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Oscillating microbubbles within microvessels could induce stresses that lead to bioeffects or vascular

damage. Previous work has attributed vascular damage to the vessel expansion or bubble jet. However,

ultra-high speed images of recent studies suggest that it could happen due to the vascular invagination.

Numerical simulations of confined bubbles could provide insight into understanding the mechanism

behind bubble–vessel interactions. In this study, a finite element model of a coupled bubble/fluid/vessel

system was developed and validated with experimental data. Also, for a more realistic study visco-

elastic properties of microvessels were assessed and incorporated into this comprehensive numerical

model. The wall shear stress (WSS) and circumferential stress (CS), metrics of vascular damage, were

calculated from these simulations. Resultant amplitudes of oscillation were within 15% of those

measured in experiments (four cases). Among the experimental cases, it was numerically found

that maximum WSS values were between 1.1–18.3 kPa during bubble expansion and 1.5–74 kPa

during bubble collapse. CS was between 0.43–2.2 MPa during expansion and 0.44–6 MPa while

invaginated. This finding confirmed that vascular damage could occur during vascular invaginations.

Predicted thresholds in which these stresses are higher during vessel invagination were calculated from

simulations. VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4817843]

PACS number(s): 43.35.Ei [DLM] Pages: 1875–1885

I. INTRODUCTION

Ultrasound contrast agent microbubbles have gained a

lot of attention due to their application in ultrasound imaging

and therapy.1–3 Microbubbles, when injected into the blood

stream, remain intravascular and undergo a volumetric oscil-

lation when activated by an ultrasound pulse. Different stud-

ies have shown that microbubbles could induce mechanical

bioeffects on their confining vasculature.4–6 The bioeffects

could be therapeutically beneficial and might range from

increasing the vascular permeability for intravascular drug

and gene delivery, opening the blood–brain barrier locally

and transiently to vessel rupture and occlusion.1,2,4,7–9 One

major challenge in using microbubbles for medical ultra-

sound application is the lack of knowledge about the behav-

ior of confined bubbles and the impact bubbles might have

on the surrounding tissue.

It is important to investigate bubble mediated mechani-

cal effects on the vessel wall and to understand the mecha-

nism involved. Previously, the vascular damage was

attributed to either the vessel distension or direct impact of a

bubble jet on a vessel wall.10–12 However, recent high speed

photographs of ex vivo vessels showed that the bubble

collapse within a vessel generates a distinct invagination of

the vessel wall (i.e., toward the lumen of the vessel).13,14

This bubble–vessel coupling may be responsible for some

vascular damage. The fluid shear stress and circumferential

stress are the two important metrics in quantifying the me-

chanical bioeffects. Vessels in the microstreaming field, gen-

erated by pulsating bubbles, experience fluid shear stress. If

this stress is high enough it may have an impact on the cell

membrane integrity or even detachment of the endothelial

cells.15 Circumferential stress, the other important stress,

might be responsible for vessel rupture. Previously, vascular

rupture due to bubble activity was observed and reported in

different studies.4,5,16–18

A numerical simulation of the experimental data could

shed light on understanding bubble–vessel interactions. In

particular, such a theoretical model could predict encapsu-

lated bubble oscillations inside a vessel. Also it could pro-

vide fluid flow information as well as stress levels exerted on

the vessel wall during the vessel distension and invagination,

thus providing a means to predict which mechanism is re-

sponsible for cavitation-induced bioeffects.

A confined microbubble behaves differently than

unbound bubbles surrounded by infinite fluid. A number of

confined bubble models have been developed over the

years.19–21 However, these models either neglected shell

effects, assumed a spherical bubble, or they lacked the usage
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of appropriate vessel properties. While these models are suit-

able for low acoustic pressures and bubble spherical oscilla-

tions, at relatively high acoustic pressures (�1 MPa) the

bubble in a small blood vessel deviates from its spherical

shape and forms an ellipsoid. Realistic vessel parameters are

critical for bubble/fluid/vessel simulation as well.

In this study, numerical simulations were compared

with experimental observations of bubbles within rat mesen-

teric microvessels ex vivo. Chen et al. speculated that the tis-

sue viscosity could be significant due to vessel wall

invagination.22 It was also reported elsewhere that mesen-

teric tissue behaves in a viscoelastic manner.23 Also,

Swayne et al. observed a nonlinear behavior from mesenteric

microvessels when increasing the pressure in increments.

