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A laminar stationary flow of viscous fluid in a cylindrical tube enhances the rate of diffusion of
Brownian particles along the tube axis. This so-called Aris-Taylor dispersion is due to the fact that
cumulative times, spent by a diffusing particle in layers of the fluid moving with different velocities,
are random variables which depend on the realization of the particle stochastic trajectory in the
radial direction. Conceptually similar increase of the diffusivity occurs when the particle randomly
jumps between two states with different drift velocities. Here we develop a theory that contains both
phenomena as special limiting cases. It is assumed (i) that the particle in the flow can reversibly bind
to the tube wall, where it moves with a given drift velocity and diffusivity, and (ii) that the radial and
longitudinal diffusivities of the particle in the flow may be different. We derive analytical expressions
for the effective drift velocity and diffusivity of the particle, which show how these quantities depend
on the geometric and kinetic parameters of the model. [http://dx.doi.org/10.1063/1.4818733]

I. INTRODUCTION

The increase of the diffusivity of Brownian particles due
to a radial gradient of advection velocity (often referred to
as the Aris-Taylor or shear dispersion1–3) is of a significant
importance in a number of fields of science and technology
covering many practical applications. Examples include
chemical engineering (microfluidics,4 chromatography,5, 6

heterogeneous catalysis2), biophysics (vascular flow,7 airflow
in lungs,8 targeted drug delivery9), and transport processes
in geophysical systems (capillary flows in fractures,10 col-
loid filtration,11 mixing in rivers12). Starting with the seminal
works of Taylor,13, 14 who calculated the diffusivity of a pas-
sive tracer in the Poiseuille flow (laminar flow in a cylindrical
tube), followed by a more rigorous derivation of Aris,15 this
problem has been in the focus of both theoretical and experi-
mental studies for the last six decades. There is a vast amount
of literature devoted to this subject (see Refs. 1–3, 16, and 17
and references therein). Although the Aris-Taylor dispersion
is nowadays discussed in textbooks,1, 2, 16, 17 it is still the area
of active research.18–23

The celebrated result obtained by Taylor13, 14 can be sum-
marized as follows. Consider a laminar stationary flow of vis-
cous fluid in a cylindrical tube of radius a (Fig. 1). The veloc-
ity profile of the Poiseuille flow is given by the well-known
expression

vf (r) = 2vf

(
1 − r2

a2

)
, (1.1)

where vf is the velocity averaged over the tube cross-section,
vf = (2/a2)

∫ a

0 vf (r)rdr . Taylor showed that the effective
diffusivity of a point Brownian particle along the tube axis
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is given by

Deff = Df + v2
f a

2

48Df
, (1.2)

where Df is the particle diffusivity in the absence of the
flow.

Since the pioneering work of Taylor this problem has
been extended to cover more complicated settings including
various geometrical complexities,24, 25 oscillating flows,7, 26

transient phenomena,19 effects of chemical reactions,27–29

and many others (see, for instance, books1, 2 and recent
papers19, 21). An important generalization of the problem is
to account for the “effect of wall” (absorption and desorption,
as well as diffusion of the particle on the wall). The “wall
effect” is especially important for the design of microflu-
idic devices (so-called “Lab-on-a-Chip”17, 30). It has been
studied theoretically in a number of recent publications (see
Refs. 20, 22, 27, 31, and 32 and references therein).

When a Brownian particle is advected by a laminar flow,
its reversible binding to the tube wall can be described by the
kinetic scheme

flow
κ

�
kw

wall, (1.3)

where κ and kw are the intrinsic rate constants (see Fig. 1). Let
P

eq
w and P

eq

f be the equilibrium probabilities of funding the
particle on the wall and in the flow, P

eq
w + P

eq

f = 1. As fol-
lows from the principle of detailed balance the ratio of these
probabilities is

P
eq
w

P
eq

f

= 2κ

akw
= K, (1.4)
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FIG. 1. The Aris-Taylor dispersion of a Brownian particle with reversible
binding to the tube walls: a is the tube radius, vf (r) is the velocity profile of
the Poiseuille flow, vw is the particle velocity on the wall, Df and Dw are the
particle diffusivities in the fluid and on the wall, κ and kw are the intrinsic
rate constants (see Eq. (1.3)).

