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Abstract
As broadly demonstrated for the formation of a functional skeleton, proper mineralization of
periodontal alveolar bone and teeth – where calcium phosphate crystals are deposited and grow
within an extracellular matrix – is essential to dental function. Mineralization defects in tooth
dentin and cementum of the periodontium invariably lead to a weak (soft or brittle) dentition such
that teeth become loose and prone to infection and are lost prematurely. Mineralization of the
extremities of periodontal ligament fibres (Sharpey's fibres) where they insert into tooth cementum
and alveolar bone is also essential for the function of the tooth suspensory apparatus in occlusion
and mastication. Molecular determinants of mineralization in these tissues include mineral ion
concentrations (phosphate and calcium), pyrophosphate, small integrin-binding ligand N-linked
glycoproteins (SIBLINGs), and matrix vesicles. Amongst the enzymes important in regulating
these mineralization determinants, two are discussed at length here with clinical examples given,
namely tissue-nonspecific alkaline phosphatase (TNAP) and phosphate-regulating gene with
homologies to endopeptidases on the X chromosome (PHEX). Inactivating mutations in these
enzymes in humans and in mouse models lead to the soft bones and teeth characteristic of
hypophosphatasia (HPP) and X-linked hypophosphatemia (XLH), respectively, where levels of
local and systemic circulating mineralization determinants are perturbed. In XLH, in addition to
renal phosphate wasting causing low circulating phosphate levels, phosphorylated mineralization-
regulating SIBLING proteins such as matrix extracellular phosphoglycoprotein (MEPE) and
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osteopontin (OPN), and the phosphorylated peptides proteolytically released from them such as
the acidic serine- and aspartate-rich motif (ASARM) peptide, may accumulate locally to impair
mineralization in this disease.

Introduction
In the craniofacial region, the tooth and its periodontium represent a remarkable tooth-
suspension and masticatory apparatus, functionalized by four key mineralized tissues –
enamel, dentin, cementum and bone –; and a periodontal ligament (Fig. 1), the loss of any
one of which soon renders the entire apparatus nonfunctional. Loss of functionality within
teeth and periodontal tissues can be inherited or caused by degenerative or infectious
disease, by trauma, by dietary deficiencies, or as a consequence of surgical, radiological or
chemical/drug treatments. Maintaining the integrity of the periodontium as a whole is central
to retaining teeth in the oral cavity and to keeping them appropriately positioned for the
proper occlusion. Proper positioning of teeth requires not only an intact and structurally and
functionally sound suspensory periodontal ligament, but also bone modeling and remodeling
events in the surrounding alveolar bone that initially facilitate tooth eruption in children, and
then act to maintain and stabilize the tooth via the periodontal ligament during adulthood.

Essential to the proper development and functioning of these key tooth and periodontal
structures (including bone) is mineralization – the deposition of inorganic, calcium- and
phosphate-containing crystals (calcification) into the extracellular matrices of teeth and bone
(120, 121). Mineralization of teeth and periodontal tissues has as their key supportive
structural/functional element nanosized apatitic crystals acting collectively in large numbers
to harden and stabilize the collagenous matrices within which they reside (with the
exception of enamel, which has only noncollagenous matrix proteins). The inorganic phase
that mineralizes tissues by permeating their extracellular matrices serves to counteract
compressive forces (47, 172). Any deviation from normal in crystal number, size, shape,
orientation and/or ultrastructural matrix location leads to tissue fragility that compromises
tooth and periodontal tissue function.

Overview of extracellular matrices of the teeth and periodontium
In mature erupted tooth enamel, whose pre-existing organic matrix component essential to
its formation and mineralization are almost completely removed by enzymatic degradation,
the final mineralized state of the (very hard) enamel is critical for resisting mechanical
abrasion and chemical (mostly dietary and bacterial) attack. This unique and incredible
hardness of enamel (～96% mineral) (159) is quite unlike the other “softer” mineralized
tissues of the tooth (54, 136), and bone, whose extracellular matrices have a permanently
resident, intermingled and fibrillar ductile collagenous protein phase which along with other
noncollagenous proteins provides for the substantial deformability required for these tissues
(15, 16). Tooth crown dentin must flex readily when considerable masticatory forces are
placed upon the enamel, and the amalgamation of root dentin and cementum across the
cemento-dentinal junction likewise must accommodate the strains placed upon it by
masticatory forces transduced along the suspensory periodontal ligament (82, 86, 116, 132).
Interfaces between these distinct tissues also play an important role in maintaining tooth
integrity, just as they do in remodeling bone (118). The embedded and mineralized portions
of the extremities of the periodontal ligament fibres (Sharpey's fibres) that insert into both
cementum and alveolar bone complete the union of the suspensory apparatus and allow for
the dissipation of potentially disruptive masticatory forces across the whole periodontium.
None of this would be achieved without Nature's hardening strategy – mineralization – for
vertebrate extracellular matrices.
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Described briefly below in a categorical way are three of the four extracellular matrices
related to the periodontium that mineralize – dentin, cementum and bone [enamel
extracellular matrix will not be covered here, but has been recently reviewed by (67, 88)].
Periodontal ligament structure, organization and function have recently been reviewed (20).
However, some discussion is given here concerning the terminal ends of periodontal
ligament collagen fibres known as Sharpey's fibres as they mineralize at their extremities
where they insert into alveolar bone at one end, and into tooth root cementum at the other
end.

Jaw bone in the craniofacial complex is generally not unlike bone elsewhere (121), but its
origins are different, with much of it deriving from a neural crest cell contribution (130).
Another unique characteristic is its high turnover (remodeling) rate (24, 168), presumably
resulting from substantially large and frequent mastication forces exerted primarily by the
masseter muscle. Such forces transduced in part via the tooth and the suspensory periodontal
ligament to the bone result in the requirement for particularly ductile bone lining the tooth
alveolus. The bulk of the alveolar bone likely has both an organic and inorganic composition
similar to bone found elsewhere (121), but the bone immediately lining the osseous alveolus
has a unique structure appearing variably as either a thin “fringe” of bone accommodating
the many insertion sites of the periodontal ligament (Fig. 1), or as so-called bundle bone (14)
where it is thicker and more developed. Whereas the extensive attachment of the periodontal
ligament insertions as Sharpey's fibres deep into the alveolar bone to form bundle bone is
evident in terms of its providing a robust suspensory attachment function for bony
anchorage of the tooth, the functional attachment mechanism for the “fringe” bone is not so
readily obvious. Given what is likely a common adhesion mechanism for the two extremities
of Sharpey's fibres which mineralize, the alveolar bone fringe resembles in several ways the
acellular cementum found at the tooth root surface – both have a similar thickness,
ultrastructural organization and noncollagenous protein composition (116). In particular,
both acellular cementum and this surface-residing alveolar bone “fringe” layer are rich in
osteopontin (Fig. 1) (32, 36, 84, 101, 116, 119, 186), where it is thought that this protein
guides mineralization locally in such a way as to be optimal for this type of attachment.
Alternatively, or in addition, osteopontin at these insertion sites might be part of creating a
robust, tough and flexible organic extracellular matrix by virtue of it being a substrate for
the homo- and heterotypic covalent crosslinking activity of transglutaminase enzymes (93,
94).

