S NK cells from seronegative donors (180).

NK cell vaccinations might provide new opportunities to immunize against pathogens that
have proven difficult to control using conventional B- and T-cell vaccination strategies
(181). Given the similarities with the NK cell response to virusin mice, it is not
unreasonabl e to consider that antigen-specific stimulation of human NK cell receptors may
lead to NK cell immunological memory. It has recently become appreciated that NK cells
directly recognize pathogen-associated molecules (182-184). Direct pathogen recognition
by NK cells adds a new dimension to a cell that is regulated not only by integration of a
complex balance of inhibitory and activating receptor signals (15, 34, 185) but also by a
wide array of cytokines (60-64). It is possible that NKRs may recognize HCV-specific
components, as has been demonstrated for other flaviviruses, dengue virus (DV) and West
Nile virus (WNV) (186). Human NK cell memory might pave the way for new vaccine
approaches, not only against chronic virus infections but also cancer, through controlled
exposure to NK cell-dependent antigens (27).

The observations that NK memory responses develop and persist at least in mice (23-25)
and that inflammatory cytokines (25, 187) direct recognition of viral antigens and activating
receptors are central to the generation and maintenance of NK memory suggests that NK
cell vaccination may provide new opportunities to immunize against pathogens where
conventiona approaches have proved to be ineffective (181).

Concluding remarks

NK cells play important rolesin every stage of HCV infection from protection against
infection in IDUs to prediction of antiviral success or failure with |FN-based therapies (Fig.
5). They provide innate protection from HCV acquisition. Lack of constitutive inhibition
and activation viaNCRs are likely important in this process. NKs are activated early in
HCYV infection, and activation and phenotypic aterations have clearly been demonstrated. A
direct role for NK cellsin resolution of acute HCV infection has yet to be demonstrated.
Activation of NK cellsearly in HCV infection likely favors induction and priming of
downstream T-cell responses and HCV clearance. In the setting of chronic HCV, in addition
to adecrease in overal NK cell levels and altered subset distribution, NKR expression is
altered, reflecting activation in response to chronic virus-induced stimulation. The
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contribution of individual NKRs to viral clearance or persistence remains to be clarified.
Data with respect to the functionality of NK cellsin the setting of chronic HCV infection
favor a polarization model with overactive cytotoxic and inadequate | FN-y responses.
Treatment-induced clearance is associated with activation of NK cells, and these activated
NK cells may perform dual roles. On one hand, they are antiviral, but they may aso be
antifibrotic. We still have much to learn, in particular how liver-derived NK cells influence
the outcome of HCV infection. The demonstration of NK cell antiviral memory and the
possibility that NKRs may recognize HCV -specific components open up challenging but
exciting avenues of investigation for the future.
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Fig. 1. Hepatitis C virus (HCV)

HCV isan enveloped, positive-stranded RNA virus. The 9.6 kilo base (kb) genomeis
trandlated into a single polyprotein precursor of approximately 3000 amino acids. Cleavage
of the polyprotein by viral and host-cell proteases yields structural viral proteins (core
protein and envelope proteins E1 and E2) and nonstructural viral proteins (NS2 through
NS5B), with anumber of putative activities and functions.
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Fig. 2. Direct and indirect anti-viral effector mechanisms of natural killer (NK) cells

In the setting of viral infection, infected cells produce Type /111 interferon (IFN). NK cells
respond through direct mechanisms; degranulation and receptor mediated lysis of infected

cellsas well as production of anti-viral cytokines such as IFN-y (A). NK cellsaso act

indirectly to prime the adaptive immune response promoting dendritic cell (DC) maturation
and the differentiation of immature helper T cells (ThO) towards an inflammatory phenotype

(Thl). Production of chemokines by NK cells attracts other immune cells to sites of

inflammation (B). TRAIL, TNF-related apoptosis-inducing ligand; Fas-L, Fasligand; TNF-
a, tumor necrosis factor a; IFN-y-R, interferon-y receptor; 1L-8/12, interleukin-8/12; MIP,
macrophage inflammatory protein; MHC, major histocompatibility complex.
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Fig. 3. Activation of natural killer (NK) cells

Under normal conditions, NK cells are constitutively inhibited mainly through engagement
of major histocompatibility complex (MHC) class | molecules on normal cells by NK cell-
expressed killer immunoglobulin-like receptor (KIR). Under conditions of stress such as
viral infection, loss of constitutive inhibition through downregulation of MHC class|,
upregulation of activating receptors and/or their ligands, cell adhesion, and response to
inflammatory cytokinesincluding interferon-a (IFN-a) and interleukin-2 (IL-2), IL-12, and
IL-15 resultsin activation of NK cells. MICA/B, MHC class | polypeptide-related sequence
A/B; NCR, natural cytotoxicity receptor; TNF-a, tumor necrosis factor a; IFN-a-R, IFN-a
receptor.
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Fig. 4. Natural killer (NK) cell subset distribution isaltered in HCV infection

The expression patterns of CD56 and CD16 can identify three distinct NK cell subsets
CD56P19MCD 16" (R1), CD569MCD16P%S (R2), and CD56™YCD16P%S (R3).
Representative flow cytometric dot plots of CD3"® lymphocytes (low forward and side
scatter) from one normal control subject and one chronic HCV patient are shown (A).
CD56P19M NK cells do not display significant natural cytotoxicity and are focused on
production of cytokines such as |FN-vy. This subset is considered less mature and can give
rise to the CD569™ mature effector cells which are strongly cytolytic and characterized by
high perforin-containing granule content. Although CD56%™ NK s produce less cytokine
than their CD56P"9Mt counterparts, because they represent the predominant NK subset in
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circulation, they are the main contributor to overall cytokine levels. The CD56"®CD16P0S
NK subset is highly dysfunctional, has impaired cytotoxic function and poor cytokine
production, and appears to be terminally differentiated (B). The bar chart shows the NK cell
subset distribution which is atered in HCV infection. Median values and interquartile range
are shown for normal control subjects (n = 5) compared to chronic HCV patients (n = 5).
CD569™ mature effector NK cells account for the majority of circulating NK cellsin both
groups. Decreased CD569™ and increased CD56%19M s a consistent finding in several
chronic HCV cohorts (79, 87). Increased circulating levels of dysfunctional
CD56"CD16P%S are al so evident. *p<0.05 calculated using atwo sided Mann Whitney test.
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Fig. 5. Natural killer (NK) cells play important rolesin every stage of HCV infection

NK cells play important rolesin every stage of HCV infection from protection against
infection in IDUs to prediction of antiviral success or failure with |FN-based therapies.
Several NKRs and functional properties of NK cells have been implicated. Their association
with natural history, stage of infection and treatment outcome are shown. KIR, killer
immunoglobulin-like receptor; HLA, human leukocyte antigen; |FN-+y, interferon-y;
TRAIL, TNF-related apoptosis-inducing ligand; NCRs, natural cytotoxicity receptors; SVR,
sustained virological response.
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