where K is the equilibrium constant. This allows us to write
P

eq
w , P

eq

f in terms of the equilibrium constant

P
eq

f = 1

1 + K
, P eq

w = K

1 + K
. (1.5)

If the particle on the wall diffuses with the diffusivity Dw and
has no drift velocity, the effective drift velocity and diffusivity
are given by1, 5, 20, 27

veff = vf P
eq

f , (1.6)

Deff = Df P
eq

f + DwP eq
w + �D, (1.7)

where

�D = (
P

eq

f

)3
v2
f

[
K

kw

+ a2

48Df
(1 + 6 K + 11K2)

]
. (1.8)

An interesting result was obtained by Dorfman and
Brenner,33 who pointed out that the increase of the parti-
cle diffusivity, which is conceptually identical to the Aris-
Taylor dispersion, occurs when the particle randomly jumps
between two states with different drift velocities. To formu-
late the Dorfman–Brenner results using the kinetic scheme in
Eq. (1.3), we assume that the particle diffusion in the flow is
anisotropic, namely, its radial diffusivity is infinite, while its
diffusivity along the tube axis is finite and equal to Df. Then,
when the particle enters the flow from the wall, it instantly
equilibrates over the tube cross section. As a result, (i) the par-
ticle drift velocity in the flow does not fluctuate and is equal to
vf , and (ii) its survival probability in the flow decays as a sin-
gle exponential with the rate constant kf = 2κ/a. In addition,
we assume that the particle on the wall has drift velocity vw

and diffusivity Dw. In this case the Dorfman–Brenner theory
leads to (see also Ref. 34)

veff = vf P
eq

f + vwP eq
w , (1.9)

and the effective diffusivity given by Eq. (1.7), in which �D
is

�D = (
P

eq

f

)3
(vf − vw )2K/kw . (1.10)

In the present paper, we extend the results in Eqs. (1.6)–
(1.10). More specifically, we developed a general theory as-
suming (i) that the radial diffusivity Dr of the particle in the
flow can be arbitrary, and (ii) that the particle on the wall has

a finite drift velocity vw . We will see that the effective drift
velocity is given by Eq. (1.9), and the effective diffusivity has
the form of Eq. (1.7) with �D given by

�D = (
P

eq

f

)3
{

(vf − vw )2 K

kw

+ a2

48Dr

[
(1 + 6K + 11K2)v2

f − 4K(K + 1)vf vw

+ 6K2v2
w

]}
. (1.11)

This is a modification of the expression for �D in
Eq. (1.8) due to a finite particle drift velocity on the wall and
its anisotropic diffusivity in the flow. Note that the product
(P eq

f )3 and the first term in the curly brackets is identical to the
Dorfman–Brenner formula for �D, Eq. (1.10). At vw = vf

Eq. (1.11) simplifies and takes the form

�D = (
P

eq

f

)3
v2
f

[
a2

48Dr

(1 + 2K + 13K2)

]
. (1.12)

The expressions in Eqs. (1.7), (1.9), and (1.11) are the main
results of the present paper. When vw = 0 and Dx = Dr = Df

they reduce to Eqs. (1.6)–(1.8). In the other limiting case of
Dr → ∞, we recover the Dorfman–Brenner formulas (1.7),
(1.9), and (1.10).

A number of methods have been developed for analytical
treatment of the Aris-Taylor dispersion including the method
of statistical moments (originally proposed by Aris15), the
method of matched asymptotic expansions,27 the center man-
ifold approach3, 35 and some others (see Refs. 19 and 32 and
references therein). In the present study, we apply the ap-
proach proposed in Ref. 18, which is based on consideration
of the axial displacement of a single particle that moves in the
plane perpendicular to the tube axis along a given trajectory
{r}t . The approach exploits the fact that the radial motion of
the particle is independent of its axial coordinate. Averaging
the displacement and its square over realizations of {r}t , we
find the first two moments of the particle displacement along
the tube axis, which in turn are used to calculate veff and Deff.

The outline of the paper is as follows. The expressions
for the effectively velocity, Eq. (1.9), and the effective diffu-
sivity, Eqs. (1.7) and (1.11), are derived in Secs. II and III,
respectively. Some concluding remarks are made in Sec. IV.