Bone and dentin are similar in several respects, especially regarding the composition of their
respective extracellular matrices. However, unlike bone, dentin is not resorbed as part of a
remodelling process, and thus it is not involved in the regulation of systemic mineral ion
homeostasis as occurs through release of mineral ions during osteoclastic resorption of bone
(134). Bone, dentin and cementum are all rich in type I collagen as the scaffolding base of
the extracellular matrix, and all are 50-70% calcified with a carbonate-substituted apatitic
mineral phase (136). During osteogenesis, dentinogenesis and cementogenesis, extracellular
matrix assembly and subsequent mineralization occur through successive, highly ordered
steps with a lag time existing between matrix deposition and mineralization. As part of this
process, extracellular matrix proteins are secreted, sometimes modified or cleaved by
enzymes, and organized in some cases into macromolecular assemblies, which altogether is
then structured into a mature fibrillar matrix receptive to mineral deposition (120). These
remarkable tissue construction events are orchestrated by the tissue-forming “blast” cells –
the osteoblasts, the odontoblasts (a misnomer, in fact should be dentinoblasts) and the
cementoblasts – with each being associated with a thin layer of unmineralized matrix which
subsequently mineralizes at the “mineralization front” to form the completed tissue.
Additional mineralization and mineral changes (such as further carbonate substitution into
the hydroxyapatite lattice) (40) slowly occur over time (30), along with changes in the
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organic phase of the extracellular matrix (93, 94, 171) and proteolytic degradation, in a
maturation process that ultimately provides an adequate final functional state to provide for
the biomechanical demands placed upon each tissue.

General concepts for mineralization of collagenous matrices
The hardness and toughness of the collagenous mineralized tissues derive from their being
composite materials, with each consisting of an interconnected (and often crosslinked)
organic matrix network of proteins whose macromolecular assemblies interweave as a
scaffold for mineral deposition (120). Calcium and phosphate complex together as
crystalline salts to mineralize (calcify) extracellular matrix in bones and teeth. This
biomineralization process is not haphazard, but in fact occurs in a way that is incredibly
controlled at the molecular level – indeed, not surprisingly – like most cellular processes.
The inorganic phase (mostly a crystalline, substituted form of hydroxyapatite) (144) that
forms in the skeleton provides exactly the required hardness, while at the same time
ensuring requisite toughness by intimate intercalation of nanocrystals of mineral with the
organic scaffolding extracellular matrix (120). In fact, it is precisely this nanoscale
deposition of (at least) billions of inorganic, tiny plate-like crystallites within a softer
organic matrix that provides for the inherent flexibility of tough bones that allows
deformation during mechanical challenge, and then a return to their original shape
characteristic for any given skeletal element.

Heterogeneous mineral deposition events occur at discrete locations within, at the surface of,
and between, collagen fibrils (100, 120) during mineralization of the teeth and of the
alveolar bone of the periodontium (and bone elsewhere). The composite nature of these
mineralized tissues is thus determined in a way that spans most dimensional scales starting
from the protein/organic-nanocrystal interface and extending into the anatomical macroscale
structure of skeletal and tooth structures. The collagen fibrils with interwoven
noncollagenous protein assemblies, together with interconnected pores extending throughout
the structured extracellular matrix that are ultimately filled with apatitic crystals, all have
nanoscale dimensions. Mineral is nucleated not only in nanoscale volumes within fibrillar
collagens, but also interfibrillarly where crystal dimensions are slightly larger and where
noncollagenous proteins are abundant (117). These two structurally and biochemically
distinct extracellular compartments provide different constraints on biomineralization, yet
despite this, at each site, mineral is nucleated and crystal growth is subsequently regulated
such that bone crystals do not grow beyond the nanometre range. Initially, to reach an
apatitic mineral phase, critical nuclei of mineral ions reach a size and stability that
subsequently mature to form crystals having some degree of long-range order that ultimately
possess welldefined crystallographic faces characteristic of apatite. Initial nucleation events
are controlled locally by concentrations of mineral ions and by the presence, or absence, of
mineral nucleators and inhibitors.

In bones and teeth, mineral crystals typically are platelet-shaped crystallites with dimensions
that vary depending on their physical location within the structure of the preestablished
extracellular matrix (100) where there are different local chemical environments defined by
matrix composition that will in part define crystal properties at those sites. Charge groups
and matrix interaction domains in fibrillar type I collagen have been characterized (158),
and mineral identified within the holes zones in the interior of the collagen fibrils, but much
less is known about the chemical environment contributing to mineral crystal nucleation and
propagation between the fibrils. Of interest, the mineral-binding proteins comprising the
SIBLING family of proteins (see below), that are generally thought to guide the
mineralization process in bones and teeth, are located primarily between the collagen fibrils.
A recent high-resolution transmission electron microscopy study of dense, human cortical
femur bone sections prepared by cryogenic ion-milling both parallel and perpendicular to
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the long axis of the bone revealed that most of the mineral (approximately 80%) is located
external to the collagen fibrils in the form of plate-like mineral structures with dimensions of
5 nm thick, 65 nm wide and over 200 nm long (123). While crystal deposition within the
collagen fibril is generally thought to occur independently from that occurring between the
fibrils, a recent proposal suggests that crystals formed at the surface of collagen fibrils might
migrate to locations within the fibril (166), but further work needs to be done to confirm this
unusual possibility.

Protein/genes related to skeletal and dental mineralization are listed in Table 1, and are
discussed in greater detail below.

