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Abstract

Background: RNA-seq, a massive parallel-sequencing-based transcriptome profiling method, provides digital data
in the form of aligned sequence read counts. The comparative analyses of the data require appropriate statistical
methods to estimate the differential expression of transcript variants across different cell/tissue types and disease
conditions.

Results: We developed a novel nonparametric empirical Bayesian-based approach (NPEBseq) to model the RNA-seq
data. The prior distribution of the Bayesian model is empirically estimated from the data without any parametric
assumption, and hence the method is “nonparametric” in nature. Based on this model, we proposed a method for
detecting differentially expressed genes across different conditions. We also extended this method to detect
differential usage of exons from RNA-seq data. The evaluation of NPEBseq on both simulated and publicly available
RNA-seq datasets and comparison with three popular methods showed improved results for experiments with or
without biological replicates.

Conclusions: NPEBseq can successfully detect differential expression between different conditions not only at gene
level but also at exon level from RNA-seq datasets. In addition, NPEBSeq performs significantly better than current
methods and can be applied to genome-wide RNA-seq datasets. Sample datasets and R package are available at
http://bioinformatics.wistar.upenn.edu/NPEBseq.
Background
The advent of massive parallel sequencing, popularly
known as Next-Generation Sequencing (NGS), is
allowing whole genomes and transcriptomes to be se-
quenced with extraordinary speed and accuracy, provid-
ing insights into the bewildering complexity of gene
expression at both gene and isoform levels [1]. With
decreasing sequencing cost per base, RNA-Seq approach
has become a desirable method to get a complete
view of the transcriptome and to identify differentially
expressed rare transcripts and isoforms [2]. The RNA-
seq assay provides sensitive and accurate digital counts
for the exon regions of expressed transcripts in a given
sample. The count of short sequence reads for each exon
region is the sum of read counts belonging to the over-
lapping exon region of different transcript isoforms that
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are expressed in the sample. Therefore, estimating the
transcript-level expression from the collection of counts
of short read sequences that map to exons (or exon
slices) and exon junctions is a computationally challen-
ging problem, which has been recently attempted by us
and others, in programs such as IsoformEx [3], rSeq [4],
Cufflinks [5], RSEM [6], BASIS [7], and GPSeq [8].
However, none of these methods showed good agree-
ment with qRT-PCR measurements, a gold standard in
measuring differential RNA abundance between samples
[3]. The statistical challenges in analyzing RNA-Seq data
arise from many perspectives. While some sources of
error are due to inherent problems with the technology,
some are contributed at laboratory or experimental
levels, leading to non-biological or technical variation
across samples. Therefore, there is a critical need for in-
vestigation of other statistical methods for normalization
and differential expression analysis of RNA-seq data
across different conditions.
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RNA-seq experiments are now frequently employed for
identifying genes and alternatively spliced gene isoforms
that are differentially expressed across distinct tissue/cell
types and disease conditions [9]. This amounts to compar-
ing one condition, A, with another condition, B, and pro-
ducing a ranked list of differentially expressed genes
according to the statistical significance of observed expres-
sion difference or fold-change between A and B [10,11].
Thus, proper normalization between samples is crucial
before differential expression (DE) analysis and, to a
certain degree, the two aspects are linked with each
other. Normalization can be divided into within-sample
normalization and between-samples normalization [12].
DE analysis is the study of the difference in absolute gene
expression levels between two conditions. However, simi-
lar to microarray technology, RNA-seq is a relative abun-
dance measure technology and does not allow for the
measurement of absolute transcript abundance. This is be-
cause molecules are sampled proportionately from a large
pool of cells and the initial number of cells and other tech-
nical factors are usually difficult to estimate or unknown.
The standard procedure for computing the proportion of
sequence reads that map to a gene relative to the total
number of reads obtained in that RNA-seq experiment
and for comparing those proportions across different sam-
ples can lead to high false positive rate. For example, a
common method for normalization is to divide the gene-
wise read counts by corresponding gene length and the
total number of mapped reads to the genome. Recent re-
ports show that the latter method, based on the total
count of mapped reads, is not a robust method [13] and
several alternative methods have been proposed. For ex-
ample, an empirical strategy that equates the overall ex-
pression levels of genes between samples under the
assumption that the majority of them are not DE was pro-
posed recently [10,14,15]. Alternatively, the widely used
quartile normalization method in the microarray field was
also adapted for between-sample normalization of RNA-
seq [16]. A recent review evaluated seven proposed
normalization methods for the differential analysis of
RNA-seq data by using a varied group of real and simu-
lated datasets involving different species and experimental
designs [13]. They concluded that the methods proposed
in DESeq [17] and edgeR [18] have the most relative satis-
factory behaviour compared to the others.
Similarly, several tools have been developed for DE ana-

