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Abstract
Many neurophysiological variables such as heart rate, motor activity, and neural activity are
known to exhibit intrinsic fractal fluctuations - similar temporal fluctuation patterns at different
time scales. These fractal patterns contain information about health, as many pathological
conditions are accompanied by their alteration or absence. In physical systems, such fluctuations
are characteristic of critical states on the border between randomness and order, frequently arising
from nonlinear feedback interactions between mechanisms operating on multiple scales. Thus, the
existence of fractal fluctuations in physiology challenges traditional conceptions of health and
disease, suggesting that high levels of integrity and adaptability are marked by complex
variability, not constancy, and are properties of a neurophysiological network, not individual
components. Despite the subject's theoretical and clinical interest, the neurophysiological
mechanisms underlying fractal regulation remain largely unknown. The recent discovery that the
circadian pacemaker (suprachiasmatic nucleus) plays a crucial role in generating fractal patterns in
motor activity and heart rate sheds an entirely new light on both fractal control networks and the
function of this master circadian clock, and builds a bridge between the fields of circadian biology
and fractal physiology. In this review, we sketch the emerging picture of the developing
interdisciplinary field of fractal neurophysiology by examining the circadian system’s role in
fractal regulation.
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I. INTRODUCTION
The human heart beats about once a second, but the actual time between beats varies from
beat to beat, by fractions of a second. It has been known for more than twenty years that
changes in the intervals between beats are not independent (Peng et al, 1995b; Stanley et al,
1992). Specifically, if the interval decreases from one pair of beats to the next, it is likely to
increase with the next pair of beats. The sizes of these incremental changes are also
organized, so a large change in either direction is likely to be followed by another large
change (Ashkenazy et al, 2001). Moreover, the dependence between intervals described
above holds beyond successive intervals, extending far forward and backward in time. In
fact, a healthy cardiovascular system seems to remember every adjustment it’s made for at
least the past 24 hours, combining that information with current conditions to make minute,
instant-to-instant adjustments in its rate of beating.

The result of these calculations is a scale-invariant or fractal pattern of increases and
decreases in heart rate – one exhibiting similar temporal fluctuation structures at different
timescales. Such patterns are a signature of complex, nonlinear dynamics. Their discovery in
heart-rate regulation is one example of the diverse translational efforts of researchers in the
life sciences, who have turned to concepts and techniques from modern statistical physics to
illuminate the intricacies of neurophysiological function and biological systems
(Bassingthwaighte, Liebovitch & West, 1994; Paraschiv-Ionescu & Aminian, 2009; West,
1990). Fractal patterns have been discovered in a wide variety of physiological variables
including gait (Hausdorff et al, 2001; Scafetta, Marchi & West, 2009), respiration (Fadel et
al, 2004; Peng et al, 2002; Suki, 2002), heart rate (Meyer & Stiedl, 2003; Peng et al, 1993)
and neural activity (Beggs & Plenz, 2003; He et al, 2010; Stam & de Bruin, 2004).

The fractal patterns present in physiological fluctuations are intrinsic, existing independently
of external driving forces (Hu et al, 2004b; Nunes Amaral et al, 2001). The classical theory
of homeostasis (Cannon, 1929) predicts that such intrinsic physiological fluctuations should
be dominated by random (Gaussian) noise, fluctuating around a homeostatic set point. But
the intrinsic fractal fluctuations seen in physiological systems are not completely random,
and they are more than just noise; while unpredictable, they have a complex temporal
organization that extends over multiple time scales.

Furthermore, the temporal structure of fractal fluctuations contains hidden information about
the health of the regulatory system producing them. Numerous studies in the last two
decades have provided evidence that fractal patterns are reliable and sensitive biomarkers of
healthy physiological function and of the alterations in function that accompany age and
pathology. In many cases, fractal analyses are better predictors of morbidity and mortality
than more classical biomarkers, suggesting that changes in fractal patterns may occur far in
advance of the changes in average measures which now define disease. For example, a
breakdown of fractal fluctuations in human heart rate occurs about ninety minutes before the
onset of atrial fibrillation (Vikman et al, 1999); is the best predictor of vulnerability to
ventricular tachycardia post myocardial infarction (Makikallio et al, 1997); and is the best
predictor of sudden cardiac death in elderly patients (Makikallio et al, 2001b), post-stroke
(Makikallio et al, 2004), and in heart failure (Huikuri et al, 2000; Makikallio et al, 2001a).

Given the association of fractal fluctuations and healthy physiological function, it is natural
to ask for the source of fractal fluctuations in physiology. Mathematical simulations show
that it is highly improbable that fractal patterns in physiology could result from something as
simple as the summation of regulatory mechanisms operating at different timescales
(Ashkenazy et al., 2001; Hausdorff & Peng, 1996; Ivanov et al, 2009). Rather, it is likely
that nonlinear feedback interactions between regulatory mechanisms are required to explain
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the presence of fractal fluctuations. Thus, fractal fluctuations may be a representation of the
degree of coupling between different components of a physiological system, and it has been
hypothesized that fractal patterns in physiologic outputs may reflect system adaptability and
integrity (Chiesa et al, 2010; Hu et al., 2004b; Hu et al, 2008; Peng et al, 1995b). However,
detailed and physiologically-relevant mechanisms for the production of fractal fluctuations
have yet to be uncovered.

A powerful analogy for fractals in physiology comes from modern statistical physics, where
fractal fluctuations have been explained in the context of so-called critical systems – systems
undergoing a transition from one stable state to another. As we will explain below, critical
systems are highly sensitive to perturbations, reacting with organized patterns of activity
spanning many scales. It has been suggested that the central nervous system might have
evolved to utilize something like criticality as an organizing principle, in order to maintain a
flexible repertoire of behavioral responses to an environment which is itself critical,
complex, and unpredictable (Chialvo, 2010). Similarly, physiological systems may employ
something similar to criticality as a control mechanism, thus avoiding responses to
environmental stimuli that are either too random to be relevant, or too rigidly ordered to be
appropriate.

A key feature of critical systems is that they are made up of a population of many simple
interacting units. The richness of the collective behavior of this population, exemplified by
the presence of fractality, cannot be derived from the properties of the individual units.
Rather, it emerges from system-wide interactions. It is unclear whether fractal fluctuations
are indicative of such collective behavior, of the cross-scale interactions between a handful
of distinct regulatory mechanisms, or of some mixture of the two. What is clear is that the
understanding of fractal patterns in physiology cannot be obtained with traditional reductive
approaches that focus on individual physiological processes operating at a single timescale.
Elucidating the principles governing fractal fluctuations in physiology will require an
integrative, holistic (systems-level) approach, based on a network view of multiple
component processes and their interactions. The mechanisms producing fractal patterns are
not the simple homeostatic control mechanisms of Bernard and Cannon (Cannon, 1929),
designed to maintain constant conditions through negative feedback regulation, but new
kinds of fractal control and fractal regulatory mechanisms.

In exploring fractal physiological control, we should be prepared for seemingly distant
physiological processes, operating at seemingly different temporal scales, to play a
surprising role in each other’s fractal regulation. In this review, we bring together recent
findings that have begun to provide a mechanistic understanding of the role of the circadian
system – a system known to be composed of a large number of relatively simple interacting
units, organized into sub-components which communicate with each other at a variety of
spatial scales – in fractal physiological control. These findings point to a central role for the
circadian system in fractal regulatory networks responsible for the time organization of both
heart rate and motor activity. They open the door to transferring the existing knowledge of
the circadian system to the domain of fractal physiology, while at the same time posing
entirely new questions to researchers in the field of circadian biology. We believe this
represents a turning point in the search for mechanistic and physiological explanations of
fractals in neurophysiology.

It is our hope that this paper will serve as an invitation to the rapidly growing field known as
fractal physiology, and in particular to its emerging interactions with circadian biology. In
addition to providing a brief overview of recent evidence regarding the fractal regulatory
function of the circadian system, we include a selective introduction to certain basic topics
and concepts related to circadian control and fractal regulation. Our emphasis is not on

Pittman-Polletta et al. Page 3

Biol Rev Camb Philos Soc. Author manuscript; available in PMC 2014 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



technical issues, and those interested in a more in depth look at fractals, criticality, and their
relation to biology will find a number of helpful papers in the references; Gisiger’s review
(Gisiger, 2001) is especially recommended. Nor have we attempted to provide an exhaustive
review of fractal physiology, a field that is over 20 years old, encompasses a variety of
physiological systems, methodologies, scales of organization, and conceptual approaches
(Gupta, Suryanarayanan & Reddy, 1997; Masters, 2004; McNamee, 1991; Ruttimann,
Webber & Hazelrig, 1992; Smith, Jr., Lange & Marks, 1996; West et al, 2003; Yan & Guo,
2012), and now has its own journal (West, 2010b). West’s recent review provides a valuable
overview of the subject (West, 2010a). Neither do we even gesture at a comprehensive
review of circadian biology. Intensive investigations of circadian rhythms in the past 100
years have provided great insights into the molecular and systems-level mechanisms
underlying the generation and orchestration of circadian rhythms in different physiological
systems, as well as the synchronization of these rhythms with external stimuli, and the
physiological consequences of their alteration with aging and disease. These aspects of
circadian research have been well summarized in previous review articles (Albrecht &
Eichele, 2003; Moore, 1996; Reppert & Weaver, 2002; Weaver, 1998).