They suggested that the basement membrane has the appro-

priate properties to explain this behavior.24 Skalak et al. sug-

gested that the vessel wall could be modeled using a

standard viscoelastic solid.25 Because it is crucial to have

proper viscoelastic parameters for the numerical work, in the

first part of this study the viscoelastic properties of ex vivo
rat mesentery microvessels were assessed. This assessment

was done using a standard linear solid (SLS) viscoelastic

model. Then, these viscoelastic parameters were used in our

first numerical model. In the first part of the simulations,

bubble oscillations were dictated to mimic the experimental

data sets and vessel wall stresses were calculated. Then, in

the second numerical part, we developed a comprehensive

encapsulated confined bubble model while accounting the

effects of surface tension within a viscoelastic vessel. Four

experimental data sets (cases 1–4) of micron size bubbles

inside different rat mesentery microvessels are considered

for the comparison with the numerical work. The second nu-

merical part was done with the intention to predict the confined

bubble behavior as well as the associated wall stresses. From

both numerical parts, the vessel wall shear stress (WSS) and

circumferential stress (CS) are calculated during bubble expan-

sion or collapse and the threshold at which the stresses are

higher during vascular invagination are predicted.

II. METHODS

A. Experimental data

High speed photomicrography was used to visualize the

direct transient interactions between ultrasound-activated

microbubbles and blood vessels within ex vivo tissue. The

microscope was aligned confocally with a focused annular

ultrasound transducer. Rat mesenteries were used as the ani-

mal model. After the mesentery was flushed clear of blood,

the animal was sacrificed and the mesentery with intestine

was dissected away from the rat body. Then DefinityVR

(Lantheus Medical Imaging, North Billerica, Massachusetts)

microbubbles were mixed with saline and injected into the

mesentery segment. The transducer was driven by a single

cycle sine wave produced by a function generator (33120A;

Hewlett Packard, Palo Alto, CA) and amplified by a power

amplifier (A150; ENI, Rochester, NY). The acoustic pressure

at the focus of the transducer was measured with a fiber optic

probe hydrophone (FOPH 2000; RP Acoustics, Leutenbach,

Germany). Figure 1(a) displays the pressure waveform used

in this study. The ultrasound pulse had a peak negative pres-

sure of 0.8 MPa at 1 MHz and lasted for about 2 ls. During

each insonation, images were captured by a camera (Imacon

200; DRS Hadland, Cupertino, CA) using an exposure time

of 50 ns. Full details of the experimental setup and image

analysis method were reported earlier.26

From the recorded images the bubble and vessel radii

were evaluated using ImageJ software (ImageJ 1.41o;

National Institutes of Health, Bethesda, MD). Assuming that

the confined bubbles are ellipsoidal (in the image plane), the

bubbles’ semi-minor and -major axes were along r (radial)

and z (axial) direction, respectively [Fig. 1(b)]. From the

experiments, four data sets were examined in this work.

Table I presents the bubble and vessel radii of the four ex-

perimental cases. These cases were chosen because of their

known initial bubble sizes prior to the ultrasound exposure.

FIG. 1. (Color online) (a) The applied ultrasound pulse with 1 MHz fre-

quency and peak negative pressure of 0.8 MPa. (b) A confined bubble within

a microvessel with semi-minor and major axes along r (radial) and z (axial)

directions, respectively; the scale bar represents 10 lm.

TABLE I. Experimental cases of single confined bubble within a

microvessel.

Case

number

Bubble initial

radius (lm)

Vessel initial

radius (lm)

Frame

interval (ns)

1 1.2 5.6 150

2 1.3 16 300

3 4.7 21 300

4 3 16 300
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The bubble behavior and accurate numerical simulations

highly depended on the bubble’s initial size.

B. Viscoelastic properties of microvessels

In order to perform a numerical simulation of a bubble

within a viscoelastic vessel, viscoelastic properties of vessels

were assessed. Previously, a number of rat mesentery ex vivo
experiments was performed in which collapsing microbub-

bles inside mesenteric venules caused the vessels to invagi-

nate to their maximum extent. Then, the recovery process of

the invaginated vessel wall was photographed with the inten-

tion of estimating the viscoelastic properties of the vessel.27

Microvessels in this study were venules (diameters larger

than 8 lm) and they were distinguished from other microves-

sels by the flow direction as well as vessel branching and col-

lecting. The experimental setup in this part was the same as

that used to photograph the confined bubble activity (Sec. II C

of this work) except that longer times were captured to observe

the vessel wall recovery.27 The vessel properties were charac-

teristic and reported recently27 using a Voigt solid model. In

this work, the experimental data were fitted with a SLS model

as it predicts both creep and stress relaxation. Also, Skalak

et al. suggested that SLS can be used to describe the vessel

wall.25 The SLS model is made up of two branches— one with

a single spring and the other with a spring and a dashpot. The

creep function of a SLS model can be written as28

cðtÞ ¼ eðtÞ
r
¼ 1

l0

1� 1� se

sr

� �
e�t=sr

� �
; where

sr ¼
g1

l0

1þ l0

l1

� �
; and se ¼

g1

l1

:

r is the applied stress on the structure, eðtÞ is the strain, l0 is

the spring constant on the first branch, and on the second

branch, l1 and g1 are the spring constant and the coefficient

of viscosity of the dashpot, respectively.