II. EFFECTIVE DRIFT VELOCITY

Let r(t) be the particle position in the plane normal to
the tube axis at time t; r = a corresponds to the particle on
the tube wall, while r < a corresponds to the particle in the
bulk flow. The particle velocity along the tube axis at time t is
given by

ẋ(t |r(t)) = v(r(t)) + f (t |r(t)), (2.1)

where the velocity v(r) is

v(r) =
{

vf (r), r < a,

vw, r = a,
(2.2)
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and f(t|r) is the Gaussian δ-correlated random force

f (t |r) =
{

ff (t), r < a,

fw(t), r = a,
(2.3)

with zero mean 〈ff (t)〉 = 〈fw(t)〉 = 0. The correlation func-
tions of the two components of the random force are
〈ff (t)fw(t ′)〉 = 0, and

1

Df

〈ff (t)ff (t ′)〉 = 1

Dw

〈fw(t)fw(t ′)〉 = 2δ(t − t ′), (2.4)

where the angular brackets 〈. . . 〉 denote averaging over real-
izations of the random force.

Let {r}t be a particle trajectory observed for time t: {r}t
= {r(t ′), 0 ≤ t ′ ≤ t}. We can formally integrate Eq. (2.1).
Taking x(0) = 0, we find that

x(t |{r}t ) =
∫ t

0
v(r(t ′)|{r}t )dt ′ +

∫ t

0
f (t, r(t ′)|{r}t )dt ′.

(2.5)
Averaging this over realizations of the random force and tak-
ing that the particle starts from r0 = r(0), we obtain

〈x(t)〉r0 =
∫ t

0
〈v(r(t ′)|{r}t )〉r0dt ′, (2.6)

where the subscript r0 indicates the particle initial position in
the plane perpendicular to the tube axis. Using the identity∫

δ(r − r(t))dr = 1, (2.7)

Eq. (2.6) can be written as

〈x(t)〉r0 =
∫

v(r)

(∫ t

0
〈δ(r − r(t ′)〉r0dt ′

)
dr, (2.8)

where v(r) is given by Eq. (2.2).
The averaged δ-function is the particle propagator (the

Green function) in the plane perpendicular to the tube axis

〈δ(r − r(t))〉r0 = G(r, t |r0). (2.9)

Therefore,

〈x(t)〉r0 =
∫

v(r)

(∫ t

0
G(r, t ′|r0)dt ′

)
dr. (2.10)

This formula has a transparent interpretation.18 Since∫ t

0 G(r, t ′|r0)dt ′dr is the mean cumulative time spent by the
Brownian particle observed for the time t in the small vicin-
ity of point r, the integrand in Eq. (2.10) is the particle dis-
placement during this cumulative time. Thus, Eq. (2.10) gives
〈x(t)〉r0 as the sum of such displacements.

Next, we average 〈x(t)〉r0 , Eq. (2.10), over the equilib-
rium initial distribution peq(r0), where

peq(r) = 1

πa2
P

eq

f H (a − r) + 1

2πa
P eq

w δ(r − a) (2.11)

with H(z) denoting the Heaviside step function. Hereafter, we
assume that H(0) = 0 and

∫ a

0 δ(r − a)dr = 1. The averaging
leads to

〈x(t)〉eq =
∫

〈x(t)〉r0peq(r0)dr0

=
∫ t

0
dt ′

∫
v(r)G(r, t ′|r0)peq(r0)drdr0. (2.12)

Finally, invoking the relation

〈G(r, t |r0)〉eq =
∫

G(r, t |r0)peq(r0)dr0 = peq(r), (2.13)

we arrive at

〈x(t)〉eq = veff t, (2.14)

where the effective drift velocity of the particle is given by

veff =
∫

v(r)peq(r)dr = vf P
eq

f + vwP eq
w . (2.15)

This is the main result of this section.

III. EFFECTIVE DIFFUSIVITY

In this section, we derive the expression for the effective
diffusivity Deff given in Eqs. (1.7) and (1.11). We begin with
the definition of Deff,

Deff = 1

2
lim
t→∞

1

t

[〈x2(t)〉eq − 〈x(t)〉2
eq

]
, (3.1)

where 〈x2(t)〉eq is the second moment of the particle displace-
ment x(t |{r}t ), Eq. (2.5), averaged over the realizations of the
random trajectory {r}t and the equilibrium radial distribution
of the starting point, Eq. (2.11),

〈x2(t)〉eq =
∫

〈x2(t)〉r0peq(r0)dr0. (3.2)