The rest of the paper is organized as follows. We first define fractals, describe how the
fluctuations of variables in time can exhibit fractality, introduce quantitative measures of
these fractal patterns, and describe the significance of a few key types of fractal patterns. We
then discuss fractal patterns in physiology, with a focus on heart rate and behavioral activity.
We briefly cover the appearance of different fractal patterns at different timescales, the
presence of cross-scale nonlinear interactions in physiological fractals, the selective stability
and dynamical nature of these patterns, and these patterns’ alterations with changing
physiological states, aging, and disease. We then review theoretical work on fractal
fluctuations, introducing the theory of critical systems, and discussing the hypothesis that
fractality in physiological regulation is an emergent property of a multiscale network of
control nodes with nonlinear feedback interactions. We then highlight recent findings from
human and animal studies, which indicate the mechanistic links between the circadian
system and fractal regulation. In the last section, we present open questions suggested by
these findings.

II. SAME PATTERN, DIFFERENT SCALE
(1) Fractals in space and time

For our purposes, a fractal structure is one that exhibits similar complex patterns on many
different scales. Nested within the overall fractal structure are sub-regions which mimic that
structure. These sub-regions in turn contain sub-sub-regions reminiscent of the large-scale
structure, and so on. This self-similarity may occur in different ways: the sub-regions may
be exact or distorted copies of the overall structure, or they may simply share quantitative,
qualitative, or statistical properties with it. At one extreme, certain carefully chosen pieces
of the structure are identical to the whole after enlargement and possibly rotation (Figure 1,
left panel). At the other extreme, sub-regions of all sizes may share certain statistical
regularities (Figure 1, middle and right panels). Regardless, structures shared across scales
make it hard to discern how large a part of a fractal you are looking at, a property formally
expressed in the concept of scale invariance. Fractal structures are ubiquitous in biology and
the physical world, existing in the branching structures of trees and vascular systems, and
the irregular profiles of coastlines and mountains (Kamiya & Takahashi, 2007; Mandelbrot,
1982; Masters, 2004; Zamir, 2001).

A time series can also be fractal, if its temporal fluctuations are statistically similar at
different time scales (Figure 1). Rather than regularly spaced occurrences of large and small
values, fractal signals exhibit bursts of large values, which display their own sub-bursts of
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large and small values. These subbursts in turn contain sub-sub-bursts, and so on. These
nested patterns are typical of fractal signals, with the result that it is often hard to distinguish
between recordings of different lengths, provided that the vertical axis is scaled
appropriately to match the horizontal axis (Figure 1).

The fluctuations of a wide variety of physical, biological, and social signals exhibit fractal
properties. Examples include light emission in quasars, noise and conductance in electronic
devices, velocities of underwater sea currents (Gisiger, 2001), the flow of sand in an
hourglass (Schick & Verveen, 74), voltage changes across neuronal membranes (Verveen,
Derksen & Schick, 67), the sizes of insect populations (Rohani, Miramontes & Keeling,
2004), stock prices (Clauset, Shalizi & Newman, 2009), and even volume changes in music
(Jennings et al, 2004). Neurophysiological signals exhibiting fractality include spontaneous
motor activity (Hu et al, 2004a; Hu et al, 2007a), fluctuations in heart rate (Peng et al.,
1993), errors in rhythmic finger-tapping (Torre & Wagenmakers, 2009), variations in stride
length (Hausdorff et al., 2001), spontaneous cortical activity (Beggs & Plenz, 2003), and
synchronicity in multi-channel EEG recordings (Stam & de Bruin, 2004). A comprehensive
bibliography of the enormous volume of reports of fractal patterns in various signals can be
found at http://www.nslij-genetics.org/wli/1fnoise/. Within neurophysiology, fractal signals
are, themselves, found across multiple scales of organization – from cellular to tissue to
organ to entire organism levels – mirroring the nested fractal organization present at each
scale (Kello et al, 2007; Liebovitch et al, 2001; Teich et al, 1997; Varanda et al, 2000).

(2) Measuring fractality
The functions describing the statistical properties of fractal processes at different scales
(such as the probability distribution, rescaled range, power spectrum, auto-correlation, and
nonlinearity) have a power-law form (Figure 2). Roughly speaking, this means that if we
change the timescale over which we compute these statistics, and normalize the statistics
appropriately, we obtain identical values. On a log-log scale, such a power-law function
appears as a straight line, and the slope of this line – the exponent of the power-law –
characterizes the fractal fluctuations. In contrast, the absence of a power-law form in these
functions indicates a lack of fractality.

A variety of methods take advantage of these power laws to test for and characterize fractal
fluctuations. Perhaps the oldest is the Hurst exponent (Hurst, 51), which quantifies how the
rescaled range – the range of signal values divided by their standard deviation – changes
with timescale. The Hurst exponent is related to the exponent of the power spectrum, which
quantifies how the power of the signal’s oscillatory components changes with their
frequency. Briefly, the exponent of the power spectrum describes the relative contributions
of oscillations with different characteristic time scales to the signal – the lower the
frequency, the longer the timescale. An exponent of zero indicates that oscillations of all
periods contribute equally to the signal. A negative exponent indicates that oscillations at
long time scales – having low frequencies – dominate the signal, while a positive exponent
indicates that high frequency oscillations dominate the signal.

The exponent of the power spectrum is also related to the correlation properties of the signal
– how its value at one time depends on previous values. Another way to measure this is
through the exponent of the autocorrelation function, which quantifies how the correlation
between different segments of the signal decays as the time separation between those
segments increases. The relationship between the exponents of the power spectrum and the
autocorrelation function is intuitive, since the correlation between values at different times
depends on whether fluctuations at short or long time scales dominate. A power spectral
exponent of zero indicates an uncorrelated signal, in which the values at different times are
statistically independent. Positive power spectral exponents indicate an anticorrelated signal,
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in which the preponderance of high frequency oscillations means that positive values are
likely to be followed by negative values, and vice versa. Negative values of the power
spectral exponent indicate a correlated signal, in which positive values are likely to be
followed by positive values, and the values of the signal are likely to stay positive far into
the future. Such correlated signals are said to have long memory, since the state of the
system at one time affects the state of the system at far later times. In contexts where interest
is restricted to correlated signals, the sign of the power spectral exponent is often dropped to
make it positive, and we will follow this convention in the rest of the paper.

Many of the results we will mention employ a fractal analysis known as detrended
fluctuation analysis (DFA; Peng et al, 1994), which can be robustly applied to the kinds of
highly variable signals encountered in physiology. For a signal whose mean and standard
deviation are constant in time, DFA, Hurst, autocorrelation, and power spectral analyses
yield equivalent results. However, unlike the other techniques, DFA can be applied even to
signals that do not meet these criteria, a class which includes most physical and biological
signals. Furthermore, power spectral and autocorrelation analyses often give less reliable
results at short time scales compared to DFA, especially for signals of short duration (Figure
2).

In DFA, a signal is fit repeatedly with piecewise polynomial trends. As the size or scale of
the “pieces” composing the fit varies, so does the sum of squares of the residuals. Plotting
the sum of the squared residuals against the scale used to fit trends to the data yields a
fluctuation function (Peng et al, 1992). For a fractal signal, this fluctuation function has a
power law form (Figure 2). The exponent of the fluctuation function describes how the
changes in the signal at different time scales relate to each other. A signal having a DFA
exponent of 0.5 is random and uncorrelated. A signal having a DFA exponent above 0.5 is
correlated – so that positive values are likely to follow each other – and the higher the DFA
exponent, the further back in time such correlations exist. A signal having a DFA exponent
less than 0.5 is anticorrelated, so that a positive value is likely to be followed by a negative
value, and vice-versa.

(3) Fractality and complexity
Fractality in a signal is often interpreted as an indication of the complexity of the processes
producing that signal. One way to think of this complexity is as the amount of information
required to describe the signal. Not all fractals are equally complex, and the presence of long
memory in a signal is no guarantee of complexity.

We illustrate this point with three canonical signals. First, consider the signal known as
white noise, whose values are chosen at random from a normal distribution (Figure 3A). The
power spectrum, autocorrelation, and fluctuation functions of this signal are power-law in
form, indicating that it is fractal. However, the ease with which we can describe the signal –
each value is just a random number – indicates that it is not complex.

As we might guess from the uncorrelated nature of white noise, its power spectral exponent
is zero, indicating that it does not contain long range correlations. Long memory by itself,
however, is not enough to guarantee complexity. Cumulatively summing the values of a
white noise signal results in a signal known as red or Brownian noise (Figure 3C). The
summation introduces regularity and eliminates short-scale fluctuations, and Brownian noise
has a power spectrum with exponent of 2, indicating that it is highly correlated. However,
this signal can be described almost as easily as white noise can, as we have just done, and is
not generally considered complex.
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In contrast, the statistical properties of signals with a power spectral exponent close to 1
cannot be described as simply. These signals, known as pink noise, exhibit a fine balance
between the uncorrelated randomness of white noise and the correlated regularity of
Brownian noise (Figure 3B). For such signals, the relative magnitudes of fluctuations at
short and long time scales are similar (the power in each octave is the same), resulting in
both unpredictability and long memory. It is findings of pink noise which are cataloged in
the online bibliography mentioned above.