Since the collected experimental data corresponded to

the recovery phase of the vessel wall, the vessel initial posi-

tion was set to vessel’s maximum invagination (DMax), the

maximum vessel displacement during invagination.

Therefore, eðtÞ ¼ ½DMax � DðtÞ�=DMax, where DðtÞ is the

vessel displacement. Now, the governing equation for the re-

covery phase would be

DðtÞ ¼ DMax 1� se

sr

� �
e�t=sr

� �
; (1)

where l0, l1, and g1 are the three parameters of this model.

l0(the long term elastic modulus) was set to 50 kPa.

This selection was based on Smaje’s work, in which they

reported the elasticity of capillaries and venules in cat mes-

entery in vivo.29 The experimental invaginated vessel data

were fitted with Eq. (1) while fixing the long term elastic

modulus ðl0 to 50 kPa), in order to evaluate the other

unknown parameters, l1 and g1. The fittings were done using

MATLAB (version 7.11, The MathWorks, Natick, MA) and

its lsqcurvefit function (which solves nonlinear data-fitting

problems in least-squares sense) in the optimization toolbox.

The fitted data sets are shown in Figs. 2(a) and 2(b). The

first data set belonged to a small microvessel with a maxi-

mum displacement of DMax ¼ 14 lm [Fig. 2(a)]. The second

data set, which represented a larger microvessel [Fig. 2(b)],

had a maximum displacement of DMax ¼ 9 lm. The best

results for the fit between Eq. (1) and data set 1 gave the val-

ues of l1¼ 5 MPa and g1¼ 1.02 Pa s. The best values for the

fit between Eq. (1) and data set 2 resulted in l1¼ 5 MPa and

g1¼ 0.78 Pa s.

The viscoelastic parameter for the two data sets above

were within 26% of each other. In order to implement these

findings into Sec. II C and to model a bubble within a visco-

elastic vessel, the parameters obtained from data sets 1 and 2

were averaged. The average parameters of l1¼ 5 MPa and

g1¼ 0.9 Pa s (s1 ¼ g1=l1¼ 0.1817 ls) along with l0¼ 50 kPa

were used as inputs into the vessel properties for bubble/

fluid/vessel simulation in Sec. II C. It is worth noting that the

viscosity values found here were in the same order of magni-

tude as that found by Girnyk et al. (i.e., 0.15 Pa s) in liver

using ultrasound measurements at 1 MHz.30 Also, the elastic-

ity values are within those reported earlier (i.e.,

1–10 MPa).29,31

FIG. 2. Fitted standard linear solid model with experimental results. (a) First

invaginated vessel data with the best fit of parameters l0¼ 50 kPa,

l1¼ 5 MPa, and g1¼ 1.02 Pa s. (b) Second data with the best fit of parame-

ters l0¼ 50 kPa, l1¼ 5 MPa, and g1¼ 0.78 Pa s.
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C. Numerical simulation

In our numerical model a microbubble was placed at the

center (both axially and radially) of a microvessel (vessels

were 2 lm in thickness and 100 lm in length). A two-

dimensional model with axisymmetrical assumption was

used as it was less computationally expensive. Furthermore,

in the experimental data, the bubble was nearly in the middle

of the vessel.

Subsections here are organized as follows. In Sec. II C 1,

the bubble within the vessel was forced to oscillate mimick-

ing the experimental cases 1–4. The WSS and CS induced

by the forced bubble oscillation on the vessel wall were cal-

culated. In Sec. II C 2, a comprehensive bubble model was

developed. This model enabled us to elaborate on the bub-

ble’s behavior within the vessel and to understand the

physics behind the coupled bubble/fluid/vessel system. A

threshold at which stresses were higher during vascular inva-

gination was also predicted. In this numerical work, the fluid

and solid domains were fully coupled (two-way coupling).

In Sec. II C 3, the details of the fluid/solid coupling and fluid

properties are described. Other boundary conditions and

method of solution are explained in Sec. II C 4. Table II pro-

vides a list of notations used in this work. Figure 3 shows a

schematic illustration of the numerical model.

1. Forced bubble oscillation and stresses: Numerical
section part I

In this section, an ellipsoidal bubble was forced to oscil-

late mimicking the bubble in the experimental cases 1–4

[Fig. 3(a)]. The bubble wall was coupled to the surrounding

fluid within a viscoelastic vessel. A velocity boundary condi-

tion was used at the bubble wall. The fluid velocity was set

equal to the forced bubble velocity while the bubble wall ve-

locity itself was derived from experimental bubble wall dis-

placements. The vessel wall movements, WSS and CS, were

calculated as a result of this numerical section.