lysis of RNA-seq data. The Poisson model has been suc-
cessfully used to account for technical variations in
RNA-seq data [4]. When biological replicates are available,
the negative binomial distribution is commonly used to
model the over-dispersion in the count data, such as
DESeq and edgeR. There are also pure non-parametric
methods, which do not assume any particular distribution
for the data, e.g. NOISeq [11]. Approaches within a
Bayesian framework for differential expression in RNA-
Seq data have also been developed by many researchers,
such as baySeq [19], GFOLD [20], ShrinkSeq [21] and
EBSeq [22]. It is acknowledged that Bayesian approach
can be used to obtain accurate and robust estimates by
sharing information across all genes when sample size is
small [23]. In baySeq, the genes are ranked according
to the posterior probabilities of differential expression
between conditions, using an empirical Bayes framework.
To infer the posterior probability, the gene expression
prior factors are integrated out by an approximation
method [24] with mean and dispersion parameters empir-
ically and iteratively estimated from the entire set of genes
through a quasi-likelihood method. GFOLD assumes uni-
form prior distribution (vague prior) of gene expression
level for technical replicate model. For data with biological
replicates, a hierarchical model with log-normal prior for
the gene expression is used to account for the biological
variation. The posterior distribution of fold change is
obtained through sampling. ShrinkSeq, which also takes a
Bayesian perspective, is presented in a framework of gen-
eralized linear model setting, which infers the DE coeffi-
cient in the GLM directly instead of inferring the gene
expression level first. ShrinksSeq explores both parametric
mixture prior and non-parametric prior for the DE coeffi-
cient and extends the INLAs (integrated nested Laplace
approximation) method to infer the marginal posterior
distribution under non-parametric prior and shows the su-
perior performance of non-parametric prior than paramet-
ric prior. EBSeq, similar to baySeq, ranks the genes/
isoforms by posterior probability of DE, but assumes a
parametric form of the prior distribution for the gene/iso-
form expression with parameters estimated from the data
by method of moments and EM. All the aforementioned
methods do not provide the close-form of posterior distri-
bution of fold change. Because sequencing of cDNA reads
is basically a sampling procedure, it is important to note
that a large number of genes are unseen in a typical RNA-
seq sample due to low expression or the limited depth of
the experiment. For example, only approximately 0.0013%
of the total number of available molecules in a RNA library
are sampled in one lane of a typical Solexa/Illumina GAIIx
RNA-seq experiment [25]. Further, the fact that a small
number of highly expressed genes consume a significant
fraction of the total sequence reads can also influence the
statistical inference procedures. These limitations affect the
estimation of DE or differences in relative transcript distri-
bution between samples. For almost all currently developed
RNA-seq DE methods, genes with low read counts are
usually omitted from the analysis because of unreliable es-
timation. Another issue is that a zero read count in one
condition leads to unrealistic estimation of fold change.
Here, we developed a novel method to model the RNA-

seq data and detect differentially expressed genes and



Bi and Davuluri BMC Bioinformatics 2013, 14:262 Page 3 of 12
http://www.biomedcentral.com/1471-2105/14/262
exons across different conditions. To mitigate the biases
caused by the nature of sampling and reliably estimate the
expression levels of those unseen and lowly expressed
genes, we adopted a previously developed Poisson mixture
model to empirically estimate the prior distributions of
read counts completely from the data [26]. We propose a
nonparametric, empirical Bayesian-based approach to
model the RNA-seq data. We prepared five datasets, three
simulated and two publicly available RNA-seq datasets,
for systematically evaluating the performance of the new
method. Also, the novel method is compared with the
other popular methods for RNA-seq DE analysis, both
using simulated and real RNA-seq datasets.