While such simple examples can provide intuition about time series exhibiting a given
scaling exponent, there are many aspects to complexity, and they are not all consistent with
fractal scaling. For example, the human cortical EEG – which many would argue is one of
the most complex signals known to science – has a scaling exponent close to that of
Brownian motion (He et al., 2010). Alternatively, by adding together oscillatory signals with
amplitudes inversely proportional to the square root of their frequency, one obtains so-called
spectral pink noise, which has a scaling exponent of 1 but debatable complexity. In practice
the complexity of a time series must be decided on a case by case basis, with reference to the
context of the investigation, as well as the source and the structural and statistical
characteristics of the signal. For these reasons, it is important to differentiate between fractal
signals using other measures of complexity besides scaling exponents. A number of
techniques for directly measuring the complexity of time series have been developed –
including multifractal analyses, approximate entropy, Lyapunov exponents, correlation
dimension, and so on. Other techniques of particular relevance to fractal physiology will be
discussed in Section 3.2.

Certainly, pink noise is produced by a number of interesting physical systems, and may be
generated by very complex mechanisms (see the discussion in Section 4). The combination
of long memory and unpredictability exhibited by pink noise are evocative of the types of
complex behavior seen in many biological systems. Most importantly, however, scaling
exponents around 1 are observed in most healthy physiological systems (Stanley et al., 1992;
Stanley, 1995), while exponents deviating from 1 are associated with disease and aging (see
Section 3.4). For this reason more than any other, signals exhibiting fractal fluctuations with
power spectral and DFA exponents around 1 are the fractals we are primarily concerned
with in this paper.

III. FRACTALS IN PHYSIOLOGY
(1) Fractal signals in the real world

It is possible for theoretical models of fractals to exhibit self-similarity or a single scaling
relationship at all scales, from infinitesimal to infinite. However, in the real world, such
fractal properties can only exist over a limited range of scales, due to limits on the sizes of
the system and its smallest elements. For example, the lung vasculature and the arborizations
of trees are widely held to be fractal, but their scale invariance stops abruptly at the cellular
scale, and again at the scale of the entire structure; it cannot continue down or up past these
limits to encompass all possible scales.

Similarly, sample length and sampling frequency place limits on the range of time scales
over which fractal patterns can be quantified in physiological variables. (DFA can be safely
used to quantify fractal fluctuations at time scales which, on the low end, contain
sufficiently many data points to confidently fit a polynomial trend, and on the high end,
break the sample into sufficiently many subintervals to confidently estimate the fluctuation
function; five is a reasonable benchmark for both numbers. Of course, the number of time
scales at which the fluctuation function is determined must also be sufficient to allow
confident estimation of the scaling exponent.) For example, human behavioral activity as
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measured by wrist accelerometry has been shown to exhibit fractality (with a DFA exponent
of ~0.9) over a range of time scales from 4 minutes up to 24 hours (Hu et al, 2007a), while
longer and shorter time scales have not been investigated.

In physiological systems, signals may exhibit different scaling exponents over different
scale ranges, perhaps due to different underlying control mechanisms. Thus, it is especially
important to report the time scales at which fractal fluctuations are observed. For instance,
healthy human heart-rate exhibits two scaling regimes (Figure 4; Peng et al., 1993; Peng et
al., 1995b). For very short timescales, less than 10 beats, healthy heart rate exhibits a DFA
scaling exponent of 1.5, indicating that heartbeat is relatively regular at these scales. For
longer time scales, from 10 beats up to ~3 hours, healthy heart-rate exhibits a scaling
exponent around 1. Such a change in the pattern of fractality at a specific scale has been
termed a crossover.

(2) Physiological fractals are manifestations of multiscale interactions
Simulations have shown that fractal fluctuations in heart rate and activity are highly unlikely
to be generated by simply adding multiple influences at different time scales (Ashkenazy et
al., 2001; Hausdorff & Peng, 1996; Ivanov et al., 2009). Thus, it is probably a general
misunderstanding to believe that complex physiological fluctuations are always caused by
the superposition of numerous intrinsic and external inputs, or that fractal fluctuations can
be modeled by simply summing established pathways.

Nonlinear relationships between oscillatory components at different frequencies are what
differentiate complex physiological time series from spectrally generated time series having
the same fractal scaling exponents. Multiple techniques are available for assessing such
relationships between scales. Nonlinear relationships between the phases of oscillations at
different frequencies can manifest in the correlation properties of the magnitude and sign
series derived from the increments of the time series. The magnitude series indicates the size
of changes in time series values from one time step to another, while the sign series indicates
the directions of these changes. These magnitude series lack correlation structures in
spectrally generated noise, but they exhibit strong correlation structures in physiological
time series. For example, for interbeat interval time series, the magnitude series is
correlated, while the sign series is anticorrelated (Ashkenazy et al., 2001; Ivanov et al.,
2009). Thus, a large change in interbeat intervals induces a bias towards large changes that
lasts for hours, with decrements and increments alternating far into the future, hinting at
underlying nonlinear interactions between scales.

More direct measures of cross-frequency coupling have emerged in neuroscience. For
example, nested oscillations – oscillations at a high frequency which occur preferentially
during certain phases of a lower frequency oscillation – may be an indication of dynamics
on a slow scale influencing dynamics on a fast scale. Such cross-frequency coupling is both
common and functionally significant in EEG data (Axmacher et al, 2010; Canolty & Knight,
2010; Darvas et al, 2009; He et al., 2010; Jensen & Colgin, 2007; Sauseng et al, 2008;
Scheffzuk et al, 2011; Tort et al, 2008), and has also been found in geological and financial
time series (He et al., 2010; Rennert & Wallace, 2009), but has yet to be assessed in
physiological time series.

(3) Fractals reflect intrinsic physiological dynamics, not simply environmental influences
The fractal fluctuations present in physiological systems persist even in the absence of
external stimuli. For instance, the fractal properties of heartbeat fluctuations in healthy
adults remain unchanged when subjects’ physical activity and postural changes are kept to a
minimum (Ivanov, 2006; Nunes Amaral et al., 2001). Similarly, fractal activity fluctuations
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are virtually identical from one healthy subject to another, and are unaffected either by the
changes in mean behavioral activity level that occur on different days of the week, or by
laboratory experiments in which behavior is highly restricted and controlled (Hu et al.,
2004a).

Fractal patterns do, however, change with physiological states, such as sleep (Bunde et al,
2000; Ivanov et al, 1999b; Kantelhardt et al, 2002) and exercise (Karasik et al, 2002). For
example, heart rate becomes increasingly regular (exhibiting higher DFA exponents) with
deeper stages of non-REM sleep (Bunde et al., 2000), and also becomes more correlated at
long time scales with exercise (Karasik et al., 2002). It has been suggested that the increased
long-range correlations during sleep reflect the influence of the higher cortical regions on
the autonomic nervous system (Bunde et al., 2000), but this hypothesis has yet to be tested.

One way to understand the selective stability of fractal patterns is to see fractals in
physiology as a signature of the default dynamics of a physiological system. In contrast to
the homeostatic view of physiology, which emphasizes what aspects of physiology are
constant over time, the dynamical, fractal view of physiology puts an emphasis on how the
physiological system changes over time, seeing the pattern of changes as an indication of the
underlying mechanisms – the pushes and pulls – that constitute the physiological system.
Fractal fluctuations are thus “the sound of the engine” of a healthy person. When the
physiological system “switches gears” dramatically – entering an entirely different control
regime such as sleep or exercise – we can expect the pattern of fluctuations to change as
well, as a different linkage of neurophysiological systems is put into play.

It is widely believed the rumble of the human engine represented by fractal fluctuations does
not correspond to a single gear, but rather a characteristic pattern of “gear shifts”. The gears
in question are often referred to as modes or dynamical regimes. Each mode has its own
patterns of change and characteristic timescale. Fractal fluctuations may be the signature of
a system in which a number of modes maintain a loose allegiance, with particular modes or
mixtures of modes transiently dominating the dynamics of the system. From this
perspective, the multiscale interactions present in physiological fractals may be a
manifestation of the competition between modes (Ivanov et al, 1998; Karasik et al., 2002),
or of the characteristic timing of jumps between modes (Allegrini et al, 2009; Allegrini et al,
2010). New methods for teasing apart the multiple dynamical modes present in
physiological time series may help clarify this picture.

This perspective also links fractal fluctuations to an important signature of biological
systems: namely, their ability to switch quickly between very different behaviors. The
mature brain, for example, shifts effortlessly between – and sometimes manages
simultaneously – different sensory modalities, tasks at different levels of cognitive
difficulty, and planning and action. This switching between multiple capabilities doesn’t
require large changes in system configuration or parameters, as would be the case for
example if neuromodulatory or hormonal signals were required to move from the planning
to the execution of motor sequences. Rather, these multiple operating regimes coexist stably
within one configuration. This coexistence of multiple behaviors or modes is known as
multistability.