2. Microbubble model: Numerical section part II

The focus of this section was on the microbubbles’

behavior in a confined geometry. Therefore, a bubble model

was developed considering the effects of surface tension and

encapsulating shell. In this section, contrary to Sec. II C 1,

the bubble oscillation was not dictated anymore. Instead, the

bubble oscillated due to the ideal gas law inside the bubble

and fluid force surrounding the bubble.

Since the acoustic pressure in this study was relatively

high (�1 MPa range) and the blood vessels were relatively

small (the bubble wall could get very close to the blood ves-

sel wall), the bubble oscillated in an ellipsoidal fashion.

Therefore a non-spherical bubble model was developed.

Typically, bubble models (e.g., Rayleigh–Plesset equa-

tion) consist of a pressure function and an inertia function.

In this confined bubble model, the pressure function was

applied on the bubble wall while the inertia function due to

the surrounding fluid and vessel was numerically solved. A

TABLE II. Notations.

Symbol Definition of symbol

r Radial direction in cylindrical coordinate system (m)

z Axial direction in cylindrical coordinate system (m)

cðtÞ Creep function (Pa�1)

eðtÞ Vascular strain

sr Relaxation time for constant stress (s)

se Relaxation time for constant strain (s)

r Applied stress on the vessel (Pa)

l0 Spring constant on first branch (Pa)

l1 Spring constant on second branch (Pa)

g1 Viscosity of dashpot (Pa s)

DMax Maximum vessel displacement (m)

DðtÞ Vessel displacement (m)

vf Fluid velocity (m/s)

q Fluid density (kg/m3)

l Dynamic viscosity of the fluid (Pa s)

P Pressure in the fluid (Pa)

Pb Bubble pressure at the wall (Pa)

Pg Gas pressure (Pa)

Pg0 Gas pressure at resting state (Pa)

P0 Ambient pressure in microvessels (Pa)

R0 Initial bubble radius (m)

R Bubble radius (m)

j Total curvature (m�1)

c Surface tension as a function of bubble area (N/m)

Pc Laplace pressure (Pa)

k Polytropic index

Pi Intravascular pressure (Pa)

Pout Pressure on the outer diameter of vessel wall (Pa)

ri Inner vessel diameter (m)

ro Outer vessel diameter (m)

v Shell elastic modulus (N/m)

js Shell viscosity (kg/s)

cwater Surface tension of water (N/m)

A Bubble area (m2)

Abuckling Bubble area at shell buckling regime (m2)

Rbreak-up Bubble radius at break-up regime (m)

Abreak-up Bubble area at break-up regime (m2)

Req Spherical bubble’s equivalent radius (m)

Rmax Maximum bubble radius (m)

rvmax Maximum vessel radius (m)

rhh Circumferential (hoop) stress (Pa)

FIG. 3. (Color online) Schematic illustration of the numerical model. (a)

Forced bubble oscillation in numerical section part I, and (b) microbubble

model in numerical section part II.
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pressure boundary condition at the bubble wall was used (the

stress in the tangential direction is assumed to be zero)

�PI þ l rvf þ ðrvf ÞT
� �� �

n ¼ �Pbnþ Pcn; (2)

where Pb is the pressure function at the bubble wall, n is the

outward unit normal, Pc is the Laplace pressure, and l is the

fluid viscosity. In this equation, the bubble pressure (Pb) was

greater than the normal stress in the fluid (left hand side) due to

the surface tension pressure (Laplace pressure;Pc). The follow-

ing equation was applied for the bubble pressure, Pb; using the

polytropic gas law along with encapsulating shell properties:

Pb ¼ Pg �
4l _Req

Req

� 4js
_Req

R2
eq

� PðtÞ; (3)

where Pg ¼ Pg0ðV0=VÞk is the gas pressure, Pg0 is the gas

pressure at the resting state, and k, the polytropic index, was

set to 1.07.32 V0 and V are the initial bubble volume and bub-

ble volume at any other time points, respectively. The bubble

volume was calculated at each time step and then it was

updated in Eq. (3). P0 is the ambient pressure in microvessels,

which was set to 104.6 kPa. PðtÞ is the ultrasound pressure

pulse. In our simulations, bubbles were driven with the ultra-

sonic pulse shown in Fig. 1(a). Due to the large acoustic

wavelength (i.e., a few millimeters) compared to the bubble

size, it was assumed that the ultrasonic pulse pressure is uni-

form around the bubble. The second term on the right hand

side in Eq. (3) represented the fluid viscosity effects and the

third term accounted for the encapsulating shell viscosity. l,

the fluid viscosity of saline, was set to 0.001 Pa s. The shell

viscosity, js, was set to 1.2 � 10�8 kg s�1. The fluid viscosity

and shell viscosity terms were developed assuming a radial

symmetry on the bubble wall.33 Therefore, in order to imple-

ment these terms, we calculated the bubble equivalent radius,

Req. The equivalent radius was calculated by equating the

bubble volume with a sphere volume of radius, Req. Basically,

Eq. (3) calculates the bubble pressure with the ideal gas law

while accounting for fluid and shell viscosity and also assum-

ing that the acoustic pulse is acting on the bubble wall.