Implementation
A few of the earlier RNA-seq assessment studies have
reported highly reproducible results with little technical
variation [27,28], suggesting that the inclusion of technical
replicates in the experimental plan is usually not essential.
Numerous RNA-Seq studies have used the Poisson model
to perform testing for differential gene expression. The
Poisson model assumes equality of mean and variance of
read counts per gene across replicates. Therefore, pooling
technical replicates together to give read counts for each
biological replicate does not lead to loss of information.
Thus, we first discuss one replicate per condition and then
consider biological replicates.

Model for single replicate
Let γ be the expression level of one gene under one condi-
tion and x be the number of observed reads mapped to
this gene. It is well known that x follows a binomial distri-
bution and can be approximated well by a Poisson distri-
bution with mean λ = γdl, where 1 is the gene length and
d is the normalization constant reflecting the sequencing
depth. Given a prior mixing distribution G (with probabil-
ity density function g(λ)) on λ, the posterior distribution of

λ is g λð Þ λxe−λdx! =hG xð Þ , where hG(x) = ∫ λx/x ! e‐ λdG(λ) is a
G-mixture of Poisson.
A gene is expressed if, and only if, x ≥ 1. Conditioning

on x ≥ 1, x follows a Q-mixture of zero-truncated
Poisson hG(x)/(1 − hG(0)) or a mixture fQ( x ) of trun-
cated Poisson, where

fQ xð Þ ¼ hG xð Þ
1−hG 0ð Þ ¼ ∫

λx

x! eλ−1ð Þ dQ λð Þ;

dQ λð Þ ¼ 1−e−λ
� �

dG λð Þ
∫ 1−e−ηð ÞdG ηð Þ :

ð1Þ

Let nx denote the number of genes with exactly x reads
in the sample. The conditional nonparametric maximum

likelihood estimator Q̂ for Q is Q̂ ¼ argmax∑
x≥1

nxlogfQ xð Þ;
whose calculation is discussed in [29,30] and the calculation
details under the context of RNA-seq are provided in the
Additional file 1. There is a one-to-one mapping between

Ĝ and Q̂ from equation (1). The posterior distribution of λ

is then given by λ xeĝ λð Þ λxe−λx! =hĜ xð Þ
��� . An empirical Bayes

estimator for λ is

λ̂ ¼ Eðλ̂jxÞ ¼ xþ 1ð ÞhĜ xþ 1ð Þ
hĜ xð Þ : ð2Þ

Let λA and λB denote the read counts that represent
the true expression level of a gene and GA and GB de-
note the corresponding prior distributions, under con-
ditions A and B, respectively. However, as mentioned
previously, since NGS is like sequencing a set of sam-
pled reads from a pool of expressed sequences of gene,
the read counts that are obtained, say xA and xB, de-
note the corresponding reads counts obtained in con-
ditions A and B. The posterior distribution of log

d λAjxA
λBjxB

� �
, which is log fold change of expression level of

a gene, has a closed-form formula and is easy to derive,

because ĜA and ĜB follow probability distribution of
discrete form.
The normalization constant d can be inferred from

some previous available methods, for example the
methods proposed in DESeq or PoissonSeq [31]. This
can also be calculated based on the assumption that the
expected values of log-fold change of the majority of
genes are zeros,

E½logðd λAjxA
λB xBj Þ� ¼ 0 ð3Þ

Thus, we rank the genes by the values of E½logð λAjxAλBjxBÞ�
first and then estimate d by using the genes falling in the
(ϵ, 1 − ϵ) quantile of all those values. In this paper, we used
ϵ=0.25. That is, we used half of the genes to estimate d.
NPEBseq tests the hypothesis that the difference in the

gene expression level between conditions A and B is
above a user-defined cutoff Δ, i.e., the probability that

logðd λAjxA
λBjxB Þ

����� > Δ

����� ð4Þ

The default value for Δ is log(2). We consider this as
our own pre-defined p-value. The false discovery rate is
controlled with Benjamini-Hochberg adjustment.