Pyrophosphate and the phosphate/pyrophosphate ratio in mineralization
Homeostasis of inorganic phosphate is essential for the normal development and
maintenance of the mineralized tissues of the skeleton and dentition (55). Pyrophosphate
(PPi) – composed of two molecules of phosphate (Pi) – pivotally regulates physiologic
mineralization and pathologic calcification by acting as a potent inhibitor of crystal
precipitation and growth (5, 53, 124, 128). Local tissue concentrations of pyrophosphate are
controlled by a number of regulatory enzymes and transporters. The ectoenzyme tissue-
nonspecific alkaline phosphatase (TNAP) hydrolyzes pyrophosphate (126), thus providing a
mechanism to control the concentration of this potent mineralization inhibitor. TNAP is
highly expressed by cells resident in bones and teeth, and it is critical for proper skeletal
mineralization (128, 175). Loss-of-function mutations in the human TNAP gene ALPL
cause hypophosphatasia (HPP), a disease marked by poor bone mineralization, rickets, and
osteomalacia, as well as tooth phenotypes (143, 177). Ablation of the homologous mouse
gene Alpl leads to increased inhibitory pyrophosphate and osteopontin leading to (76, 77)
mineralization defects that closely phenocopy human infantile HPP (125, 131). Furthermore,
two proteins can increase pyrophosphate locally in tissues – the progressive ankylosis
protein (ANK) and the enzyme ectonucleotide pyrophosphatase phosphodiesterase 1
(NPP1). ANK encodes a multipass transmembrane protein that regulates transport of
intracellular pyrophosphate to the extracellular space (75, 85, 92). NPP1 increases
extracellular PPi by hydrolysis of nucleotide triphosphates (91). Pyrophosphate removal by
TNAP activity thus antagonizes provision of PPi by ANK and NPP1, thereby creating a
concerted regulation of phosphate and pyrophosphate levels to ultimately regulate
mineralization (76). TNAP also can remove phosphate from osteopontin, reducing its
mineralization-inhibiting function (5). Thus, in the extracellular matrix of bone, TNAP's
enzymatic degradation of pyrophosphate (together with dephosphorylation of osteopontin
and potentially other matrix proteins) controls the phosphate/pyrophosphate (Pi/PPi) ratio to
favor proliferation of hydroxyapatite crystals outside the matrix vesicles (for matrix vesicles,
see next section) and along and between the collagen fibrils. Indeed, mineralization in bone
is determined partly by the ability of osteoblasts (and possibly early osteocytes as well) to
remove inhibitory pyrophosphate from their adjacent extracellular matrix via expression of
TNAP, and by the presence of a fibrillar collagen-rich matrix network (128). Thus, the co-
expression of TNAP and a fibrillar collagenous scaffold appear to be necessary and
sufficient to cause mineralization of an extracellular matrix. Enamel, which will not be
discussed at length here, appears to be an interesting exception to this general rule, where
TNAP function is likewise important for mineralization (185) but where a collagenous
matrix is lacking.

Matrix vesicles and mineralization
Mineralization of bones and teeth occurs by a series of physicochemical and biochemical
processes that together facilitate the deposition of apatitic crystals at specific sites within the
extracellular matrix. Crystals reside within and between collagen fibrils of the extracellular
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matrix (68), and also within the lumen of chondrocyte-, osteoblast- and odontoblast-derived
matrix vesicles shed from the cells (8, 9, 70, 182). Early studies on matrix vesicles used
transmission electron microscopy and serial sections of growth plate cartilage to show that
matrix vesicles form through exfoliation of vesicles from the plasma membrane of growth
plate chondrocytes (26), findings which were subsequently confirmed by freeze-fracture
analyses (27, 41, 183). Additional evidence that matrix vesicles arise from the plasma
membrane derives from comparative lipid and protein studies of the vesicles and the plasma
membrane of the epiphyseal chondrocyte and osteoblasts (181). Overall, cell membranes
contain similar components to matrix vesicles, but in different proportions. While
investigators in the bone mineralization field are divided between accepting collagen-
mediated and matrix vesicle-mediated mechanisms of mineralization, there is no obligatory
incompatibility between these two mechanisms. Biochemical and genetic studies (10, 11, 45,
76, 77, 83, 128, 184), using single- and double-knockout mice to probe the function of key
molecules involved in the control of phosphate/pyrophosphate ratio including TNAP, NPP1,
ANK, and phosphatase orphan 1 (PHOSPHO1), are compatible with a sequence of events
involving both mechanisms described briefly as follows. Initially, formation of
hydroxyapatite crystals inside matrix vesicles is favored by phosphate accumulation through
two mechanisms, PHOSPHO1-mediated intravesicular production and transporter-mediated
influx of extravesicular phosphate produced primarily by the adenosine triphosphatase
activity of either TNAP or NPP1 (184). Organophosphate compounds such as adenosine
triphosphatase, polyphosphates and perhaps also pyrophosphate might be the source of
phosphate for this initial step of mineralization (133, 184). TNAP and NPP1 also support the
next phase of collagen-mediated extravesicular calcification, although it is the
pyrophosphatase, rather than the adenosine triphosphatase or polyphosphatase, activity of
these enzymes that is predominant in this step (184). Extravesicular mineralization is then
driven by the extracellular phosphate/pyrophosphate ratio and by the presence of a
collagenous fibrillar scaffold, with further regulation of crystal growth by noncollagenous
proteins of the SIBLING family (see below), most notably osteopontin. This model, which
is compatible with most available experimental data, takes into account the roles of both
organic and inorganic phosphates in skeletal and tooth dentin mineralization, and unifies the
matrix vesicle-mediated and collagen-mediated models of mineralization as two separate,
but linked, steps during osteogenesis and dentinogenesis. These interactions regulating
mineralization are summarized in Figure 2.

Noncollagenous extracellular matrix proteins and mineralization
While the local removal from the extracellular matrix of mineralization inhibitors such as
pyrophosphate is central to the induction of mineralization, the exquisite biological control
regulating crystal growth in mineralized tissues appears to reside at the molecular/atomic
level of mineral-nucleating and mineral-inhibiting noncollagenous proteins (and their
released peptides) (63) to transform unmineralized “oid” matrix into mineralized matrix
(137). Many of the noncollagenous proteins in the skeleton and in teeth (and also in many
other biomineralized invertebrate tissues) are highly acidic phosphoproteins that bind
strongly to mineral – often through negatively charged phosphate groups – to regulate
crystal growth. Substantial evidence now exists for the role of acidic, negatively charged
mineral-binding proteins (and their peptides) as being important in regulating at least the
interfibrillar mineralization process, and this family of proteins (also having cell-signaling
properties) is referred to as the SIBLING family (small integrin-binding ligand N-linked
glycoproteins) (52), being a subcategory of the secreted calcium-binding phosphoprotein
(SCPP) family (95).