(4) When good fractals go bad
Just as some fractals are more complex than others, and perhaps for the same reason, not all
fractal patterns are equally “healthy”. Numerous studies show that alterations of fractal
patterns and loss of complexity in physiological fluctuations are associated with aging,
pathological conditions and disease (Goldberger et al, 2002). For instance, fractal
correlations in gait are degraded (exhibiting lower DFA exponents) with aging and in
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Huntington’s disease (Hausdorff et al, 1996; Hausdorff et al, 1997), in a way related linearly
to the severity of impairment; inter-breath interval time series become closer to white noise
in elderly men (Peng et al., 2002); reduced fractal correlations of heartbeat intervals occur
with cardiovascular diseases (Goldberger et al., 2002; Huikuri & Makikallio, 2001; Ivanov
et al, 1999a; Peng et al, 1995a) and are associated with reduced survival (Huikuri et al.,
2000; Makikallio et al., 2004; Perkiomaki et al, 2001; Stein et al, 2005); and fractal
fluctuations in behavioral activity are progressively diminished with aging and more
disturbed in patients with Alzheimer's disease (Hu et al, 2009a). Similarly, there are
indications that the complexity of a physiological system reflects its ability to cope with
challenges: the baseline complexity of postural control dynamics in both healthy and
impaired elderly adults is correlated with the amount of postural sway observed during a
dual-tasking challenge condition (Manor et al, 2010).

There are two types of alterations or breakdown of fractal regulation: fluctuations either
become too random (exhibiting DFA exponents closer to 0.5) or become too regular (either
exhibiting DFA exponents closer to 1.5 or losing their fractal character; Figure 5). Too much
randomness reduces the system’s ability to orchestrate its subsystems appropriately in
response to external stimuli, while too much regularity restricts the functional
responsiveness of the system, making it vulnerable to catastrophic events. Both may occur in
physiological dysfunction. Gait becomes more random with aging and in Huntington’s
disease (Hausdorff et al., 1996; Hausdorff et al., 1997), and the time series of peak
expiratory flow is more random in asthmatics than controls (Frey et al, 2005). Regularity
can occur in two ways. As large scale fluctuations begin to dominate, if these large-scale
fluctuations are periodic, then the behavior of the system becomes dominated by a single
frequency, and the power spectrum of the signal loses its power law form. This can be seen
in the heart rate of patients with obstructive sleep apnea. On the other hand, if the large-scale
fluctuations are not periodic, the signal begins to exhibit a DFA exponent close to 1.5,
becoming similar to Brownian noise. An example occurs in congestive heart failure, where
the DFA exponent of beat-to-beat intervals at scales from 100 beats (about a minute and a
half) to 10,000 beats (~3 hours) averages 1.24, as compared to 0.9 in controls (Peng et al.,
1995b). A similar increase in the heart beat scaling exponent at large scales (11 to 8,000
beats) was found in healthy middle-aged and elderly adults (Pikkujamsa et al, 1999),
suggesting that the physiological changes leading to heart failure may be similar to age-
related regulatory changes.

Aging and disease may have different influences on fractal scaling over different ranges of
time scales, resulting in the appearance of crossovers absent in healthy young individuals.
For example, in elderly subjects and those with Alzheimer’s, the fractal pattern in behavioral
activity breaks down into two scaling regimes – one for scales less than ~1.5 hours, and
another at scales from ~1.5 hours to 8 hours. The large scale regime exhibits exponents
smaller than 0.9, and behavioral activity fluctuations are significantly more random than in
healthy young adults (Figure 6). Similarly, multiple changes in the fractal scaling of heart
beat fluctuations are observed in congestive heart failure. As discussed above, the heart rate
of patients with severe heart failure is more regular than that of controls at scales from 20
beats to around 3 hours. However, it is more random than that of controls at scales smaller
than 20 beats, exhibiting scaling exponents closer to 0.5 (Figure 4); (Peng et al., 1995b).

A universal mechanism behind the appearance of crossovers in physiological fractals, if
there is one, has yet to be elucidated. Experiments have shown that the fractality of small-
scale fluctuations in heart rate is altered by changing the sympathovagal balance (Tulppo et
al, 2005). These experiments are in accord with a statistical model, called stochastic
feedback, proposed to account for the crossover observed in the scaling of healthy heart rate,
and its alteration with congestive heart failure and during exercise (Ivanov et al., 1998;
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Karasik et al., 2002). In this model, the fractal fluctuations in heart rate result from the
competing influences of the sinoatrial node and the sympathetic and parasympathetic
branches of the autonomic nervous system, and the changes observed during heart failure
and exercise are the result of the dominance of one of these physiological components.
Intuitively, the stochastic feedback model agrees with the interpretation of fractal
fluctuations as resulting from the competition between dynamical modes operating at
different scales. However, it is physiologically simplistic, not yet well understood
mathematically, and cannot account for crossovers appearing in heart rate under other
conditions, or crossovers in behavioral activity fluctuations. Addressing these issues will
require significant further work.

A different approach to explaining the presence of crossovers in fractal time series lies in a
general model composed of a network of units which can be switched on or off (Amaral et
al, 2004). Each unit is coupled to its neighbors, and also to a number of units further away.
The state of each unit depends on its past states and the states of its coupled units, according
to simple rules which can be interpreted as approximating “integrate-and-fire” neurons
(Amaral et al., 2004). These rules are implemented with a certain amount of noisiness.
When the number of non-nearest-neighbor couplings and the noisiness of the units are tuned
to appropriate levels, the time series of the sum of their states exhibits fractal fluctuations. In
a paper on this model, Diaz-Guilera and colleagues observed in the caption of a figure that
as the number of distant units to which each unit is coupled increases, not only does the
scaling change from Brownian to white, but crossovers appear (Diaz-Guilera et al, 2007).
This tantalizing relationship between network connectivity and crossovers bears further
investigation, but at present all that can be said in general is that the appearance of
crossovers in aging and disease hints at an imbalance in the multiscale network of
mechanisms giving rise to fractal fluctuations, and a possible decoupling of control
mechanisms at different scales.

(5) Change is integral to healthy physiological function
Unaffected by external conditions, but altered in sleep, pathological conditions, and aging,
fractal fluctuations are not a reflection of extrinsic environmental influences. Rather, they
reflect important dynamical properties of the neurophysiological systems that produce them.
The intrinsic nature of fractal patterns in physiology, and their importance to healthy
physiological function, challenge the traditional theory of homeostasis (Cannon, 1929).
They suggest that rather than acting solely to minimize or reduce change, physiological
regulatory mechanisms actually incorporate some level of variability and fluctuation into
their healthy function.

In addition to changing our picture of health, the presence of fractals in physiology also
suggests a change in our understanding of disease (West, 2010). The changes in fractal
fluctuations that occur with disease reflect changes in the dynamics of the underlying
regulatory mechanisms. The loss or reduction of fractal fluctuations indicates a
physiological control system which is less complex, less adaptive to perturbations, and more
vulnerable to catastrophic events. The fact that these changes may precede changes in
average measures indicates that these dynamical changes are more important to the
definition of disease states than average measures.

Sleep, aging, and disease have in common diminished system integrity – a decline in
communication and coordination between different physiological mechanisms (Bashan et al,
2012). It has been hypothesized that fractal patterns in physiological fluctuations are a
measure of system integrity and adaptability (Chiesa et al., 2010; Hu et al., 2004b; Hu et al.,
2008; Peng et al., 1995b), and that interactions between the various components of the
autonomic nervous system (Ivanov et al., 1998; Karasik et al., 2002) and higher cortical
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regions (Bunde et al., 2000) are important for their production. However, meaningful and
detailed neurophysiological models of the mechanisms producing fractal patterns are still
lacking, and the underlying neural substrates of fractal physiological regulation are largely
unknown (see more discussion in Section 5.3).

IV. MODELS OF FRACTAL FLUCTUATIONS
There are many theoretical models capable of producing fractal fluctuations, ranging from
simple to complex, and each has its own implications for the physiological significance of
fractality. The pressing question in fractal physiology is to find theories with biological and
empirical relevance. Among the phenomena that any theoretical account of fractal
physiological fluctuations must explain are the selective stability of fractal fluctuations – the
fact that these fluctuations change with physiological states but not external stimuli – their
alteration and the appearance of crossovers with disease and aging, and their complex fine-
scale structure. Finally, any model of fractal fluctuations must make contact with the known
structural and functional realities of physiological systems.

Explaining the widespread presence of complex fractal fluctuations in physical systems has
been one of the most pressing open problems in physics. The search for universal principles
has led to a well-studied class of physical systems exhibiting complex fractal patterns in
both time and space, so-called critical systems (Stanley, 71). Criticality occurs in a system
composed of a large number of coupled units when the system undergoes a phase transition,
changing, for instance, from a stable state with random behavior, in which the units act
completely independently, to another stable state with ordered behavior, in which the units
exhibit fully correlated behavior. Examples of phase transitions are the change from liquid
water to ice, and from an iron bar to a magnet.