Model dealing with biological replicates
RNA-seq datasets with large numbers of biological repli-
cates are increasingly generated by many laboratories
and consortia, for example, HapMap [32], ENCODE
[33], and TCGA projects [34]. TCGA data consists of
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hundreds of RNA-seq biological replicates for each can-
cer condition. Dealing with the large number of bio-
logical replicate data is challenging. Recent studies have
found that while the Poisson model is appropriate for
technical replicates of the same RNA samples, it can be
a poor fit for biological replicates. Here we propose a
hierarchical Bayesian model to account for the over-
dispersion in the read counts.
Let c denote the number of biological replicates for

one condition and we assume that

xij e Poisson djeij
� �

;
eij e Gamma λi; θð Þ;with mean ¼ λi and variance ¼ λiθ;
λi e G with g λð Þ denoting the pdf of G;

where xij is the number of reads for gene i and replicate
j; eij is the expression index; λi is the expression level of
gene i under this condition A; θ is the scale parameter
of Gamma distribution; and dj is normalization constant
for replicate j. The prior distribution G is inferred as be-
fore by using the sample that has the largest data depth
under each condition.
Here we are interested in inferring the posterior distri-

bution of fold change for each gene, in which the 1 will
be cancelled out, so simply letting l=1 does not
change the calculation. Let →xi ¼ xi1; xi2;…; xicð Þ and
→ei ¼ ei1; ei2;…; eicð Þ. Based on the aforementioned model,
the joint posterior distribution of eij, λi is given by

λi;
→eij→xieg λið Þ∏c

j¼1

1

Γ λi=θð Þθ
λi
θ

eij
λi=θ−1e

−
eij
θ djeij
� �xije−djeij

xij
� �

!

¼ g λið Þ∏c
j¼1

1

Γ λi=θð Þθ
λi
θ

eij
xijþλi=θ−1e

−eij
1
θ
þ dj

� �
djxij

xij
� �

!

It is known that marginal conditional →ei
→xi; λiÞðj follows

Gamma distribution and can be easily integrated out
(further details are given in the supplementary methods
sections). Thus, the log transformed marginal posterior
distribution of λi is given by

log λij x→i

� �e log g λið Þð Þ þ
Xc
j¼1

Xxij
k¼1

log 1þ λi=θ−1
k

� �

þ logθ
X
j

xij−
Xc
j¼1

xij þ λi=θ
� �

log djθþ 1
� �

The p-values and FDR can be computed by equation (4).
Empirical Bayes methods have been used to estimate

the degrees of over-dispersion in the data. Based on our
hierarchical model, we also propose an empirical Bayes
method to estimate the dispersion parameter θ. It is
known that the conditional variable xij|λi follows nega-
tive binomial distribution (mixture of Poisson with
Gamma prior) and the expected value and variance of it
are given by

E xij λi� ¼ djλi Var xij λi� ¼ λi 1þ θdj
� �

dj:
��	��	

Although the marginal distribution of xij is unclear,
the expected value and variance can be computed in the
following ways:

E xij
	 
 ¼ E E xijjλi

	 
	 
 ¼ djE λi½ �
Var xij

	 
 ¼ Var E xijjλi
	 
	 
þ E Var xijjλi

	 
	 

¼ Var djλi

	 
þ 1þ θdj
� �

djE λi½ �

So we estimate θ by,

Var xij
	 


−d2j Var λi½ �
djE xij

	 
 −
1
dj
:

Similar to the estimation of G, θ is also estimated by
using the sample that has the largest data depth under
each condition.

Differential exon usage analysis from RNA-seq data
RNA-seq also provides information for the study of al-
ternative splicing. DE analysis of individual transcripts is
essential in many comparative studies because of
isoform-level changes in gene expression between condi-
tions [9]. Recently, two tools, Cufflink [35] and BitSeq
[36], have been proposed to identify differential expres-
sion of transcripts by first estimating the expression of
the transcripts. The expression or abundance estimates
may contain significant correlated uncertainties that re-
duce the power for inference of differential expression
[37]. Another tool, DEXSeq [37], proposed an exon-
centric analysis to test for differential exon usage in
RNA-seq data based on a generalized linear model. The
input of DEXSeq is a table that contains read counts for
each exon of every gene in each sample. Note that one
exon may be cut into two or more parts if its boundary
is not the same in all transcripts. The basic unit for
counting the number of reads overlapped is called
“counting bin” in this manner, similar to the definition
of exon slice used in IsoformEx algorithm [3].
DEXSeq tests if each counting bin is differentially used