The SIBLING family, encoded by a series of genes located on chromosome 4 in humans
(loci 20-21), includes dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP1),
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bone sialoprotein (BSP), osteopontin (OPN), statherin, and matrix extracellular
phosphoglycoprotein (MEPE). In various mineralized tissues (including pathologically
mineralizing soft tissues), once initiated, crystal growth is regulated (inhibited) by direct
binding of certain inhibitory SIBLING proteins/peptides (for example, osteopontin and its
ASARM-containing peptides; see below) to crystal surfaces (4, 66). Some SIBLING
proteins are associated with specific sites on collagen molecules, possibly to promote the
nucleation and growth of apatite crystals related to collagen (81, 167). SIBLING genes are
well-conserved during the evolution of vertebrates, especially genomic regions coding for
the arginine-glycine-aspartate (RGD) motif and for long stretches of acidic amino acids,
with these motifs having proven roles in cell adhesion and mineral binding, respectively (17,
18, 112, 148). In MEPE, the arginine-glycine-aspartate tripeptide is associated with a
glycosaminoglycan attachment motif serine-glycine-aspartate-glycine (SGDG) to form a
region called dentonin, and a synthetic dentonin peptide has been shown to stimulate new
bone formation (80) and to enhance dental pulp progenitor proliferation (104, 160). Finally,
transgenic mouse studies on the SIBLINGs, together with the identification of human
SIBLING gene mutations linked to diseases showing mineralization defects, have confirmed
the importance of these proteins in regulating bone and tooth mineralization (7, 48, 71,
161-163).

Hypophosphatasia, tissue-nonspecific alkaline phosphatase and the periodontium
Deficiency of TNAP activity characterizes hypophosphatasia (HPP), which is a heritable
disorder featuring hypomineralization of the skeleton and teeth (58, 176, 178). Clinical
manifestations of hypophosphatasia vary from stillbirth with complete absence of skeletal
mineralization, to early tooth loss as the only symptom. The typical and striking oral
manifestation of hypophosphatasia is premature loss of primary teeth (176, 178). Expression
of TNAP in bone, dentin, and cementum has been well-characterized by
immunohistochemistry and in situ hybridization (22, 72, 79, 87, 169, 180). Dysplasia or
aplasia of cementum has been well-documented histologically in hypophosphatasia, and this
abnormality is considered the cause for the early exfoliation of teeth (38, 50, 89). Irregular
dentin mineralization and enlarged pulp chambers have also been described (25, 50, 90).

Cementum was first linked to pyrophosphate metabolism in the condition hypophosphatasia,
where premature tooth exfoliation was discovered to result from developmental cementum
aplasia or hypoplasia, and thus poor periodontal ligament attachment (38, 170, 175).
Intriguingly, studies to date suggest the acellular cementum (acellular extrinsic fiber
cementum) of the cervical portion of the root is the most severely affected by the
pyrophosphate dysregulation, while the apically located cellular cementum (cellular intrinsic
fiber cementum) is generally unaffected, or at least much less so. Proper cementum
formation is critical for dento-alveolar function, though cementogenesis remains relatively
poorly understood (compared to other mineralized tissues) in terms of associated cells and
their origin, their activities and the regulatory factors involved in cementum formation and
mineralization. This is especially true with regard to differences between the acellular and
cellular varieties of cementum, and how cementum differs developmentally from the other
hard tissues. Pyrophosphate serves as an essential regulator of tooth root acellular cementum
development and mineralization, and is a key determinant defining the hard-soft interface
between the cementum and the periodontal ligament (56). Loss of TNAP caused severe
underdevelopment, or even an absence of acellular cementum, and this was prevented by
enzyme replacement therapy with mineral-targeting TNAP (122). In contrast, loss of either
ANK or NPP1 results in loss of control of cementum apposition and mineralization, causing
an extensive hypercementosis (56). With TNAP, ANK and NPP1 adjusting extracellular
pyrophosphate levels, the observations described above strongly support pyrophosphate as
being a key mechanistic factor uniting the cementum phenotypes in all three mouse models,
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together suggesting that pyrophosphate regulates acellular cementum in a molecular
“rheostat” fashion, i.e. that cementum thickness relates inversely to pyrophosphate
production.

While one might suspect that enamel mineralization could also depend on the local
regulation of phosphate and pyrophosphate metabolism, there have been no conclusive
reports of enamel defects in hypophosphatasia patients, although some papers have alluded
to enamel hypoplasia in this disease (89, 111, 143, 174). Recently, Yadav et al. mapped the
expression of TNAP in amelogenesis in healthy mice to maturation stage ameloblasts and to
the stratum intermedium cell layer (185). Furthermore, these authors showed that deficiency
of TNAP in Alpl-/- mice leads to enamel defects. Of note here is that enzyme replacement
therapy with mineral-targeting TNAP can prevent the dentin (125), cementum (122) and
enamel defects (185) in the Alpl-/- model of infantile hypophosphatasia. Clinical trials of
mineral-targeting TNAP (Asfotase Alfa) in patients with life-threatening hypophosphatasia
indicate improved survival and correction of the rickets in these patients (179). A study of
changes in the teeth, and tooth retention, as a result of enzyme replacement therapy, is yet to
be conducted in these subjects.