At the exact point of transition, the so-called critical point, the system achieves a balance
between randomness and order. Water can be brought to the critical point by tuning its
pressure and temperature precisely, obtaining a mixture of liquid water and ice crystals. A
magnet is critical when held at the critical or Curie temperature, the temperature above
which it loses its magnetization. Fractality emerges only at the critical point, with the
appearance of strongly correlated clusters of units, of sizes ranging from small to large to the
system size, having a highly organized fractal structure. Figure 7 shows the emergence of
multiscale, fractal structures in the spin dispositions of a model of magnetization at the
critical temperature. These fractal structures are a manifestation of the long-range
interactions that emerge at the critical point, when local interactions are strong enough to
link the states of distant units, but before a global ordering renders those interactions
insignificant (Stanley et al, 2000). The activity of these systems is organized into a scale-
free network of functional coalitions (Turalska et al, 2012) and may exhibit fractal
fluctuations (Matsumoto, Saito & Ohmine, 2002). Overall, the system at the critical point
exhibits a high degree of heterogeneity – with structure and function varying from one
location to another – as well as self-similarity, and functional and structural relationships on
all scales. Balanced as it is between randomness and order, the state of the system at the
critical point can change dramatically as a result of even small shifts in the controlling
parameters, for instance temperature. These properties emerge from the collective behavior
of a population of interacting units, and cannot be predicted from those units’ individual
properties.

The appeal of criticality to provide a unifying theoretical framework for the observation of
fractal fluctuations in biological and human systems is undeniable, especially in social and
neural systems, where the relevance of theories describing the collective behavior of large
numbers of similar, interacting units is plain. As such systems are not easily cast into the
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framework of statistical physics, a number of alternative “routes to criticality” have been
proposed. One notion is that criticality might emerge in a system with many degrees of
freedom that is perched on the edge of chaos, just before the parameters describing the
system plunge it into turbulent, irregular, and unpredictable dynamics (Gisiger, 2001).
Another is that criticality might emerge spontaneously in a system that is dominated by
internal interactions, and slowly driven by its environment (Bak, Tang & Wiesenfeld, 1987;
Dickman et al, 2000; Turcotte, 1999; Turcotte, 2001). Such a system evolves to the edge of
stability as its energy is continually built up by interactions with the environment and then
released unpredictably, at all timescales and in all quantities.

Regardless of how they are instantiated, it has been suggested that the properties of critical
systems – existence on the edge of stability, large-scale correlations or long memory, and
responses at all scales – might serve an adaptive role in biological systems (Chialvo, 2010).
This hypothesis has been paid special attention to in neuroscience, where it has a long
history (Hopfield, 82). Models incorporating various degrees of neurophysiological realism
have been shown to exhibit various features of criticality (Rubinov et al, 2011), and models
in which features of criticality are incorporated or arise have been shown to be biologically
adaptive in various ways. For example, model networks of sensory neurons have been
shown to exhibit maximum dynamic range when the interactions between neurons have
been tuned to a critical level, so that the interactions are strong enough for small stimuli to
elicit measurable responses, yet weak enough to avoid explosive, self-sustaining responses
to large stimuli (Kinouchi & Copelli, 2006). A model of learning based on negative
feedback illustrates how a system poised on the edge of stability, in which one behavioral
response is just barely preferred over another in a given context, allows for rapid switching
between behaviors to meet the demands of a changing environment and for easy recall of
behaviors that were adaptive in the past (Bak & Chialvo, 2001; Chialvo & Bak, 1999). It has
been suggested that the global instability of criticality may allow neurophysiological
systems to reshape themselves dramatically and rapidly, entering different dynamical states
with slight changes in neurophysiological parameters – for example, concentrations of
neuromodulators (Chialvo, 2010). The long memory of critical systems may provide the
mechanism by which similar stimuli elicit very different responses from a
neurophysiological system at different times. Dynamic range and long memory together
might allow critical neurophysiological systems to persist through disturbances which are
large in magnitude but small in significance, while responding dramatically to small but
significant details – a property which hints at multistability. Thus many simulations and
models suggest that criticality may play an important role in neurophysiological systems. At
the very least, parameters describing the connectivity or interaction strength between
components in a system must be tuned precisely, by one mechanism or another, in order for
the system to both produce power laws and function optimally with regard to a number of
performance measures.

However, all that is known for sure is that the fractal fluctuations in physiological systems
arise from nonlinear interactions between physiological processes at multiple timescales. It
is unknown whether these multiscale interactions reflect the coordination of a handful of
dissimilar processes, each operating at their own characteristic scale, or, as the theory of
criticality suggests, whether they arise from the coordinated behavior of large numbers of
similar units, as they come together to produce functionally coherent ensembles operating on
all time and space scales.

While alternatives to criticality, emphasizing built-in functional and structural heterogeneity
across scales, rather than self-similarity, have been proposed in the systems biology
community (Carlson & Doyle, 1999; Carlson & Doyle, 2000), the boundary between these
two perspectives is rapidly eroding. Researchers are investigating the effects of
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heterogeneity in systems of interacting units (Laing et al, 2012; Pikovsky & Rosenblum,
2008; Pikovsky & Rosenblum, 2011; Rajendran & Kevrekidis, 2011), as well as how
multiple networks of similar units might interact with each other (Brummitt, D'Souza &
Leicht, 2012; Buldryev et al, 2010). Indeed, such investigations have already shed light on
the physiological importance of pink noise, by showing that the optimal information transfer
between two networks occurs when both operate at a critical regime and produce pink noise
outputs (Aquino et al, 2011; Turalska et al., 2009). Such models might be particularly
important for physiology, insofar as individual organs are often composed of many identical
or similar interacting units (e.g., the heart and the brain) and exhibit self-similar structures
(the lungs and the brain again), while the physiological system as a whole is made up of
multiple distinct and diverse organs which exchange information and material with each
other (Bashan et al., 2012). In the same way, biological organization at different levels –
such as cells, organs, organisms, and ecosystems – may exhibit features of criticality, while
interactions across levels may be characterized by some other mechanisms.

What is clear is that fractal dynamics pose a major challenge to contemporary efforts aimed
at developing realistic models of physiological control. Mathematical and statistical
concepts, such as infinitely autoregressive processes, fractional Brownian motion, and the
fractional calculus (West, 2010), can replicate the kinds of fractal signals found in
physiology (Anteneodo & Chialvo, 2009; Torre & Wagenmakers, 2009), but there is as yet
no mapping between these concepts and the known structure and function of physiological
systems. No precedent exists in physiology to account for dynamics with multi-scale
complexity. Traditional models focus on one physiological process operating at a particular
time scale, and cannot explain control processes operating at multiple time scales. To
account for fractal control in physiology, new systems-based approaches are needed to
obtain holistic views of the component systems and their interactions. Ideas from complexity
theory – which led to the discovery of fractal patterns in physiology (Peng et al., 1993) – and
network theory (Newman, 2003) will probably be useful in understanding the mechanisms
behind, and the meaning of, these patterns. We believe that extending existing network
models to make them more specifically relevant to fractal physiological regulation will be an
important direction for future theoretical research.

V. THE ROLE OF THE CIRCADIAN SYSTEM
Based on a variety of empirical and theoretical results (see Sections 2, 3, and 4), it has been
hypothesized that fractal physiological fluctuations reflect the integrative function of a
complex network of regulatory processes interacting nonlinearly across a range of temporal
and spatial scales (Ashkenazy et al, 2002; Ivanov et al., 1998). This control network can be
contrasted with homeostatic mechanisms of control operating at specific scales. West has
proposed that the process giving rise to fractal fluctuations be termed allometric control
(West, 2010). For conceptual simplicity, we will refer to a control network responsible for
fractal fluctuations as a fractal control network or fractal regulatory network, without
insisting that its components or its organization exhibit fractal properties themselves. The
crucial first step in building a meaningful physiological model of the network responsible
for fractal regulation is to identify the control nodes of that network. In this section, we will
review recent findings that provide insights into the involvement of the circadian system in
the fractal control network.

(1) The mammalian circadian system
The circadian system generates and coordinates circadian rhythms in a wide range of
neurophysiologic functions in synchrony with sleep/wake cycles (Reppert & Weaver, 2002;
Schwartz, 2002), an example of optimizing physiology and behavior to the anticipated
environmental alterations that occur across each day and night. The endogenous control of
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these circadian rhythms involves a complex network of coupled central neural nodes that
interact with peripheral organs and systems through numerous neural and humoral feedback
loops (Sakamoto et al, 1998; Yamazaki et al, 2000). The mammalian circadian pacemaker is
located in the suprachiasmatic nucleus (SCN), containing tens of thousands of neurons that
can act as cell-autonomous oscillators (Welsh et al, 1995). In animal studies, lesioning the
SCN results in a cessation of circadian rhythmicity in core physiological variables such as
heart rate, body temperature and motor activity (Moore & Eichler, 72; Scheer et al, 2005;
Scheer et al, 2001; Stephan & Zucker, 72). SCN-lesioned mice receiving SCN transplants
from conspecifics having an altered circadian period (of 20 rather than 24 hours) exhibit
circadian rhythmicity in behavioral activity with the period of the donor, proving the SCN’s
role as a circadian pacemaker (Ralph et al, 1990).