between conditions. Inspired by this, we propose a
method to detect different exon usage based on our
Bayesian hierarchal model. Assuming that a gene is
expressed under two different conditions, A and B, let
tAk and tBk denote the expression level of counting bin k
of this gene and tAk and tBk denote the observed read
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counts overlapping with it. The differential exon detec-
tion method involves the following steps:

1. The posterior distribution of tAk|yAk and tBk|yBk is
derived based on our model applied to counting bin
read count data.

2. Test the fitness of the distribution against the null
hypothesis: the proportion of the number of reads
overlapping with a counting bin to that of all the
reads overlapping with the gene does not change
between conditions (same as in DEXSeq).

3. Finally, define the p-value as the probability of

log tAkjyAk
E λA xA�j½ −log tBkjyBk

E λB xB�j½
��� ��� > Δ, where Δ denotes a

user-defined cutoff that represents the extent of
differential expression one wishes to identify
between conditions. For example, if Δ is set as log
(1/3), it will test if the exon inclusion level of an
exon is less than 1/3 or more than a three-fold
change between conditions. Such an extreme switch
of exon usage between conditions is a strong
indicator of functional alterative splicing events.
Within-condition quantile normalization
For cases without replicates, the normalization constant
can be computed by equation (3). With biological repli-
cates, dj can be computed by the method proposed
in DESeq or the trimmed mean of log-folder change
method [10]. Here we propose within-condition quantile
normalization based on the assumption that the distribu-
tions of read count data within conditions are common.
The samples in the same condition are first quantile nor-
malized relative to the one that has the largest data depth
and then equation (3) is applied to do the normalization
between conditions. Quantile normalization of read count
data for samples coming from different conditions might
not be proper due to the fact that longer genes have more
reads and they might be differentially expressed between
conditions, which can put the gene expression level in a
different scale within one sample. We compared this
within-condition quantile normalization to the method
proposed in DESeq for the simulated data and no signifi-
cant difference was present (results are not shown here).
For rest of this paper, we adopt the within-condition quan-
tile normalization procedure.
Datasets for simulation
We generated three simulation datasets to evaluate the
proposed method for identifying differentially expressed
genes. Dataset1 is generated with biological replicates by
assuming different priors across conditions, which
means GA and GB follow different statistical distribu-
tions. Dataset2 consists of no replicates and is generated
by following the simulation scheme adopted by baySeq
and edgeR. Dataset3 is generated by the same scheme as
dataset2 but with biological replicates.

Results
NPEBseq method
NPEBSeq is a nonparametric empirical Bayesian-based ap-
proach to model the RNA-seq data. The expression level
of genes with low read counts is estimated by borrowing
information from the gene expression in the whole sam-
ple. The non-parametric form of the prior distribution
avoids any unrealistic assumption. The parametric as-
sumption for the prior distribution is usually not fulfilled
for the RNA-seq read count data. The fact that there are
many genes expressed at low levels in one sample is illus-
trated in Figure 1, which is generated based on one sample
from Marioni’s RNA-seq dataset [27]. This plot clearly
shows that a large proportion of genes in a sample are
expressed at low levels. These genes could have a high im-
pact on the performance of statistical methods to identify
differentially expressed genes. The fact that there are large
numbers of genes/transcripts with low read counts and a
small number of genes with a significantly high number of
reads make any parametric assumption for the prior distri-
bution unrealistic.

Performance of NBESeq on simulated datasets
To evaluate the proposed method for identifying differ-
entially expressed genes, we first conducted a simula-
tion study.