The ASARM peptide and mineralization
Proteins of the SIBLING family have an acidic serine- and aspartate-rich motif (ASARM)
which is highly conserved across species (114, 148). The ASARM region contains serine
residues which can be phosphorylated, and which are interspersed with abundant acidic
aspartate and glutamic acid residues (149). The conserved ASARM motif is located in the
C-terminal region of all SIBLINGs except osteopontin where it is located in the mid-region
of the protein. In most vertebrates, ASARM appears to have evolved to regulate
mineralization, extending from eggshell to mammalian bone (17). In mammals, its function
appears to have been extended to both transduce and suppress fibroblast growth factor 23
(FGF23) signalling (105, 148). In normal osteogenesis and dentinogenesis, MEPE can be
enzymatically cleaved resulting in the release of free ASARM peptide into the extracellular
matrix (114), and related recent work for osteopontin also shows enzymatic cleavage to
produce ASARM-containing peptides (19). These acidic peptides are generally highly
resistant to proteolysis, and are potent inhibitors of bone and dentin mineralization (4, 6,
151). However, ASARM peptides can be selectively cleaved and thus cleared from the local
matrix environment where mineralization is destined to occur by the enzyme PHEX
(phosphate-regulating gene with homologies to endopeptidases on the X chromosome), a
transmembrane zinc-dependent endopeptidase highly expressed by osteoblasts, osteocytes
and odontoblasts (4, 6, 19). PHEX can bind to MEPE (and possibly also to other SIBLING
proteins(49)) at the ASARM site, protecting these proteins from proteolytic cleavage by
other enzymes (74, 150). Once released, the ASARM peptide itself becomes a substrate for
PHEX with multiple internal cleavage sites (4, 6), thus promoting mineralization. In this
way, together with our recent report on the essentially complete degradation of inhibitory
full-length osteopontin by PHEX (19), this enzyme tightly controls mineralization at the
local level in the extracellular matrix (4, 150). Furthermore, PHEX can negatively or
positively influence FGF23 expression through binding DMP1 or through cleaving
ASARM, respectively, which in turn influences systemic circulating phosphate levels (49,
114, 115). In addition, it has also been suggested that PHEX indirectly influences cleavage
of FGF23, probably via KLOTHO, thus controlling the negative effects of this hormone on
phosphatemia (13, 115, 148). However, the complex links between PHEX, FGF23, DMP1,
ASARM, KLOTHO and MEPE in the control of phosphate homeostasis still need further
study.

In chronic inflammatory diseases that affect bones and teeth, and more specifically in the
case of periodontal disease, excessive pathologic bone resorption occurs in the alveolar bone
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of the periodontium (46). In this disease process, bone mineral is dissolved, extracellular
matrix is degraded, and total bone volume is lost, all of which threatens the stability and
longevity of adjacent teeth. As part of this extensive matrix degradation and mineral
dissolution, mineral-bound proteins and peptides such as ASARM might be released,
redistribute in tissue fluids and ultimately circulate systemically (35). While tissue-resident
PHEX may be able to degrade some of this increased inhibitory ASARM (4, 6) to promote
bone healing and mineralization, and positively influence phosphatemia, on other occasions
the enzymatic capacity of PHEX might be overwhelmed such that bone healing is impaired
and circulating phosphate levels are negatively affected. In this context, ASARM peptides
might be considered as target molecules for the treatment of chronic inflammatory diseases
of bone.

X-linked hypophosphatemia, PHEX and the periodontium
Familial hypophosphatemic rickets (e.g. X-linked hypophosphatemic rickets, or X-linked
hypophosphatemia, XLH) are genetic disorders whose major symptom is a soft
(hypomineralized) skeleton and dentition. In 1995, the PEX gene located on chromosome
Xp22.1-22.2 in humans and later renamed PHEX (phosphate-regulating gene with
homologies to endopeptidases on the X chromosome) was identified as the cause of XLH
(MIM-307800) (1). Recently, PHEX mutations have been diagnosed in 87% of familial
cases, and also in 72% of sporadic cases, in a large cohort of 118 pedigrees representing 56
familial cases and 62 sporadic cases of X-linked hypophosphatemia (61). Regarding other
genes associated with familial hypophosphatemic rickets, FGF23 mutations were identified
as the cause of autosomal dominant hypophosphatemic rickets (2), and DMP1 mutations
(108) and SLC34A mutations (23, 107) as causes of recessive autosomal hypophosphatemic
rickets. In addition, loss-of-function mutations in the NPP1 gene and a translocation
involving the KLOTHO gene were assumed to be also associated with hypophosphatemic
rickets (37, 102, 106).

In X-linked hypophosphatemia, impaired bone mineralization manifests in children as
rickets with severe skeletal deformities, and in adults as osteomalacia (39). A major feature
in these same patients is the occurrence of spontaneous tooth abscesses both in the
deciduous and permanent dentition, and in teeth without any signs of trauma or decay (43,
156) (Fig. 3). Despite the fact that teeth of patients with X-linked hypophosphatemia look
clinically normal, X-rays show a thin enamel layer and a radiolucent dentin layer, the latter
associated with enlarged pulp chambers resembling classic taurodontism and prominent pulp
horns extending up to the dentino-enamel junction (43) (Fig. 3). Histologic examination
show extensive enamel cracking and fissuring, and unmerged dentin calcospherites
separated by large nonmineralized interglobular spaces (42, 127) where the dentin matrix
contains degraded fragments of MEPE, DMP1 and osteopontin, and also the MEPE-
ASARM peptide (33). Abnormal dentin mineralization and enamel cracks may lead to rapid
pulp necrosis with periapical complications, and with bacterial ingress into the pulp being
facilitated to cause infections of the teeth and surrounding periodontium (44).

The major dental focus in X-linked hypophosphatemia patients has been on the tooth
abnormalities alone, and only a few studies have extended this by exploring their overall
periodontal status. Recently, a study has reported the periodontal condition of ten adults with
familial hypophosphatemic rickets (188). They showed that 60% of the patients presented
periodontal bone loss – a figure much higher than reported values for periodontitis
prevalence of 3.6% to 7.3% (28, 29) – suggesting that patients with hypophosphatemic
rickets are prone to increased periodontal bone loss and thus require more comprehensive
examination by dental care providers. Our unpublished clinical data support the results of
this study, and we generally observe symptoms of periodontal disease in roughly 70% of our
adult X-linked hypophosphatemia patients (data from the “Centre de Référence des maladies
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rares du métabolisme du phosphore et du calcium,” Assistance Publique-Hôpitaux de Paris,
France). Consistent with this, mice lacking DMP1 develop severe periodontal defects related
to defective alveolar bone and cementum (187). Of note in this regard, proteolytic
processing of DMP1 results in two major fragments (139) (a C-terminal 57 kDa and a 37
kDa N-terminal fragment) having different functions, the former inhibiting FGF23
expression (109), and both promoting hydroxyapatite formation (65).

Since the 1970s, a treatment has been introduced for X-linked hypophosphatemia which
combines the administration of oral phosphate salts and 1α,25-dihydroxyvitamin D3, the
hormonal form of vitamin D (in X-linked hypophosphatemia, vitamin D metabolism is
perturbed). This treatment for X-linked hypophosphatemia patients has considerably
improved their growth and bone mineralization, and it has decreased or prevented bone
malformations thus reducing the need for surgical intervention (39, 69). This combined
treatment has also had a substantial beneficial impact on oral health, especially for the
permanent teeth, which mineralize after birth and for which the treatment has some effect. In
2003, we reported that the decayed, missing and filled teeth index of patients treated since
early childhood was similar to the index of healthy, age-matched controls (43). Moreover,
we showed that tooth examination formed an important part of the evaluation of the benefits
of systemic treatment on mineralization (34, 44, 62). Indeed, permanent tooth analysis from
patients treated since early childhood showed a rescue by this treatment resulting in normal
dentin and a generally healthy overall tooth phenotype. In terms of periodontal disease, more
work is required to determine the treatment effects on the periodontal status of these
patients.