In order to investigate the effects of surface tension on

bubbles, a weak form of the boundary condition in Eq. (2)

was applied. In this equation, Pc ¼ jc, where c is the surface

tension and j is the total curvature (j was twice the mean

curvature, where the surface mean curvature was

�ð1=2Þrs � n). After applying the weak form on this boundary

condition, the right hand side of Eq. (2) becomesÐ
C�Pbû � n dC þ

Ð
C jcû � n dC, where C is the surface bound-

ary and û is the test function. Using the surface divergence theo-

rem,34 the term on the right hand side above becomes

ð
C
jcû � n dC ¼ �

ð
C
crsû dCþ

ð
c

cû �m dc; (4)

where c is the contour bounding the surface, and m is the

outward unit normal to c and while on c, it is perpendicular

to n (n �m ¼ 0). The second term on the right hand side in

Eq. (4) (i.e., a contour integral) is equal to zero. rs repre-

sents the surface gradient operator.

In this model, for encapsulating shell surface tension,

we followed the model proposed by Marmottant et al.35 The

Marmottant surface tension has three regimes: buckling,

elastic, and ruptured state. The surface tension of the three

regimes can be described as follows:

c ¼

0 A � Abuckling � A0

v

�
A

Abuckling

� 1

�
Abuckling � A � Abreak-up

cwater A > Abreak-up;

8>><
>>:

(5)

where A is the bubble area and v is the shell elastic modulus.

Tu et al.36 measured the shell elasticity of Definity micro-

bubbles and, based on their work, it was set v¼ 0.7 Nm�1.

Abuckling is the bubble area at which the shell buckles. The

surface tension varies in an elastic regime until the shell

breaks at A ¼ Abreak-up. The surface tension of water, cwater,

was set to 0.072 N/m (assuming it is similar to saline).

Assuming that the bubble radius at rest is equal to the

radius below which it buckles (Abuckling � A0 ¼ 4pR2
0), the

Laplace pressure term (2cA¼A0
=R0) vanishes. Thus, in this

work Pg0 ¼ P0 þ 2cA¼A0
=R0 reduces to P0. Rbreak-up, the ra-

dius at which the bubble shell breaks, is set to

minðRbuckling

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcwater=vÞ þ 1

p
; 2R0Þ, based on the bubble ra-

dial threshold for inertial cavitation (R > 2R0)37 and as well

Abreak-up¼ 4pR2
break-up. At each time step, the bubble area was

calculated along with its corresponding surface tension.

Then, the surface tension from Eq. (5) was implemented in

Eq. (4) for c. In this work and in all of the experimental

cases, the bubble passed the Rbreak-up early in its expansion

phase. Exceeding this point, the shell had no influence on the

bubble oscillations and the surface tension of water was

applied on bubble wall.

3. Fluid structure interaction

The fluid and vessel were coupled in a two-way manner.

The Navier–Stokes equations for a viscid incompressible

Newtonian liquid and equations for a viscoelastic solid were

solved simultaneously. In the fluid domain, the following

equation was solved:

q
@vf

@t
þqðvf �rÞvf ¼r� ½�PIþlðrvf þðrvf ÞTÞ�

¼r�r; (6)

where q is the fluid density, vf is the fluid velocity field, P is

the pressure in the fluid, and r is the stress tensor. The conti-

nuity equation was also satisfied: qrvf ¼ 0. The load from

the fluid exerted on the vessel boundary is

�n � ð�PI þ lðrvf þ ðrvf ÞTÞÞ, where n was the normal

vector to the boundary. This load represented a sum of the

pressure and viscous forces.

In the solid domain, the following equation for a visco-

elastic vessel, analogous to the standard linear solid model,

was solved

Pþ g1

l1

_P ¼ l0eðtÞ þ g1 1þ l0

l1

� �
_eðtÞ; (7)
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where P is the fluid pressure at the vessel wall and _P is its

time derivative.

The fluid pressure at the vessel wall caused the vessel to

undergo displacements. Also, at the vessel wall boundary,

the normal fluid velocity was set equal to the vessel wall ve-

locity. This latter condition ensures the coupling between the

fluid and the structure.

4. Method of solution

In the numerical study (both Secs. II C 1 and II C 2), the

pressure on vessel ends and initial conditions of the whole

fluid were set to the ambient pressure in the capillaries, P0.

The numerical part was solved with a finite element method

(FEM) using Comsol Multiphysics 4.2 (COMSOL AB,

Burlington, MA). In the numerical part, the vessel length

was set to 100 lm which was long enough to make the

results independent of the vessel length. A moving mesh

method (arbitrary Lagrangian–Eulerian, ALE) was used

since the bubble and vessel wall boundaries of our computa-

tional domain were moving. As a boundary condition in the

moving mesh, the mesh normal velocity at the bubble wall

was set equal to the fluid normal velocity. This boundary

condition was applied for both Secs. II C 1 and II C 2.