The expression for 〈x(t)〉2
eq immediately follows from

Eq. (2.14):

〈x(t)〉2
eq = v2

eff t2. (3.3)

Averaging the square of the displacement in Eq. (2.5)
over the trajectories that start from r0, we can present 〈x2(t)〉r0

as a sum of two terms

〈x2(t)〉r0 = 〈[x(t |{r}t )]2〉r0 = T1(t |r0) + T2(t |r0), (3.4)

where

T1(t |r0) =
∫ t

0

∫ t

0
〈v(r(t1)|{r}t )v(r(t2)|{r}t )〉r0dt1dt2 (3.5)

and

T2(t |r0) =
∫ t

0

∫ t

0
〈f (t1, r(t1)|{r}t )f (t2, r(t2)|{r}t )〉r0dt1dt2.

(3.6)

Then we can write 〈x2(t)〉eq as

〈x2(t)〉eq = T
eq

1 (t) + T
eq

2 (t), (3.7)

where

T
eq

1,2(t) = 〈T1,2(t |r0)〉eq =
∫

T1,2(t |r0)peq(r0)dr0. (3.8)

We begin with T2(t |r0), Eq. (3.6). Using Eqs. (2.3) and
(2.4), one can check that the correlation function of the ran-
dom force is

〈f (t1, r(t1)|{r}t )f (t2, r(t2)|{r}t )〉r0

= 2[Df Pf (t |r0) + DwPw(t |r0)]δ(t1 − t2), (3.9)
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where Pf (t |r0) and Pw(t |r0) are the probabilities of finding
the particle in the flow and on the wall at time t, conditional
on that it starts from r0 at t = 0. Substituting the correlation
function, Eq. (3.9), into Eq. (3.6) we obtain

T2(t |r0) = 2
∫ t

0
[Df Pf (t1|r0) + DwPw(t1|r0)]dt1.

Averaging this over the particle initial position and using the
relationship

〈Pf,w(t |r0)〉eq =
∫

Pf,w(t |r0)peq(r0)dr0 = P
eq

f,w, (3.10)

we arrive at a simple formula for T
eq

2 (t),

T
eq

2 (t) = 2
(
Df P

eq

f + DwP eq
w

)
t, (3.11)

where P
eq

f,w are given by Eq. (1.5).
Next we proceed to the evaluation of T1(t |r0), Eq. (3.5).

Using the relationships in Eqs. (2.7) and (2.9), T1(t |r0) can be
written as

T1(t |r0) = 2
∫

v(r1)dr1

∫
v(r2)dr2

∫ t

0
dt2

×
∫ t2

0
G(r2, t2 − t1|r1)G(r1, t1|r0)dt1. (3.12)

Averaging this over r0 and using Eq. (2.13), we obtain

T
eq

1 (t) = 2
∫

v(r1)dr1

∫
v(r2)dr2

∫ t

0
dt ′′

×
∫ t ′′

0
G(r2, t

′|r1)peq(r1)dt ′. (3.13)

As t → ∞ the propagator G(r, t |r0) tends to peq(r),
Eq. (2.11). Denoting the difference between the propagator
and peq(r) by u(r, t |r0), we can write

G(r, t |r0) = peq(r) + u(r, t |r0), (3.14)

where u(r, t |r0) → 0 as t → ∞. In addition, u(r, t |r0)
satisfies

〈u(r, t |r0)〉eq =
∫

u(r, t |r0)peq(r0)dr0 =
∫

u(r, t |r0)dr = 0.

(3.15)

Substituting the propagator in Eq. (3.14) into Eq. (3.13), we
can find the large-t asymptotic behavior of T

eq

1 (t),

T
eq

1 (t) = v2
eff t2 + 2t

∫
v(r2)dr2

∫
v(r1)θ (r2, r1)peq(r1)dr1,

(3.16)

where

θ (r2, r1) =
∫ ∞

0
u(r2, t |r1)dt. (3.17)

This integral is the Laplace transform of u(r2, t |r1) at the zero
value of the Laplace parameter

θ (r2, r1) = û(r2, s|r1) |s=0, (3.18)

where F̂ (s) denotes the Laplace transform of function F(t),
F̂ (s) = ∫ ∞

0 F (t) exp(−st)dt .

Eventually using the relationships in Eqs. (3.7), (3.11),
and (3.16), we find that the definition in Eq. (3.1) leads to the
expression for Deff in Eq. (1.7), in which �D is

�D =
∫

v(r2)dr2

∫
v(r1)θ (r2, r1)peq(r1)dr1. (3.19)

Thus, to finish the calculation of the effective diffusivity, we
have to evaluate the double integral in Eq. (3.19).