Specifically referring to X-linked hypophosphatemia, and as discussed in detail in the
preceding section, PHEX is involved in mineral ion homeostasis and in the binding and
proteolytic processing of the proteins and peptides regulating mineralization. Important to
this are the high levels of expression of these proteins (relative to other cells types) by
osteoblasts, osteocytes and odontoblasts (153, 165). In normal conditions, it has been
described that PHEX protectively binds to MEPE to prevent ASARM peptide release by
other proteases (74, 105), but when free inhibitory ASARM has been released, PHEX
degrades it to promote mineralization (4, 6). PHEX also completely degrades full-length
inhibitory osteopontin to promote mineralization, and in the absence of PHEX activity, an
osteopontin protein fragment accumulates in Hyp mouse bone (19) – the murine mouse
homolog of X-linked hypophosphatemia. With PHEX mutations in X-linked
hypophosphatemia, excessive ASARM and inhibitory osteopontin fragments accumulate to
inhibit mineralization. High levels of ASARM peptide have been detected in the serum of
patients with X-linked hypophosphatemia, and in Hyp mice (35), and the peptide
accumulates in the kidneys (35) where it impairs phosphate uptake from the urine and
consequently induces hypophosphatemia (49). More recently, MEPE-derived ASARM
peptides have been shown to inhibit in a dose-dependent manner the mineralization of
human primary osteoblast cultures grown under differentiating conditions (13). Consistent
with this, experiments both in vivo and in vitro have confirmed the capacity of MEPE-
derived ASARM peptides to inhibit both dentin mineralization and odontoblast
differentiation (unpublished data). In schematic format, key determinants of normal
mineralization are summarized as they relate to X-linked hypophosphatemia (Fig. 4).

Conclusions
The structure and function of the periodontium – including the teeth, bone and the soft
surrounding tissues – act collectively to provide for occlusion and mastication. Essential to
these activities is mineralization of bone and tooth extracellular matrices, and mineralization
of the extremities of the periodontal ligament fibres where they insert either into alveolar

McKee et al. Page 10

Periodontol 2000. Author manuscript; available in PMC 2014 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



bone at one end, and into cementum at the other end. The proper function of this suspensory
apparatus relies on this essential mineralization, and diseases where bone and tooth
mineralization is altered – such as X-linked hypophosphatemia and hypophosphatasia –
invariably lead to malformed and weak bones and teeth, and premature tooth loss and tooth
infections. Substantial progress has been made in recent years in understanding the
underlying mechanisms contributing to mineralization diseases where bones are soft
(hypomineralized), and some new clinical treatments are showing great promise in
promoting mineralization, particularly of bone. Additional work is now required to extend
this progress to the treatment of diseased dental tissues.
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Figure 1.
(A) Anatomical relationships of mineralized tissues of the tooth and surrounding hard and
soft tissues of the periodontium. (B) Light microscopic relationships of periodontal tissues
near the cemento-enamel junction. Junctional epithelium (JE) abuts against the enamel (here
enamel space [ES] after sample decalcification), and a thin layer of acellular cementum
(AC) interfaces with the dentin (Den) at the dentino-enamel junction. Periodontal ligament
(PDL) collagen fibres surround the tooth, inserting at one end into the acellular cementum
and inserting at the other end into a fringe of darkly stained bone (arrows) lining the
alveolus. (C,D) Electron microscopy after colloidal-gold immunolabeling (small black
particles) for osteopontin of periodontal ligament (PDL) collagen fibrils inserting into the
acellular cementum (AC) apposed to the dentin (Den) at the dentino-enamel junction (left
panel), and into the fringe of alveolar bone (arrows) lining the alveolus (right panel). Images
obtained from the first molar of a 1-month-old mouse.
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Figure 2.
Determinants of normal mineralization relevant to hypophosphatasia. The extracellular
phosphate/pyrophosphate ratio is regulated by phosphatase orphan 1 (PHOSPHO1),
ectonucleotide pyrophosphatase phosphodiesterase 1 (NPP1), progressive ankylosis protein
(ANK), and tissue-nonspecific alkaline phosphatase (TNAP). Inactivating mutations in the
enzyme TNAP result in an increase in extracellular pyrophosphate that inhibits
mineralization and is a key factor in causing hypophosphatasia. Similar molecular
determinants are thought to occur related to matrix vesicles. In the extracellular matrix,
phosphorylated osteopontin (phosOPN) inhibits mineralization, and dephosphorylation of
osteopontin (dephosOPN; and possibly other matrix proteins) by TNAP may contribute to
extracellular phosphate levels. Green boxes indicate positive regulators of mineralization,
while red boxes indicate negative regulators of mineralization. Citations supporting the
indicated functions are shown by the numbers in parentheses. PEA, phosphoethanolamine;
EA, ethanolamine; PCho, phosphocholine; Cho, choline; Pi, phosphate; PPi, pyrophosphate;
NTPs, nucleotide triphosphates.
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Figure 3.
(A,B) Tooth radiographs from a normal, 10-year-old male, and from a 10-year-old male
patient with X-linked hypophosphatemia (XLH) caused by an inactivating mutation in the
PHEX gene. In deciduous molars, note the enlarged pulp chambers (asterisks), the
prominent pulp horns, and the radiolucency of the hypomineralized dentin that mineralized
prior to the onset of systemic treatment. (C,D) Micro-computed tomography of a crown
from the upper-right, second deciduous molar (seen on the panoramic X-ray inset) of a 13-
year-old female X-linked hypophosphatemia female patient with a mutation in the PHEX
gene. Mineralization voids (the spotty areas indicated by the arrows in panel C accumulating
in the dentin near the dentino-enamel junction (DEJ) were rendered in grey using 3D
reconstruction software to compile volumetric data from the 2D X-ray “slices,” one of
which is depicted in panel D where the mineralization voids appear white. (E,F) Photograph
and occlusal X-ray of the upper central right deciduous incisor from a 6-year-old X-linked
hypophosphatemia male patient with a mutation of the PHEX gene. A large abscess
(arrowhead) is observed related to the incisor root; the tooth was extracted after systemic
treatment with antibiotics.
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Figure 4.
Determinants of normal mineralization relevant to X-linked hypophosphatemia. Local and
systemic regulation of mineralization is controlled by phosphate-regulating gene with
homologies to endopeptidases on the X chromosome (PHEX). PHEX regulates
mineralization locally at the level of the extracellular matrix by directly degrading
mineralization inhibitors such as osteopontin and ASARM peptides. Systemic regulation
involves influencing phosphate homeostasis indirectly through fibroblast growth factor 23
(FGF23), a key circulating factor that directs sodium-dependent phosphate transporters
(NPT2) in the kidney and intestine, thus controling phosphate reabsorption. Green boxes
indicate positive regulators of mineralization, red boxes indicate negative regulators of
mineralization, and grey boxes indicate indirect regulators of mineralization. Citations
supporting the indicated functions are shown by the numbers in parentheses.