Triangular meshes for this two-dimensional model were

used with 4000–10 000 elements for cases 1–4. Since this

numerical model was time dependent, the time resolution

was set to 0.005 ls for case 1 and 0.01 ls for the rest.

Two of the important stresses were calculated on the

vessel wall. WSS was calculated using srz ¼ l½@u=@zþ
@w=@r� in cylindrical coordinates, where u and w are the

fluid velocity components in r and z directions, respectively.

The CS was calculated using a thick wall cylinder equa-

tion,38 rhh¼ðPir
2
i �Poutr

2
oÞ=ðr2

o�r2
i Þþðr2

i r2
o=r2Þ½ðPi�PoutÞ=

ðr2
o�r2

i Þ�; where ri and ro are inner and outer vessel

diameters. Pi was the fluid pressure on the vessel wall and

Pout was the pressure on the outer diameter of the vessel,

which was assumed20 to be Po.

III. NUMERICAL RESULTS

A. Numerical section part I

The numerical viscoelastic vessel displacement as well

as the experimental measurement of the vessel wall for cases

1–4 are shown in Figs. 4(a)–4(d), respectively. An ellipsoi-

dally oscillating bubble within a viscoelastic vessel caused

these vessel displacements. Generally, there is good agree-

ment between the numerical wall movements and experi-

mental measurements, except for case 3 wherein, during the

bubble collapse, the numerical results deviate from the ex-

perimental data. Histology data of case 3 shows that endo-

thelium has been torn away and this may explain the

discrepancy.

Figure 5(a) presents the WSS at the vessel wall for cases

1–4 obtained from the first numerical simulations. The nega-

tive WSS values correspond to the bubble expansion and the

positive stress values correlate with the bubble collapse. For

case 1, the maximum positive and negative WSS values are

73.8 kPa and 18.3 kPa, respectively. As in cases 2–4, the

bubble wall does not approach the vessel wall, and the stress

values are lower. WSS for cases 2, 3, and 4 are þ1.6/

�1.7 kPa, þ1.5/-1.1 kPa and þ2/�2.3 kPa, respectively.

These results are summarized in Table III.

Figure 5(b) shows the CS on the vessel wall in all cases.

This stress has its maximum value right above the bubble

(r¼ rv, z¼ 0). Here, the positive and negative circumferen-

tial stresses correspond to bubble expansion and collapse

phases, respectively. In case 1, the maximum positive cir-

cumferential stress is 2.2 MPa during the bubble expansion

FIG. 4. Radial displacement of the ves-

sel wall. The numerical viscoelastic

vessel compared to the experimental of

(a) case 1, (b) case 2, (c) case 3, and

(d) case 4.
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phase and the maximum negative CS is 6 MPa during the

bubble collapse. In case 2, the maximum CS during expan-

sion and collapse phases reached 0.43 and 0.44 MPa, respec-

tively. These stress values were 0.6 and 0.93 MPa for case 3,

and 0.7 and 0.74 MPa for case 4 (Table III). Depending on

the bubble’s initial size and the extent the bubble wall

reaches the vessel wall, the wall stress values change. A pre-

dicted threshold at which stresses are higher during bubble

collapse is calculated and shown in Sec. III B.

B. Numerical section part II

In Figs. 6 and 7, the results of the second numerical sim-

ulations for all cases are plotted.

Figures 6(a)–6(d) show the bubbles’ semi-minor axis

and vessel wall for case 1–4, respectively, and the bubble’s

axial displacements (bubbles’ semi-major) are plotted in

Figs. 7(a)–7(d). The bubble semi-minor radius and vessel

displacement in Fig. 6(a) (case 1) are within 4% of the

experimental data. The bubble’s axial wall in case 1 peaks at

a value 25% more than that measured in the experiments

[Fig. 7(a)]. The numerical bubble amplitude of oscillation

for cases 2, 3, and 4 were within 13%, 15%, and 11% of

those measured in experiments [Figs. 6(b)–6(d) and

7(b)–7(d)], respectively. In case 3 [Figs. 6(c) and 7(c)], the

numerical simulation stopped during the bubble collapse and

therefore the last cycle of oscillation is not simulated.

The WSS and CS were calculated from the second nu-

merical part as well. The maximum variations of these

stresses are compared to the results of the first numerical part.

Stresses had the same trends similar to those reported in Fig.

5. WSS and CS calculated from the second numerical part for

case 1 were 13% and 7% higher than that calculated in the

first numerical part, respectively. These stresses were higher

by 17% (WSS) and 19% (CS) for case 2, 33% (WSS) and 5%

(CS) for case 3, and 38% (WSS) and 32% (CS) for case 4.