Simulation 1 - Simulation with different priors between
conditions (dataset1)
To generate data similar to those produced by real RNA-
seq experiments, we first applied the empirical Bayes
method on publicly available RNA-seq datasets, which were
generated to compare liver and kidney transcriptomes [27].
The prior distributions of kidney and liver samples were
first estimated and then the data was normalized based on
the expected values. The corresponding dispersion param-
eter θ for each condition was also estimated.
Dataset1 consist of 20 independent simulations with

seven samples each for two conditions. The library
size of each sample is uniformly sampled from 300,000
to 900,000. Each sample was generated by a mixture
of negative binomial model with both the prior distribu-
tions and dispersion parameters estimated from Marioni’s
data. Each sample consists of 10,000 genes for computa-
tional efficiency.
We performed a comparative analysis of our method

with four popular methods, DESeq, edgeR, baySeq and
NOISeq, which are available as part of Bioconductor
packages at http://bioconductor.org [38]. The edgeR im-
plements two ways to estimate the dispersion parameter

http://bioconductor.org


Figure 1 Distribution of number of observed reads per gene for genes with read count less than 1000. The number of genes in a RNA-
seq dataset is shown in relation to number of mapped reads per gene. X-axis: number of observed reads per gene; Y-axis: frequency of genes.
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in its model, common dispersion and tag-wise disper-
sion. Both of them are studied here. baySeq provides
two choices of model (Poisson and negative binomial).
We adopted the negative binomial model for dataset1.
Both DESeq and edgeR provide p-values for ranking the
genes. baySeq provides log posterior likelihood ratio for
ranking the differential expression of genes. In the case
of NPEBseq, we rank the genes by p-values as defined in
equation (4). The purpose of this simulation is to com-
pare the ability of these methods to rank the genes in
order of differential expression. The true ranking order
of the genes is based on the fold change of differential
expression values between the two conditions.
We used the following criteria to compare the per-

formance of different methods. Given a cutoff point
τ (e.g. the number of genes declared significantly
expressed), the efficiency of a statistical method is mea-
sured by pτ, the expected percentage of the true first τ
DE genes being correctly declared as the first τ DE
genes. The average of estimated pτ is calculated from
the 20 replicates. The simulation results for dataset1 are
shown in Figure 2. The proposed NPEBseq method
outperformed other methods.

Simulation 2 - simulation with the same priors between
conditions (dataset2 and dataset3)
A simulation scheme similar to the one suggested by
Robinson and Smyth [39] is applied here to generate
dataset2 and dataset3. The library size of each sample
was uniformly sampled from 300,000 to 900,000. The
prior distribution of λ was assumed to be common be-
tween the two conditions and estimated from the liver
RNA-seq data of Marioni.
Dataset2 was generated by Poisson distribution and

dataset3 by negative binomial distribution, with the dis-
persion parameter estimated from the liver data. The
simulated data consists of 10,000 genes, and one-tenth
of those genes were set to be differentially expressed
(between condition A and condition B) with λA = bλB. In
order to produce both over- and under-expression in
our simulated data, 500 randomly selected genes were
set to have b=4 and the remaining 500 genes were set to
have b=1/4. Both dataset2 and dataset3 consist of 20 in-
dependent simulations. Dataset2 was generated without
replicates. Similar to dataset1 seven samples per condi-
tion per simulation were generated for dataset3. The full
ROC curves for dataset2 and dataset3 are shown in
Figures 3 and 4, respectively. Based upon examination of
these curves, the proposed NPEBseq method appears to
perform better than the other methods. The partial ROC
curves with false positive rate less than 0.2 are shown in
Additional file 2: Figure S1 and Figure S2, which indi-
cate that NPEBSeq performs as well as the other
methods. To clearly show that NPEBSeq can robustly
estimate fold change of genes with low read counts, the
estimated fold change of 10 genes from one sample of



Figure 3 ROC curves based on simulated dataset2. The programs evaluated are: DESeq, edgeR, NPEBseq and NOISeq. The method baySeq is
not shown due to its poor performance on dataset without replicates.

Figure 2 Simulation results of comparing the performance of DESeq, edgeR and NPEBseq on dataset1. The x axis denotes τ and y axis
denotes pτ.
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Figure 4 ROC curves based on simulated dataset3. The programs evaluated are: DESeq, edgeR, baySeq, NPEBseq and NOISeq.
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dataset2 by NPEBseq along with DESeq and edgeR are
shown in Table 1. For the cases with zero read count
under one condition, DESeq always gives infinite esti-
mation of fold change.