McKee et al. Page 25

Periodontol 2000. Author manuscript; available in PMC 2014 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

McKee et al. Page 26

Ta
bl

e 
1

H
um

an
 p

ro
te

in
s/

ge
ne

s 
as

so
ci

at
ed

 w
it

h 
m

in
er

al
iz

at
io

n

P
ro

te
in

 a
bb

re
vi

at
io

n
G

en
e 

na
m

e(
s)

P
ro

te
in

 f
un

ct
io

n

T
N

A
P

T
is

su
e-

no
ns

pe
ci

fi
c 

al
ka

lin
e 

ph
os

ph
at

as
e

(A
L

PL
)

T
N

A
P 

is
 a

 m
em

br
an

e-
bo

un
d 

ph
os

ph
at

as
e 

pr
om

in
en

t i
n 

os
te

ob
la

st
s,

 c
ho

nd
ro

cy
te

s 
an

d 
od

on
to

bl
as

ts
, a

s 
w

el
l a

s 
in

 th
ei

r
m

at
ri

x 
ve

si
cl

es
 (

12
6)

. I
n 

th
e 

sk
el

et
on

, i
t h

yd
ro

ly
ze

s 
th

e 
m

in
er

al
iz

at
io

n 
in

hi
bi

to
r 

py
ro

ph
os

ph
at

e,
 a

ls
o 

pr
od

uc
in

g
ph

os
ph

at
e 

lo
ca

lly
 in

 th
e 

m
at

ri
x.

 T
N

A
P 

is
 a

ls
o 

fo
un

d 
in

 o
th

er
 o

rg
an

s 
(l

iv
er

, k
id

ne
y,

 s
ki

n)
, h

ow
ev

er
 li

ttl
e 

is
 k

no
w

n 
ab

ou
t

its
 f

un
ct

io
n 

in
 th

es
e 

tis
su

es
.

PH
E

X
, P

E
X

Ph
os

ph
at

e-
re

gu
la

tin
g 

ge
ne

 w
ith

 h
om

ol
og

ie
s

to
 e

nd
op

ep
tid

as
es

 o
n 

th
e 

X
 c

hr
om

os
om

e
(P

H
E

X
)

PH
E

X
 is

 a
 m

em
br

an
e-

bo
un

d 
en

do
pe

pt
id

as
e 

fo
un

d 
pr

ed
om

in
an

tly
 in

 o
st

eo
bl

as
ts

, o
st

eo
cy

te
s 

an
d 

od
on

to
bl

as
ts

 (
21

, 7
3,

15
2,

 1
53

).
 M

ut
at

io
ns

 in
 P

H
E

X
 le

ad
 to

 X
-l

in
ke

d 
hy

po
ph

os
ph

at
em

ia
, w

hi
ch

 is
 a

cc
om

pa
ni

ed
 b

y 
an

 in
cr

ea
se

 in
 c

ir
cu

la
tin

g
le

ve
ls

 o
f 

FG
F2

3 
re

su
lti

ng
 in

 r
en

al
 p

ho
sp

ha
te

 w
as

tin
g 

(1
41

, 1
47

).
 P

H
E

X
 p

ro
te

ct
s 

M
E

PE
 f

ro
m

 c
le

av
ag

e 
(7

4)
, a

s 
w

el
l a

s
cl

ea
vi

ng
 th

e 
ph

ys
io

lo
gi

ca
lly

 r
el

ev
an

t m
in

er
al

iz
at

io
n 

in
hi

bi
to

rs
 o

st
eo

po
nt

in
 (

19
) 

an
d 

th
e 

M
E

PE
 A

SA
R

M
 a

nd
 O

PN
A

SA
R

M
 p

ep
tid

es
 (

4,
 6

).

A
N

K
Pr

og
re

ss
iv

e 
an

ky
lo

si
s 

pr
ot

ei
n 

hu
m

an
(A

N
K

H
)

A
N

K
 is

 a
 tr

an
sm

em
br

an
e 

pr
ot

ei
n 

th
at

 a
ct

s 
as

 p
yr

op
ho

sp
ha

te
 tr

an
sp

or
te

r,
 e

xp
or

tin
g 

in
tr

ac
el

lu
la

r 
py

ro
ph

os
ph

at
e 

in
to

 th
e

ex
tr

ac
el

lu
la

r 
sp

ac
e 

to
 in

hi
bi

t m
in

er
al

iz
at

io
n 

(3
).

 A
N

K
 lo

ss
-o

f-
fu

nc
tio

n 
m

ut
at

io
ns

 le
ad

 to
 s

of
t-

tis
su

e 
ca

lc
if

ic
at

io
n 

(8
5)

w
hi

le
 A

N
K

 g
ai

n-
of

-f
un

ct
io

n 
m

ut
at

io
ns

 in
 h

um
an

s 
le

ad
s 

to
 c

al
ci

um
 p

yr
op

ho
sp

ha
te

 d
is

ea
se

 c
ha

ra
ct

er
iz

ed
 b

y 
th

e
fo

rm
at

io
n 

of
 c

al
ci

um
 p

yr
op

ho
sp

ha
te

 c
ry

st
al

s 
in

 c
ar

til
ag

e 
ex

tr
ac

el
lu

la
r 

m
at

ri
x 

(3
).