The stress values obtained for the four experimental

cases used here suggest that there is a threshold where the

stresses are higher during the bubble collapse, and this

threshold depends on the distance the bubble wall gets to the

vessel wall. Numerical simulations (part II) of a 1 lm bubble

within various vessel sizes (3–20 lm) were performed to pre-

dict this threshold. Figure 8 shows the ratio of stresses (inva-

gination over expansion phase) versus a dimensionless

metric, d ¼ ðrvmax � RmaxÞ=R0, where rvmax is the maximum

vessel radius and Rmax is the maximum bubble radius. This

metric calculates the bubble wall to the vessel wall distance

(at bubble’s maximum expansion) normalized to the bubble

initial radius. Figures 8(a) and 8(b) show the WSS and CS

ratios, respectively. In this case, where the bubble size was

fixed at 1 lm, d increased with the vessel radius. The shear

stress was higher during the bubble collapse when the vessel

size was 8 lm or smaller. For 7 lm vessels or smaller, the

CS passed the threshold value as it was higher during the

bubble collapse. In other words, the results in Fig. 8 repre-

sent that stresses during the bubble collapse phase are stron-

ger when the bubble/vessel interactions are strong.

IV. DISCUSSION

The experimental results had two sources of measure-

ment uncertainties: (i) user variability in measuring the

bubble and vessel radii, which was less than 1 lm; (ii) frame-

to-frame alignment jitter of the camera’s optics; the added

uncertainty was about 1 lm. The overall estimated uncertain-

ties in displacement measurements ranged from 1–3 lm.26

Due to some variability in tissue sample positions, some

uncertainties in the timing of image frames relative to the

ultrasound pulse arrival were introduced. In most of the obser-

vations, the first bubble collapse occurred about 1 ls after the

arrival of the ultrasound pulse. To reduce the uncertainty, a

common temporal axis was adopted to all photographic obser-

vations. In addition, cases 2, 3, and 4 had a lower temporal re-

solution of 0.3 ls. The numerical results in part II (bubble/

vessel wall displacements in Figs. 6 and 7) were shifted by

less than 0.2 ls to align with the experimental measurements.

In Sec. II C 1, wall stresses due to a bubble responding

to an acoustic wave passing through the surrounding media

TABLE III. Ratio of maximum WSS and CS during vascular invagination

to expansion. (Stresses are larger during vascular invagination if boldface

values are larger than 1.)

Case number WSSinv (kPa) / WSSexp (kPa) CSinv (MPa) / CSexp (MPa)

1 73.8/18.3¼ 4 6/2.2¼ 2.7

2 1.6/1.7¼ 0.94 0.44/0.43¼ 1

3 1.5/1.1¼ 1.36 0.8/0.6¼ 1.3

4 2/2.2¼ 0.87 0.74/0.7¼ 1.1

FIG. 5. Wall stresses. (a) Wall shear stress calculated at r¼ rv and an axial

distance of z¼ 3 lm (case 1), z¼ 11 lm (case 2), z¼ 13 lm (case 3), and

z¼ 9 lm (case 4). (b) The circumferential stress for case 1, case 2, case 3,

and case 4 at r¼ rv and z¼ 0.
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could be different from those produced by the forced oscil-

lating bubble. However, in the experimental data, the vessel

wall underwent displacements only at the bubble site. In

fact, in locations where the acoustic pressure was acting on

the vessel with no bubble present (e.g., a few microns away

from the bubble site), the vessel wall did not have any dis-

placements due to the acoustic force itself compared to time

zero when ultrasound was off. Therefore, it was assumed

that stresses leading to vessel wall expansion and invagina-

tion were only due to the oscillating bubble.

In Sec. II C 2, it was assumed that the acoustic pressure

was acting on the bubble wall directly to save computational

time. The resultant wall stresses produced due to this

assumption could be different from those when an acoustic

wave was passing through the surrounding media. In this

work, the experimental mesentery network was relatively

thin and the vessels were soft. Therefore, the impedance mis-

match between the vessels and fluid as well as the attenua-

tion is low. Furthermore, according to the numerical work

by Qin et al. in which the transmitted ultrasound pressure

FIG. 6. Comparison of the numerical

simulations with experiments. Bubble

radial displacements for cases 1 (a), 2

(b), 3 (c), and 4 (d). From the experi-

mental data in case 1, the bubble was

not apparent in a couple of middle

time points.

FIG. 7. Comparison of the numerical

simulations with experiments. Bubble

axial displacements for cases 1 (a), 2

(b), 3 (c), and 4 (d).
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was assessed within different microvessels at various fre-

quencies, ultrasound pressure was disturbed the most in the

lumen of rigid vessels and at higher frequencies.39 In this

study, the vessel wall was soft and the frequency was rela-

tively low. Therefore, it was safe to assume that the acoustic

pressure within the lumen acting on the bubble wall was not

distorted compared to the transmitted pulse.