Recent studies have shown that cells in peripheral organs such as heart and liver have their
own circadian clockwork (Balsalobre, Damiola & Schibler, 1998; Damiola et al, 2000; Hara
et al, 2001; Yamazaki et al., 2000; Yoo et al, 2004). These peripheral circadian clocks can
operate independently of the oscillators in the SCN and generate oscillations of ~24 h in the
function of the peripheral organs. Nevertheless, the SCN is still the master clock that in
healthy individuals synchronizes all peripheral clocks. Such synchronization is clearly
important for optimally integrated function of the body because disruption of the
synchronization, as occurs for example in humans during shift work, is associated with an
increased incidence of cardiovascular diseases (Kawachi et al, 1995; Knutsson et al, 1986;
Tuchsen, Hannerz & Burr, 2006), gastrointestinal complaints (Caruso, Lusk & Gillespie,
2004; Vener, Szabo & Moore, 1989), sleep disorders (Schwartz & Roth, 2006), and
increased risk for obesity (Karlsson, Knutsson & Lindahl, 2001) and diabetes (Kroenke et al,
2007).

(2) A circadian rhythm in fractal cardiac dynamics
Hints of the possible link between the circadian system and fractal regulation can be traced
back to early studies that show a difference in fractal cardiac dynamics between the
biological day and the biological night (Ivanov et al., 1999b; Otsuka, Cornelissen &
Halberg, 1997; Yum et al, 1999). Heartbeat fluctuations in healthy adults were found to be
less regular during the night time than during the day time (showing a change in DFA
exponent of ≈ 0.2; Ivanov et al., 1999b). The same study also reported a similar difference
between the day and night time in subjects with severe heart disease and between sleep and
wake periods in cosmonauts during orbital flight (Ivanov et al., 1999b). Though the authors
attributed the alterations in fractal patterns to differences between sleep and wake, circadian
influences may also have contributed to these alterations, because the sleep-wake and
circadian cycles are normally synchronized.

To separate endogenous circadian influences from the influences of the behavioral (sleep-
wake) cycle, our group previously investigated fractal cardiac dynamics in humans using a
forced desynchrony (FD) protocol (Hu et al., 2004b). In this protocol, the sleep-wake cycle
was adjusted to recurring 28 hour “days” during which subjects were kept in dim light
conditions, allowing their circadian pacemakers to “run free” at the inherent period of ~24.2
hours, and thus dissociating the imposed sleep-wake cycle from the intrinsic circadian cycle.
Under these conditions, we found an endogenous circadian rhythm in fractal heartbeat
fluctuations at short time scales (between ~4 and ~60 minutes) with a sharp peak in the DFA
exponent at the circadian phase corresponding to ~10AM (Figure 8), top panel). This finding
provided the first indication that the circadian system is involved in fractal cardiac
dynamics.

The circadian rhythm of fractal cardiac dynamics in humans at these small scales was later
confirmed using a complementary experimental protocol, the constant routine (CR), in
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which subjects remained awake in dim light, maintaining constant posture and consuming
equispaced isocaloric snacks, for a prolonged period of 38 hours (Figure 8), middle panel;
Ivanov, 2006). Rhythms in fractal scaling of heart rate were also found in rats during
constant dark conditions, suggesting that there may be a common mechanistic link between
the circadian clock and fractal cardiac control mechanism in mammals (Hu et al., 2008).
Moreover, lesioning the SCN in rats completely abolished the circadian rhythm (Figure 8),
bottom panel), demonstrating that the circadian pacemaker is crucial for the circadian
rhythm in fractal cardiac control.

These findings are also important from the perspective of cardiovascular pathology. The
degree of circadian change in the DFA exponent (a peak increase of 5% from the average
value) is reminiscent of the increase in this exponent seen in pathological conditions such as
congestive heart failure. Furthermore, the time of the peak in the DFA exponent coincides
with the morning peak in occurrences of cardiovascular events (Muller et al, 1985; Willich
et al, 1987). Thus, the circadian rhythm in fractal heart rate scaling provides indirect
evidence for an endogenous circadian influence on daily patterns of cardiovascular risk. It is
important to determine whether the circadian rhythm of fractal cardiac control persists with
aging and under pathological conditions such as congestive heart failure. These results will
provide further useful information about the relevance of circadian control to the peak in
cardiac risk during the morning (Muller et al., 1985).

While these results provide strong and consistent evidence that the circadian pacemaker
generates an endogenous ~24 hour rhythm in fractal cardiac control, there are also intriguing
differences to be observed. For instance, note that the circadian rhythm in the fractal scaling
of heartbeat fluctuations in these two species (diurnal vs. nocturnal) has the same phase
relative to their common circadian rhythms in SCN neural activity or melatonin secretion
(Buijs et al, 2006; Meijer, Rusak & Ganshirt, 1992; Scheer, Kalsbeek & Buijs, 2003), while
having the opposite phase relative to their activity-inactivity cycles, which are themselves in
phase opposition between (diurnal) humans and (nocturnal) rats. Also, the circadian profile
of the heartbeat scaling exponent is slightly different between the FD and CR protocols. The
peak of the exponent was at a circadian phase between 60°–90° (corresponding to circadian
time 9–11AM) during the forced desynchrony (FD) protocol and at ~120° (circadian time
~1PM) during the constant routine (CR) protocol; and the circadian rhythm in the CR is
close to a simple sinusoidal waveform while a better description of the rhythm in the FD
requires additional harmonics. These differences may be caused by individual variations in
the circadian influence on fractal cardiac control (9 subjects participated in the CR, while
only 6 participated in the FD), or by differences in the two protocols themselves. There is
accumulating evidence that the circadian and behavioral influences on physiological
functions may be not simply additive (Scheer et al, 2009) and that endogenous circadian
rhythms are not necessarily unchangeable (Scheer et al, 2007; Wehr, 1991). Thus, it is
possible that the desynchronization introduced in the FD and the sleep deprivation
introduced in the CR could have modulated the circadian rhythmicity of physiological
functions, including fractal cardiac control. How circadian influences on physiological
functions change under different environmental conditions is an area of considerable
research activity in circadian biology, and the interactions between such changes and fractal
regulation is an important topic for further study.

(3) The central circadian pacemaker is a major node in the fractal control network
It is well known that the circadian system generates and coordinates rhythms of ~24 hours in
numerous physiological functions (see Section 6.1). From this point of view, the circadian
rhythm in fractal scaling of cardiac output at time scales smaller than ~60 minutes might not
be very surprising. Neither does it have much direct impact on the mechanistic
understanding of the fractal control network, because fractal regulation at these time scales
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persists even without the central circadian pacemaker, indicating that the SCN is not
essential for fractal regulation at these scales (Hu et al., 2008).

More surprising are recent studies exploring fractal patterns in activity and heart rate at
longer time scales. In rats, we found that lesioning the SCN led to the disappearance of
fractality in motor activity fluctuations at time scales between ~4 and 24 hours (Hu et al.,
2007a). Specifically, activity fluctuations at large time scales resembled white noise after the
SCN lesion (showing DFA exponents of ~0.5, Figure 9). In other words, SCN ablation
introduced a crossover in the scaling behavior, indicating a decoupling of the control of
activity over short and long time scales. Similar effects of SCN lesions were also observed
in heart rate fluctuations in rats (Hu et al., 2008). These findings provided the first evidence
that the SCN is a major node in the network of fractal regulation, playing an essential role in
generating fractal heart rate and behavioral activity patterns at large time scales. For
researchers in circadian biology, these findings are surprising, suggesting the SCN has
regulatory functions at multiple time scales, and not only at the circadian time scale of ~24
hours. These findings pose a challenge to current statistical models of fractal fluctuations
and crossovers in heart rate, which do not yet incorporate the SCN or account for crossovers
around 4 hours (Ivanov et al., 1998).

Additionally, lesioning the SCN affected fractal regulation at time scales less than ~4 hours,
introducing more regularity in activity and heart rate fluctuations, as indicated by slight but
significant increases in the respective DFA exponents (a change of 0.17 for heart rate and
0.09 for behavioral activity). Thus, the SCN lesion also perturbs the fractal control network
responsible for fractal regulation at small scales. It remains to be seen whether this altered
fractal regulation has any adverse consequences for health.

Possible evidence for a similar role of the SCN in humans comes from our recent study
showing that fractal activity regulation at large time scales (between ~2 hours and ~8 hours)
was reduced (DFA exponent closer to 0.5) in elderly subjects, and further reduced in elderly
subjects with Alzheimer’s disease (AD, Figure 6; Hu et al, 2009a). The alteration resembles
the change observed in SCN-lesioned animals, and both aging and AD are accompanied by
SCN dysfunction, suggesting that the SCN may play the same role in fractal regulation in
both humans and rats. Of course, AD is accompanied by decreased neuronal function at
many sites. Determining the extent to which AD-associated alterations in fractal activity
patterns specifically reflect dysfunction or neuroanatomical change in the SCN will require
further study. Furthermore, long-term treatment of AD with bright light and melatonin was
recently shown to help restore disrupted circadian control (Riemersma-van der Lek RF et al,
2008), possibly by restoring SCN function. Thus, it would be interesting to test whether light
and melatonin can also improve fractal regulation in AD patients.