Real RNA-seq data analysis
To further evaluate our method, we tested it on two
published RNA-seq datasets.

Real RNA-seq data 1–Comparison based on one MAQC
dataset
We first applied NPEBSeq on the MicroArray quality
control (MAQC) dataset [40,41] and compared with
DESeq, baySeq, and edgeR. MAQC datasets contain
gene expression data from multiple platforms and are
extensively used in evaluating different data processing
Table 1 Estimated fold change of 10 genes from one sample

gene_ID 9995 9996 9511

Poisson mean under condition A 0.7741 1.4868 11.5416

Poisson mean under condition B 3.0318 5.8233 45.2038

TRUE fold change 4 4 4

observed #reads under condition A 0 0 2

observed #reads under condition B 4 2 37

estimated fc by NPEBSeq 2.5813 1.8077 13.2633

estimated fc by DESeq inf inf 18.6932

estimated fc by edgeR 60.4244 24.121 58.9655
methods. We downloaded the MAQC2 Illumina RNA-
seq data from http://www.ncbi.nlm.nih.gov/sra, which
contains seven technical replicates of brain reference
RNA samples and seven technical replicates of UHR
RNA samples. Tophat [35] was used for tag alignment
and counts for each gene were computed by means
of HTSeq Python package (http://www-huber.embl.de/
users/anders/HTSeq/), using the annotation of the
Ensembl genes and only reads that mapped to exons.
As part of the original MAQC project, around 1,000

genes were also chosen to be assayed by Taqman qRT-
PCR. Those qRT-PCR data were obtained from GEO
database, which contains four technical replicates for
each of the two samples. The qRT-PCR data were used
as a gold standard to benchmark the gene expression
values by RNA-seq. We analysed the qRT-PCR data
of simulated dataset2 using NPEBSeq, DESeq and edgeR

9032 9045 9030 9082 3 1

424.1334 5.2419 5.2419 112.1307 0.7741 86.6691

103.8228 1.2832 1.2832 27.4483 0.758 84.8622

4 4 4 4 1 1

365 34 13 89 0 80

111 0 1 83 4 72

3.3515 18.9702 5.8962 1.1168 2.5813 1.0156

3.2543 inf 12.8656 1.0612 inf 1.0996

5.3961 1192.127 29.3642 1.0736 60.4244 1.1299

http://www.ncbi.nlm.nih.gov/sra
http://www-huber.embl.de/users/anders/HTSeq/
http://www-huber.embl.de/users/anders/HTSeq/
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using the comparative Ct methods [42]. Finally, 407
genes were defined as DE and 119 genes were defined as
non-DE. Given the fact that not all the genes were
assayed by qRT-PCR, we followed the same procedure
that was applied in [15] to define the true positive and
false positive rates. Given a “DE” or “non-DE” call from
qRT-PCR, define a true positive (TP) as the event that
the test of interest calls a gene DE that qRT-PCR called
DE. A false positive (FP) event occurs when the test calls
a gene DE that qRT-PCR called non-DE. The true posi-
tive rate (TPR) is defined as

#TP and qRT−PCR is DEð Þ= total # genesð Þ
#qRT−PCR is DE= total # genesð Þ

and the false positive rate (FPR) is defined as

#FP and qRT−PCR is non−DEð Þ= total # genesð Þ
#qRT−PCR is non−DE= total # genesð Þ

Note that these are not the standard definitions of
TPR and FPR.
qRT-PCR data were annotated by RefSeq. The BioMart