The numerical simulation was performed using an axi-

symmetrical assumption. The bubble was in the vessel center

for cases 1 and 3. In cases 2 and 4, the bubble was slightly

off from the vessel center. However, there was no bubble de-

formation due to this asymmetry. Also in this case, the bub-

ble distance to the vessel wall was large enough that the wall

impact on the bubble oscillation was small. Therefore, the

axisymmetrical assumption in our numerical work could be

valid.

The microbubble model used in this study (Sec. II C 2)

was different from the model we previously developed.40 Our

previous model was suitable for relatively low acoustic pres-

sures, but in this study the acoustic pressure was �1 MPa.

However, the bubble oscillations in our current bubble model

at low acoustic pressures (in kPa range) converge to the

results of our previous model. To further validate this work

for the extreme case of an unbound bubble within an infinite

fluid, the bubble model was compared with the solution of the

Rayleigh–Plesset equation. The numerical solution of our

unbound bubble converged to that of the Rayleigh–Plesset.

In case 1, stresses were significantly higher during bub-

ble collapse and, in fact, the WSS was 4 folds and CS was

2.7 folds higher than those during the bubble expansion

phase. High velocity gradients and stress values of case 1

were generated due to the fact that the bubble expanded to

the size of the vessel and its wall nearly came into contact

with the vessel wall.

This model was solved assuming an ellipsoidal bubble;

however, we also tested this model with spherical symmetry

in order to reveal the importance of asymmetries. Case 1

was chosen for this comparison (Sec. II C 1) and the equiva-

lent bubble radius was used for the spherical bubble. The

WSS and CS during bubble collapse from the spherical bub-

ble symmetry were 69 kPa and 3.45 MPa, respectively.

These values were 6% and 43% lower than those obtained

from the ellipsoidal model, respectively. Based on theses

simulations, using a spherical symmetric model for confined

bubbles could result in an underestimation of the stresses.

The WSS and CS calculated from the second numerical

part (Sec. II C 2) was higher than those calculated from the

first numerical part (Sec. II C 1; Fig. 5). This could be due to

the fact that the bubble oscillated to a higher extent in the

second numerical part compared with the experimental

observations (13% in case 2, 15% in case 3, and 11% in

case 4). A reason for this might be that bubbles in reality had

experienced lower acoustic pressures. Other than that, the

encapsulating shell or the vessel wall might have been stiffer

than those we used in this study.

The values of the vascular strength reported in the litera-

ture vary between 0.46 MPa and 3.6 MPa.41–43 The maxi-

mum CS calculated for cases 1, 3, and 4 exceeded the

minimum reported vascular strength, and in case 2 it was on

the border of the vascular strength. This suggests that the

bubble might have ruptured the vessel wall to some extent or

if more experiments were to be conducted some vessels

would rupture. It is important to note that the physiological

shear induced on the vessel wall by the flowing blood in the

cardiovascular system is about 1 Pa,44 and shear stresses in

the range of a few kilopascals might induce cell lysis or cell

detachment.15

The endothelial cell damage (due to bubble–vessel inter-

actions) was reported by performing histology and transmis-

sion electron microscopy.45 The cell damage was attributed

to the vessel’s invagination-dominated response. In this

work, we found that during the vessel invagination the

stresses were higher than those during the expansion phase

when the bubble gets close to the vessel wall (clearly shown

in case 1) indicating that the vascular damage is most likely

to occur in this phase.

Parametric studies of the vascular damage along with

using a high speed photomicrography system are required in

the future. As a result of such experiments, the stress values

found numerically could be correlated to and calibrated with

the vascular damage thresholds.

V. SUMMARY

Numerical simulations of confined ultrasound contrast

agents within vessels were performed in this work and

results were compared with experimental observations.

Simulations agreed reasonably well with the experimental

FIG. 8. Relative stress values versus relative bubble to vessel distance nor-

malized to bubble initial size. (a) Wall shear stress ratio, (b) circumferential

stress ratio. The dotted line represents the invagination stress threshold.
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observations indicating that this comprehensive model can

be used to gain new understanding about physical forces

associated with bubble oscillations in small blood vessels.

These simulations were used to calculate the WSS and CS

(as two vascular damage metrics). In the first numerical part,

the bubble was forced to mimic the experimental bubble

oscillations. As a result, vessel wall movements and stresses

were calculated. In the second numerical part, the confined

bubble oscillated due to the ideal gas law and surrounding

pressure on the bubble’s wall considering the effect of sur-

face tension. Using the numerical model, a predicted thresh-

old was calculated beyond which the stresses were higher

during the bubble collapse. These simulations could provide

some insight into the mechanism behind the bubble and ves-

sel interaction, as well as the extent of vascular damage

microbubbles could induce on the vessel wall.
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