Since the particle can be in two states (in the flow and
on the wall), the angle-averaged particle propagator has two
components, gf (r, t |σ ) and Pw(t |σ ), which are the probability
density of finding the particle in the flow and the probability
of finding the particle on the wall at time t, conditional on that
it starts from state σ at t = 0. Initially, the particle can also
be either in the flow or on the wall. Therefore, σ = r0, if the
particle starts in the flow at distance r0 from the tube axis,
and σ = w, if the particle is on the wall at t = 0. The four
functions, gf (r, t |σ ) and Pw(t |σ ), satisfy

∂gf

∂t
= Dr

r

∂

∂r

(
r
∂gf

∂r

)
,

∂gf

∂r

∣∣∣∣
r=0

= 0, (3.20)

dPw

dt
= 2πaκgf |r=a − kwPw = −2πaDr

∂gf

∂r

∣∣∣∣
r=a

, (3.21)

with the initial conditions

Pw(0|w) = 1, gf (r, 0|w) = 0 (3.22)

and

Pw(0|r0) = 0, gf (r, 0|r0) = 1

2πr
δ(r − r0), (3.23)

where gf ≡ gf (r, t |σ ) and Pw ≡ Pw(t |σ ).
It is convenient to introduce notations for the deviations

of the two components of the propagator from their large-t
asymptotic values (cf. Eq. (3.14)),

Uw(t |σ ) = Pw(t |σ ) − P eq
w , (3.24)

uf (r, t |σ ) = gf (r, t |σ ) − P
eq

f /πa2. (3.25)

Denoting the Laplace transforms of these functions at s = 0 by
Ûw(σ ) ≡ Ûw(s|σ )|s=0 and ûf (r|σ ) ≡ ûf (r, s|σ )|s=0, we can
write Eq. (3.19) as

�D = (�ff + �wf )P eq

f /(πa2) + (�f w + �ww)vwP eq
w ,

(3.26)
where

�ff = (2π )2
∫ a

0

∫ a

0
ûf (r2|r1)vf (r2)vf (r1)r2r1dr2dr1,

(3.27)

�wf = 2πvw

∫ a

0
Ûw(r)vf (r)rdr, (3.28)

�f w = 2π

∫ a

0
ûf (r|w)vf (r)rdr, (3.29)

�ww = vw Ûw(w). (3.30)
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These four constants correspond to particular sets of realiza-
tions of the particle trajectory that is reflected in their in-
dices. Terms �ff and �wf are due to realizations that start
in the flow and end in the flow (�ff) or on the wall (�wf ) at
time t. Analogously, terms �f w and �ww take into account
those realizations in which the particle is initially on the wall
and is still on the wall (�ww) or in the flow (�f w) at the
time t.

Explicit expressions for the four constants, in terms of
the geometrical and kinetic parameters of the system are (see
derivations in the Appendixes):

�ff = πa2v2
f

kw

(
P

eq

f

)2
[
K + kwa2

48Dr

(1 + 6K + 11K2)

]
,

(3.31)

�wf = −πa2vwvf

kw

(
P

eq

f

)2
[

κa

12Dr

+
(

1 + κa

3Dr

)
K

]
,

(3.32)

�f w = −vf

kw

(
P

eq

f

)2
(

1 + κa

3Dr

+ kwa2

24Dr

)
, (3.33)

�ww = vw

kw

(
P

eq

f

)2
(

1 + κa

4Dr

)
. (3.34)

Substituting these expressions into Eq. (3.26) we arrive at �D
in Eq. (1.11). Thus, we have derived the formula for the effec-
tive diffusivity given by Eqs. (1.7) and (1.11), starting from
the definition in Eq. (3.1).