R package [43] was used to convert the RefSeq genes
IDs for qRT-PCR to Ensembl genes ids.
The ROC curves from all the compared methods are

shown in Figure 5. Clearly, our proposed method has the
best performance in terms of sensitivity and specificity.
Figure 5 ROC curves based on MAQC2 real RNA-seq data: Compariso
NOISeq methods. We declared non-DE if its RT-qPCR absolute log-ratio w
Real RNA-seq data 2–Detecting differential usage of exons
from RNA-seq data
We also analysed the data by Brook et al. [44], where the
effect of the RNAi knockdown of “pasilla” was studied
by RNA-seq in the Drosophila melanogaster cell line.
The data was downloaded as part of DEXSeq package.
The data consists of four control samples and three
knockdown samples. The analysis at gene level by
NPEBseq reported 107 differentially expressed genes,
with nominal FDR control at 0.1 for the comparison of
control and knockdown. To access the specificity of the
NPEBseq method we performed in-condition compari-
son by making use of the fact that there are four bio-
logical replicates in the control group. We applied
NPEBseq for the comparison of two control samples ver-
sus the other two. NPEBseq reported zero differentially
expressed genes with FDR control at 0.1, which indicates
that NPEBseq has a very high specificity.
We then analysed Brook’s data at exon level. NPEBseq

found differential exon usage for 2,370 counting bins at
FDR 0.01 for between-condition comparison and 225
counting bins for within-condition comparison. We also
applied the newest version of DEXSeq on the exon data,
which reported 120 counting bins as DE at FDR 0.1. We
checked whether NPEBseq and DEXSeq could achieve
comparable results by computing the percentage of DE
called exons that are common in the two ranked lists
of exons generated by both programs. The results are
n of the performance of DESeq, edgeR, baySeq, NPEBseq and
as less than 0.2 and DE if its absolute log-ratio was greater than 2.0.



Figure 6 Percentage of DE exons that are common in the two ranked lists of exons generated by NPEBseq and DEXSeq programs.
While x-axis denotes the number of declared DE exons and the y-axis denotes the percentage of common calls between both the programs.
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shown in Figure 6. For example, we found that 74
counting bins (exons) were common among the top 120
DE counting bins called by each approach. And, further
examination revealed that among the top 120 DE
counting bins identified by NPEBseq, 12 were defined as
“untestable” by the DEXSeq method due to low read
counts in those counting bins. Since the p-value defined
in NPEBseq is different from the regular p-value, we
didn’t expect these two approaches to report similar
number of DE exons at the same FDR level.
Discussion
In this paper we developed a novel empirical Bayesian-
based approach to model the RNA-seq data. This
method has been widely used in ecology to estimate spe-
cies diversity [26]. The nonparametric form of the prior
distribution of the Bayesian model is empirically esti-
mated from the data. The expression level of genes with
low read counts are estimated by borrowing information
from the gene expression in the whole sample. For data
with biological replicates, we developed a hierarchal
Bayesian model to account for the over-dispersion and
proposed an empirical Bayesian method to estimate the
dispersion parameter. We also extended the model
to detect differential usage of exons from RNA-seq
datasets. The closed-form formula of the posterior distri-
bution makes the computation of any statistics very effi-
cient. At the final step, we evaluated the performance of
this method in detecting the differentially expressed genes
by conducting simulation and real RNA-seq data analysis.
There are many challenges still present in the process-

ing and analyses of RNA-seq data. For example, it has
been empirically observed that quantification of expres-
sion depends on the length of the biological features
under study (genes, transcripts, or exons), as longer fea-
tures tend to have more significant statistics than shorter
ones [45]. Also, it was recently shown that there exists a
sample-specific guanine-cytosine content (GC-content)
effect and the studies proposed normalization methods
by GC-strata to remove such effects [46,47]. Incorporat-
ing those factors into our model could further improve
the performance.
Delineating the gene expression at an alternative

transcript-level from RNA-seq data is still a very challen-
ging problem. Our recently published IsoformEx method
[3], based on non-negative least square, is aimed to esti-
mate transcript abundance. In future enhancements to
the proposed method we will integrate NPEBseq with
IsoformEx to identify DE at isoform-level.
Conclusions
NPEBseq can be applied to not only detect differential
gene expressions from the RNA-seq dataset with tech-
nical and biological replicates for both studied condi-
tions, but also to detect differential usage of exons. It is
robust, since it requires no limited assumptions to be
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made about the prior distribution of the data. NPEBseq
also provides the closed form of posterior distribution of
the fold change, which is useful for further analysis.

Availability and requirements
Project name:NPEBseq
Project home page: http://bioinformatics.wistar.upenn.
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Other requirements:No.
License:GPL (≥ 2)
Any restrictions to use: It is available for free download.
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