(4) The SCN carries out multiple independent roles, and does not act alone
A related question is whether the role of the SCN in fractal control can be dissociated from
its role as a circadian pacemaker. Evidence that the two functions are independent comes
from a recent study (Chiesa et al., 2010) in which constant bright light was used to render
rats arrhythmic – that is, to eliminate circadian rhythms in their activity. This light condition
did not abolish fractal patterns in their activity. Instead animals showed stronger fractal
correlations in motor activity fluctuations over the time scales from ~4 hours to 24 hours.
More interestingly, Chiesa et al. reported that the condition of constant darkness led to a
decrease in fractal correlations, bringing motor activity fluctuations towards white noise
(more random). Since arrhythmicity induced by constant bright light is associated with the
desynchronization of SCN oscillators (Ohta, Yamazaki & McMahon, 2005), Chiesa et al.
hypothesized that the increase in long memory under bright light conditions reflects the
increased predictability of individual SCN oscillators in this uncoupled condition. The
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authors also drew the conclusion that the presence of fractal regulation does not require
circadian rhythmicity. This is consistent with our previous finding in humans that fractal
activity patterns remained unchanged while the circadian rhythm of mean activity level was
abolished during a constant routine protocol (Ivanov et al, 2007).

If the circadian rhythmicity of activity and heart-rate can indeed be dissociated from their
fractal control, it may shed some light on the puzzling ability of the SCN to generate and
coordinate ~24 hour rhythms while simultaneously contributing to fractal regulation at a
wide range of shorter time scales. Specifically, the SCN is responsible not only for
synchronizing circadian rhythmicity in a variety of physiological systems, but also for
adjusting that circadian rhythmicity to maintain optimal functionality in the face of
constantly changing environmental conditions. For instance, even a single 1–2h exposure to
light at a specific time can lead to a significant phase shift of the human circadian clock
(Canton et al, 2009; St Hilaire et al, 2012); scheduled food availability and intake in animals
can accelerate the re-entrainment of the circadian clock with shifted light-dark cycles
(Angeles-Castellanos et al, 2011); and the neural connectivity of the SCN can re-organize
when the period of the light-dark cycle, or the duration of light exposure, is altered (de la
Iglesia et al, 2004; Gorman, Yellon & Lee, 2001; Naito et al, 2008; Yan, Silver & Gorman,
2010). In a healthy circadian network, these dynamic responses and changes should persist
even when external conditions abolish or desynchronize circadian rhythms in
neurophysiological functions. It may be the integrity of these circadian dynamics, rather
than merely the circadian system’s current state of synchrony or desynchrony, that underlies
the contribution of the SCN to fractal activity regulation.

Another important question is what the relationship is—if any—between the SCN’s roles in
the fractal regulation of activity and that of heart rate. A recent study addressed this issue by
investigating circadian rhythmicity in the fractal scaling of heart rate and activity, in the
context of forced-desynchrony and constant-routine protocols (Ivanov, 2006). In both
protocols, fractal scaling of activity exhibited significant 12-hour rhythmicity, but not
circadian rhythmicity. Contrasting this result with the (~24-hour) circadian rhythmicity in
heart rate scaling, the authors suggested that the fractal regulation of activity and heart rate
are not coupled in a simple way.

Precisely how the SCN generates fractal fluctuations in activity and heart rate at long time
scales, and modulates fractal fluctuations at short time scales, is unknown. To investigate
whether the neuronal network within the SCN generates fractal patterns, or whether
feedback interactions between the SCN and other control nodes are required for fractal
regulation, we recently performed fluctuation analyses of the multi-unit neural activity
(MUA) of the in vitro and in vivo SCN in mice and rats (unpublished observations). MUA
was measured from the SCN using tripolar stainless steel electrodes, and the number of
action potentials crossing a preset threshold (~5SV) was counted by a computer in 10
second bins. In vivo SCN-neural activity exhibited fractal patterns similar to motor activity
at time scales from minutes up to 10 hours. The DFA scaling exponent α characterizing the
fractal pattern of in vivo MUA was virtually identical in mice and rats, and remained the
same during light-dark cycles (LD, 12h:12h) and during constant darkness (DD): α
=1.04±0.03 (SE) for mice in LD; 1.04±0.01 for rats in LD; 1.04±0.03 for mice in DD;
1.11±0.04 for rats in DD. In vitro, however, the MUA of the SCN does not exhibit power-
law fluctuations at all, indicating a complete lack of fractality. Instead, in vitro SCN activity
shows fluctuations that grow super-exponentially at large scales and decay
superexponentially at small scales. These results indicate that it is not the activity of the
SCN in isolation, but the activity of the SCN in concert with other physiological
mechanisms that leads to fractal fluctuations in physiological output.
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VI. SUMMARY AND OUTLOOK
The studies that we have reviewed show that the SCN is a crucial control node in the
network responsible for fractal physiological control of heart rate and behavioral activity.
The SCN is critical for fractal fluctuations in behavioral activity and heart rate at long time
scales, and modulates fluctuations in these variables at short time scales. The SCN does not
produce these patterns on its own, but rather through interactions with an unknown network
of physiological regulatory agents. It appears that the SCN’s role in fractal regulation is
independent from its role as a circadian pacemaker, and that its influences on fluctuations in
behavioral activity and heart rate are likewise independent.

These facts challenge our current understanding of the SCN, but they also provide an
opportunity to translate knowledge from circadian biology into fractal physiology. They
provide a first step towards a fully mechanistic understanding of fractal patterns in
physiology, and represent the beginning of the journey to identify the circuitry and
ultimately build meaningful network models of fractal physiological regulation. Below, we
outline important questions to be addressed, hopefully helping to establish a roadmap for
future study in the new interdisciplinary field of fractal physiology.

(1) Methodological Challenges
As we have tried to demonstrate, the careful quantification of fractal patterns in
physiological systems – including the use of robust analyses such as DFA, the specification
of the specific scales over which fractal patterns appear, and alertness to the presence of
crossovers and their significance – are crucial to continued investigations into fractal
physiology. In addition, given the variety of mathematical models of fractal fluctuations,
from the fractional calculus (West, 2010) to stochastic feedback (Ivanov et al., 1998;
Karasik et al., 2002) to network models (Amaral et al., 2004), we echo the call of He et al.
for the use of other data analysis techniques to further characterize and discriminate between
the fractal fluctuations associated with different systems. Data analysis techniques which
simply give a measure of the fractality, complexity, or nonlinearity of a time series may be
inadequate for this purpose. Instead, methods which illuminate the fine temporal structures
and multiscale interactions underlying fractal fluctuations – such as cross-frequency
coupling analyses (Onslow, Bogacz & Jones, 2011; Ozkurt & Schnitzler, 2011; Tort et al,
2010) – those which explore the transitions between dynamical modes and the nature of
those modes – such as analyses of rapid transition processes (Allegrini et al., 2009; Allegrini
et al., 2010) or modeling with switching linear dynamical systems (Nemati et al., 2012) –
and those providing insight into the flow of information between fractal processes in
different systems and at different scales – such as transfer entropy (Schreiber, 2000) and
related measures – will prove particularly useful.

(2) Physiological Challenges at Multiple Scales
Our findings raise many questions about the SCN itself, which has until now been
understood mainly as a circadian pacemaker. How does the SCN mediate fractal control at
ultradian scales? Can we treat the SCN as a single node in the fractal control network, or is it
more appropriately viewed as a collection of multiple subcomponents (Butler & Silver,
2009)? The neurons of the SCN exhibit autonomous rhythmicity at a variety of frequencies
and phases, and with different temporal profiles. There is evidence that the nucleus can be
divided into finer subpopulations than the traditional weakly oscillatory, light-receiving core
and oscillatory shell (Butler & Silver, 2009; Foley et al, 2011; Morin et al, 2006). SCN
neurons interact both locally (through gap junctions and electrical synapses; Long et al,
2005) and globally (e.g., through the release of VIP). While most models of the circadian
system focus on how this distributed network of oscillators produces coherent circadian
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rhythmicity, there is growing interest in this network’s role in generating rhythms at other
time scales (Bonnefont, 2010; Brown et al, 2008). Given that the SCN does not produce
fractal fluctuations in isolation, does it communicate with other control nodes through
neuronal or humoral mechanisms? Transplant studies could shed light on this question. How
does the SCN couple small and large scale fractal regulation of behavioral activity, and how
does it uncouple its roles as a circadian pacemaker and a generator of fractal control?
Further studies of fractal regulation under conditions known to induce desynchrony amongst
circadian oscillators are necessary to answer these questions.