IV. CONCLUDING REMARKS

Main results of the present paper are the expressions for
the effective velocity, Eq. (1.9), and diffusivity, Eqs. (1.7) and
(1.11), derived in Secs. II and III, respectively. The expres-
sions show how these quantities depend on the parameters of
the model, vf , vw, Df ,Dr,Dw, κ, kw, and a. In this section,
we briefly discuss the dependence of the effective diffusiv-
ity on the velocities vf and vw, as well its dependence on the
equilibrium constant K = 2κ/(akw), Eq. (1.4). It is worth men-
tioning that the non-monotonic dependence of Deff on K has
been reported earlier.1, 5, 20, 27, 33, 34

The velocity dependence of the effective diffusivity is
completely determined by the term �D, Eq. (1.11), which is a
quadratic form in vf and vw. One can see that �D (and hence
Deff) being considered as function of vw at a given value of
vf has a minimum at some vw = v∗

w, which is proportional
to vf , i.e., v∗

w = Avf , where the pre-factor A is a function of
Dr, κ, kw and a. As Dr → ∞, Eq. (1.11) reduces to Eq. (1.10),
so that v∗

w tends to vf , and A approaches unity.
Next we consider the Deff dependence on K at fixed val-

ues of all other parameters, assuming that diffusion in the flow
is isotropic, i.e., Dr = Df. As K increases from zero to in-
finity, Deff changes from Deff(0) given by the Taylor formula,
Eq. (1.2), to Deff (∞) = Dw. It can be seen that the large-K

asymptotic behavior of Deff is given by

Deff (K) � Dw + B

K
, K → ∞, (4.1)

where B = Df + [a2/(48Df )](11v2
f − 4vf vw + 6v2

w ). Since
B > 0, Deff(K) always approaches its asymptotic value Dw

from above. As K tends to zero, Deff takes the form

Deff (K) � Df + a2v2
f

48Df

+ QK, K → 0, (4.2)

where

Q = Dw − Df + 1

kw
(vf − vw )2 + a2

48Df

vf (3vf − 4vw ).

(4.3)
One can see that Q can be both positive and negative. There-
fore, Deff(K) may both increase and decrease with K at
small K.

Now we employ the asymptotic expressions, Eqs. (4.1)
and (4.2), to discuss the K-dependence of the effective diffu-
sivity over the entire range of K. When Q > 0, Deff increases
with K at small K, reaches a maximum and then decreases ap-
proaching the limiting value Deff (∞) = Dw from above. If
Q < 0 and Deff initially decreases, the behavior of Deff can be
qualitative different depending on whether Deff(0) is smaller
or lager than Deff(∞). If Deff(0) < Deff(∞), Deff(K) first de-
creases, reaches a minimum, then increases and reaches a
maximum, and then it decreases again finally approaching its
limiting value Dw from above. When the opposite inequality
holds, i.e., Deff(0) > Deff(∞), in addition to the “wavy” profile
of Deff(K) discussed above (decrease-increase-decrease), the
effective diffusivity can be a monotonically decreasing func-
tion of K.

To summarize, the effective diffusivity is a complex func-
tion of the model parameters. Therefore, its profiles in the
multidimensional parameter space may have very different
shapes, as can be seen from the above discussion.
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APPENDIX A: EVALUATION OF CONSTANTS
�fw ,�ww FROM EQS. (3.29) AND (3.30)

Consider a particle that is bound to the wall at t = 0. Ac-
cording to Eqs. (3.20)–(3.22), functions Uw(t |w), uf (r, t |w),
Eqs. (3.24) and (3.25), satisfy

∂uf

∂t
= Dr

r

∂

∂r

(
r
∂uf

∂r

)
,

∂uf

∂r

∣∣∣∣
r=0

= 0, (A1)

dUw

dt
= 2πaκuf |r=a − kwUw = −2πaDr

∂uf

∂r

∣∣∣∣
r=a

, (A2)
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with the initial conditions

Uw(0|w) = P
eq

f , uf (r, 0|w) = −P
eq

f /(πa2), (A3)

and an additional relationship

Uw(t |w) + 2π

∫ a

0
uf (r, t |w)rdr = 0, (A4)

which follows from Eq. (3.15).
Laplace transforming Eqs. (A1)–(A4), we arrive at

sûf + 1

πa2
P

eq

f = Dr

r

d

dr

(
r
dûf

dr

)
,

dûf

dr

∣∣∣∣
r=0

= 0, (A5)

sÛw − P
eq

f = 2πaκûf |r=a − kwÛw = −2πaDr

∂ûf

∂r

∣∣∣∣
r=a

,

(A6)

Ûw(s|w) + 2π

∫ a

0
ûf (r, s|w)rdr = 0, (A7)

where Ûw(s|w) and ûf (r, s|w) are the Laplace transforms of
Uw(t |w) and uf (r, t |w), respectively.

Solving these equations at s = 0, we find that

Ûw(w) = 1

kw

(
P

eq

f

)2
(

1 + κa

4Dr

)
, (A8)

ûf (r|w) = − 1

πa2kw

(
P

eq

f

)2
(

1 + κa

2Dr

+ kwa2

8Dr

)
+ r2

4πa2Dr

P
eq

f . (A9)

Substituting the solution for ûf (r|w) into Eq. (3.29) and car-
rying out the integration, we obtain the expression for �f w in
Eq. (3.33).

The term �ww, Eq. (3.34), is simply the product of vw

and the solution for Ûw(w) in Eq. (A8).

APPENDIX B: EVALUATION OF CONSTANTS �wf ,�ff
FROM EQS. (3.27) AND (3.28)

For the evaluation of �ff and �wf consider the particle
in the flow that at t = 0 is separated by distance r0, 0 ≤ r0

< a from the tube axis. As follows from Eqs. (3.20), (3.21),
and (3.23) functions Uw(t |r0) and uf(r, t|r0), Eqs. (3.24) and
(3.25), satisfy Eqs. (A1) and (A2) with the initial conditions

Uw(0|r0)=−P eq
w , uf (r, 0|r0)= 1

2πr
δ(r − r0) − 1

πa2
P

eq

f ,

(B1)
and an additional relationship

Uw(t |r0) + 2π

∫ a

0
uf (r, t |r0)rdr = 0, (B2)

which follows from Eq. (3.15).
Functions Ûw(r0) and ûf (r|r0) entering into Eqs. (3.27)

and (3.28) are evaluated from the Laplace transforms of
Eqs. (A1), (A2), and (B2) at s = 0. They obey the following

system of equations:

Dr

r

d

dr

(
r
dûf (r|r0)

dr

)
= 1

πa2
P

eq

f − 1

2πr
δ(r − r0),

(B3)
dûf (r|r0)

dr

∣∣∣∣
r=0

= 0,

P eq
w = 2πaκûf (r|r0) |r=a −kwÛw(r0)

= −2πaDr

dûf (r|r0)

dr

∣∣∣∣
r=a

, (B4)

Ûw(r0) + 2π

∫ a

0
ûf (r|r0)rdr = 0. (B5)

In order to simplify calculations, it is convenient to intro-
duce new auxiliary functions

W = 2π

∫ a

0
Ûw(r0)vf (r0)r0dr0, (B6)

w(r) = 2π

∫ a

0
ûf (r|r0)vf (r0)r0dr0. (B7)

As follows from Eqs. (B3) to (B5), W and w(r) satisfy

Dr

r

d

dr

(
r
dw

dr

)
= vf P

eq

f − vf (r),
dw

dr

∣∣∣∣
r=0

= 0, (B8)

−πa2vf P eq
w = kwW − 2πκw(a) = 2πaDr

dw

dr

∣∣∣∣
r=a

, (B9)

W + 2π

∫ a

0
w(r)rdr = 0. (B10)

Solving Eqs. (B8)–(B10), we obtain

W = −πa2vf

kw

(
P

eq

f

)2
[

κa

12Dr

+
(

1 + κa

3Dr

)
K

]
, (B11)

w(r) = w(0) + vf

8a2Dr

[
r4 − 2P

eq

f (1 + 2K)a2r2
]
, (B12)

w(0) = vf

kw

(
P

eq

f

)2
[

kwa2

12Dr

+ 2κa

3Dr

+
(

1 + 3κa

4Dr

)
K

]
.

(B13)

We can write �ff, Eq. (3.27), in terms of w(r),

�ff = (2π )2
∫ a

0

∫ a

0
vf (r1)̂uf (r|r0)vf (r2)r2dr1dr2

= 2π

∫ a

0
vf (r)w(r)rdr. (B14)

Finally, using Eqs. (B12) and (B13) and performing the inte-
gration we arrive at the expression in Eq. (3.31).

The constant �wf , Eq. (3.33), is simply the product of vw

and the solution for W in Eq. (B11).
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