We have identified only a single node (the SCN) in the network responsible for the fractal
control of heart rate and behavioral activity. It is still unknown which of the many neuronal
sites and pathways interacting with the SCN might cooperate in the fractal regulatory
network. There are a variety of candidates for the other control nodes (Abrahamson &
Moore, 2001). Given the suggestion by multiple investigators that higher cortical activity
may play a role in the fractal fluctuations seen in heart rate, and the fact that higher cortical
activity (as measured in a number of different ways) has been shown to exhibit fractal
patterns, it may be worth investigating possible couplings between the fractal patterns
observed in cortical and physiological variables. For circadian researchers, a particularly
intriguing question regards the role that peripheral oscillators in other body tissues play in
fractal control. How do alterations to other potential nodes, including peripheral oscillators,
affect fractal regulation? The systems that control short-scale regulation of behavioral
activity and heart-rate are not well understood, and physiological conditions that alter short-
term scaling should be sought.

While it is known that multiple physiological variables are under fractal control, it is also
clear that there are different levels of complexity in fractal control. For example, the fractal
control of heart rate is more complex than that of gait (Ivanov et al., 2009), and there are
indications that fractal heart rate regulation is independent of fractal respiratory control
(West et al, 2005). Is fractal control monolithic, or – as seems likely – are different fractal
control networks responsible for different processes, different levels of complexity, and
different scale ranges? The SCN is important to fractal control in at least two different
physiological modalities – heart rate and behavioral activity. How does the SCN function
distinctly in these two different processes? What kinds of coordination, if any, exist between
the two processes?

Most broadly, we can ask about the extent of fractal control in physiology. What other
physiological variables exhibit complex fractal patterns? It is known that fractal control
occurs to some degree in the cardiovascular, respiratory, and motor systems. Does fractal
control operate in the metabolic, endocrine, sensory, or affective systems? Are there fractal
fluctuations in body temperature, glucose tolerance, vigilance, inter-saccade intervals, mood,
or neuroendocrine secretion? Do the fractal patterns in other physiological fluctuations
exhibit circadian rhythmicity? Does fractal control extend to infradian scales?

(3) Theoretical Challenges
As discussed in Section 4, fractal control in physiology poses many theoretical challenges.
The principles underlying fractal control will be systems-level and network-based.
Physiological investigations of fractal control must proceed alongside physiologically-
relevant theoretical investigations. What kinds of networks of oscillators – or other
physiologically relevant functional units – are capable of producing fractal fluctuations?
Fractal physiological regulation might be modeled through the coupling of a handful of
distinct control mechanisms, as the collective behavior of a large system of similar units, or
as some hybrid of the two. What kinds of physiologically realistic network models are
capable of producing crossovers, and what roles do coupling and competition between
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dynamical modes play in their appearance? How do other signatures of complexity –
including magnitude and sign correlations, nested frequencies, and the presence of “crucial
events” and switching dynamics – constrain these models?

The discovery that the circadian system is involved in the fractal regulation of activity and
heart rate also opens the door to using existing mathematical and computational models of
the SCN (Antle et al, 2003; Antle et al, 2007; Bernard et al, 2007; Indic et al, 2006; Indic et
al, 2007; Kunz & Achermann, 2003; Wang & Doyle, III, 2011) as a springboard to the
development of computational and mathematical models of fractal physiology. The
burgeoning literature on heterogeneous coupled oscillator networks also provides an
important stepping stone. But new techniques and perspectives will surely be required if the
focus of these investigations is to transition from oscillatory synchrony to the broader
perspective of scaling behavior and multiscale interactions. These investigations may be
guided by work on the theoretical basis of fractal patterns in cortical networks, which have a
long history.

(4) Clinical Significance
We believe fractal fluctuations have the potential to be more than just tools for diagnosis and
prognosis. Already, the perspective of fractal physiology has led to a rethinking of the
principles of mechanical ventilation (Mutch et al, 2000). By illuminating new aspects of
physiological function in health and disease, a deeper and more complete understanding of
fractal phenomena can provide new targets for behavioral, pharmacological, and surgical
interventions. By harnessing the power of ideas from physics and nonlinear dynamics, and
applying them to the physiological domain, we hope for a greater understanding of human
health, and concomitantly greater power to do good for those in the grip of disease.

VII. CONCLUSIONS
(1) Fractal physiological fluctuations reflect the integrative function of a complex network
of regulatory processes interacting nonlinearly across a range of temporal and spatial scales.
This control network can be contrasted with homeostatic mechanisms of control operating at
specific scales. The crucial first step in building a meaningful physiological model of the
network responsible for fractal regulation is to identify the control nodes of that network.

(2) The SCN is a major node in the fractal control network. It is critical for fractal
fluctuations in behavioral activity and heart rate at long time scales, and modulates
fluctuations in these variables at short time scales. The SCN does not produce these patterns
on its own, but rather through interactions with an unknown network of physiological
regulatory agents. It appears that the SCN’s role in fractal regulation is independent from its
role as a circadian pacemaker, and that its influences on fluctuations in behavioral activity
and heart rate are likewise independent.

(3) The translation of theoretical and empirical knowledge from circadian biology to fractal
physiology, the continuing empirical identification of nodes in fractal physiological
regulatory networks, the use of data analysis methods to further characterize the fractal
fluctuations present in physiological systems, and the development of physiologically
relevant mathematical models reproducing these empirical observations provide a
multifaceted approach to the development of a mechanistic, physiological understanding of
fractal fluctuations. Employing this strategy will allow fractal physiological fluctuations to
serve as important model phenomena for the study of fractal fluctuations in other
neurophysiological and biological systems.
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Figure 1.
Schematic representations of fractal structures and fluctuations. The tree-like spatial
structure (left panel) has fractal branching, such that the small-scale structure resembles the
large-scale form. Fractal temporal processes, such as healthy heart rate (middle panel) and
behavioral activity (right panel), may generate fluctuations that are statistically fractal.
(Adapted with permission from Goldberger 1996.)
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Figure 2.
Power-law functional properties of a simulated fractal signal. Notice that while some power-
law behavior is evident in the power spectrum, autocorrelation function, and fluctuation
function of the signal, the last exhibits the clearest power-law behavior.
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Figure 3.
Three canonical fractal signals. White noise (A) exhibits short-scale fluctuations and is
uncorrelated. Red or Brownian noise (C) exhibits long-scale fluctuations and correlated
regularity. Pink noise (B) exhibits both the unpredictability associated with small-scale
fluctuations and the long memory associated with large-scale fluctuations, and high
complexity. (The colors used to describe white and pink noise signals are due to analogy
with light: white noise contains component oscillations of all frequencies; Brownian noise is
also called red noise, and is dominated by low-frequency (slow) oscillations; pink noise is
intermediate between the two.)
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Figure 4.
Physiological signals can exhibit different fractal patterns at different time scales, and
disease can have different effects at each of these scales. Healthy heart rate is regular at
scales <10 beats, but exhibits complex fractal fluctuations at scales between 10 beats and ~3
hours. Congestive heart failure has different effects on the fractal patterns in heart rate at
small and large time scales. Here n refers to timescale (i.e., number of heart beats), and F(n)
is the fluctuation function. (Taken with permission from Peng et al. 1995a.)
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Figure 5.
The breakdown of fractal fluctuations can result in increased regularity or increased
randomness.
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Figure 6.
Age and AD induce crossovers in fractal activity fluctuations at ~90 minutes. (Taken with
permission from Hu et al. 2009.)
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Figure 7.
Snapshots of the spin states (black or white) of the two-dimensional Ising model of
magnetization below, at, and above the critical temperature Tc At subcritical temperatures,
all spins are aligned, and magnetization is high. At supercritical temperatures, spins are
random, and magnetization is zero. Only at critical temperatures do fractal correlated
structures arise. (Taken with permission from Chialvo 2010.)
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Figure 8.
Circadian influences on the fractal scaling of heart rate. A–B. Results from complementary
protocols in humans: (A) a 10-day forced desynchrony protocol in which subjects’ sleep-
wake cycles were adjusted to 28 hours (~340 hours of data from 9 subjects); (B) a constant
routine protocol in which subjects remained awake for a prolonged period of 38 hours (~600
hours of data from 6 subjects). C. Results from intact (black squares) and SCN-lesioned (red
circles) rats in constant dark conditions. Core body temperature was used to determine
circadian period. Circadian phase zero was assigned to the time of minimal core body
temperature in humans, and to the onset of the light period in the preceding light-dark
protocol in rats. The average circadian period of the control rats was used for assignment of
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extrapolated circadian phase bins in SCN-lesioned rats. Humans and intact rats showed
significant circadian rhythms in the scaling exponent characterizing fractal cardiac control.
There was no significant rhythm for SCN-lesioned rats (p>0.2). (Taken with permission
from Hu et al., 2004b, Hu et al., 2008, and Ivanov, 2006.)
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Figure 9.
Lesioning the SCN in rats induces crossovers in fractal scaling of behavioral activity (left)
and heart rate (right) at ~4 hours. Above this crossover, fractal control disappears, and DFA
exponents approach those of white noise. Below this crossover, behavioral activity becomes
slightly more regular.
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