N
PP

1
E

ct
on

uc
le

ot
id

e 
py

ro
ph

os
ph

at
as

e
ph

os
ph

od
ie

st
er

as
e 

1 
(E

N
PP

1)
N

PP
1 

is
 a

 ty
pe

 I
I 

tr
an

sm
em

br
an

e 
ec

to
-e

nz
ym

e 
th

at
 h

yd
ro

ly
ze

s 
nu

cl
eo

tid
e 

tr
ip

ho
sp

ha
te

s 
to

 g
en

er
at

e 
ex

tr
ac

el
lu

la
r

py
ro

ph
os

ph
at

e 
to

 in
hi

bi
t m

in
er

al
iz

at
io

n 
(1

64
).

 A
 lo

ss
-o

f-
fu

nc
tio

n 
m

ut
at

io
n 

in
 th

e 
ge

ne
 e

nc
od

in
g 

th
is

 e
nz

ym
e 

le
ad

s 
to

id
io

pa
th

ic
 in

fa
nt

ile
 a

rt
er

ia
l c

al
ci

fi
ca

tio
n 

(1
54

).

PH
O

SP
H

O
1

Ph
os

ph
at

as
e 

or
ph

an
 1

 (P
H

O
SP

H
O

1)
PH

O
SP

H
O

1 
is

 a
n 

en
zy

m
e 

pr
om

in
en

t i
n 

m
in

er
al

iz
ed

 ti
ss

ue
 c

el
ls

 th
at

 e
xh

ib
its

 p
ho

sp
ha

ta
se

 a
ct

iv
ity

 to
w

ar
ds

ph
os

ph
oe

th
an

ol
am

in
e 

an
d 

ph
os

ph
oc

ho
lin

e 
(1

46
).

 P
H

O
SP

H
O

1 
is

 a
ls

o 
pr

es
en

t i
n 

m
at

ri
x 

ve
si

cl
es

 a
nd

 is
 th

er
ef

or
e 

th
ou

gh
t

to
 p

la
y 

a 
ro

le
 in

 th
e 

in
iti

at
io

n 
of

 m
at

ri
x 

m
in

er
al

iz
at

io
n 

(1
45

).

O
PN

 (
O

st
eo

po
nt

in
)

Se
cr

et
ed

 p
ho

sp
ho

pr
ot

ei
n 

1 
(S

PP
1)

O
PN

 is
 p

ro
du

ce
d 

by
 m

an
y 

ce
ll 

ty
pe

s,
 a

nd
 in

 b
on

e 
by

 o
st

eo
bl

as
ts

, o
st

eo
cy

te
s 

an
d 

os
te

oc
la

st
s,

 a
nd

 in
 to

ot
h 

by
od

on
to

bl
as

ts
 a

nd
 c

em
en

to
bl

as
ts

 (
11

8)
. M

an
y 

in
 v

itr
o 

an
d 

in
 v

iv
o 

st
ud

ie
s 

ha
ve

 s
ho

w
n 

th
at

 O
PN

 h
as

 a
 s

tr
on

g 
in

hi
bi

to
ry

ro
le

 in
 m

in
er

al
iz

at
io

n 
th

at
 is

 la
rg

el
y 

ph
os

ph
or

yl
at

io
n 

de
pe

nd
en

t (
5,

 3
1,

 6
4)

. O
PN

 is
 a

ls
o 

th
ou

gh
t t

o 
pl

ay
 a

 r
ol

e 
in

os
te

oc
la

st
 d

ev
el

op
m

en
t a

nd
 f

un
ct

io
n 

(5
7)

, c
el

l a
dh

es
io

n 
an

d 
m

ig
ra

tio
n 

(1
03

),
 a

s 
w

el
l a

s 
se

ve
ra

l i
m

m
un

e-
re

la
te

d
fu

nc
tio

ns
 (

17
3)

.

B
SP

 (
B

on
e 

si
al

op
ro

te
in

)
In

te
gr

in
-b

in
di

ng
 s

ia
lo

pr
ot

ei
n 

(I
B

SP
)

B
SP

 is
 p

ro
m

in
en

t i
n 

m
in

er
al

iz
ed

 ti
ss

ue
 e

xt
ra

ce
llu

la
r 

m
at

ri
ce

s 
su

ch
 a

s 
bo

ne
, d

en
tin

 a
nd

 m
in

er
al

iz
ed

 c
ar

til
ag

e,
 w

he
re

 it
 is

pr
od

uc
ed

 m
ai

nl
y 

by
 o

st
eo

bl
as

ts
, o

st
eo

cy
te

s 
an

d 
ch

on
dr

oc
yt

es
 (

60
, 1

37
).

 R
ep

or
te

d 
fu

nc
tio

ns
 in

cl
ud

e 
hy

dr
ox

ya
pa

tit
e

nu
cl

ea
tio

n 
(7

8)
 a

s 
w

el
l a

s 
pr

om
ot

io
n 

of
 o

st
eo

cl
as

to
ge

ne
si

s 
(1

13
).

M
E

PE
M

at
ri

x 
ex

tr
ac

el
lu

la
r p

ho
sp

ho
gl

yc
op

ro
te

in
(M

E
PE

)
M

E
PE

 is
 m

ai
nl

y 
pr

od
uc

ed
 b

y 
os

te
oc

yt
es

 (
12

9)
 a

nd
 o

st
eo

bl
as

ts
 (

12
),

 a
nd

 is
 u

pr
eg

ul
at

ed
 d

ur
in

g 
os

te
ob

la
st

 m
at

ri
x

m
in

er
al

iz
at

io
n.

 M
E

PE
 p

la
ys

 a
 r

ol
e 

in
 m

at
ri

x 
m

in
er

al
iz

at
io

n 
by

 e
nh

an
ci

ng
 o

st
eo

bl
as

tic
 a

ct
iv

ity
 (

71
) 

an
d 

in
di

re
ct

ly
su

pp
re

ss
in

g 
os

te
oc

la
st

og
en

es
is

 (
48

).
 I

ts
 A

SA
R

M
 p

ep
tid

e,
 d

er
iv

ed
 f

ro
m

 a
 C

-t
er

m
in

al
 c

le
av

ag
e,

 h
as

 b
ee

n 
sh

ow
n 

to
 b

e 
a

po
te

nt
 m

in
er

al
iz

at
io

n 
in

hi
bi

to
r 

(6
) 

an
d 

an
 in

di
re

ct
 p

ro
m

ot
er

 o
f 

re
na

l p
ho

sp
ha

te
 e

xc
re

tio
n 

(1
51

).

D
M

P1
D

en
tin

 m
at

ri
x 

pr
ot

ei
n 

1 
(D

M
P1

)
D

M
P1

 is
 a

 p
ro

m
in

en
t m

at
ri

x 
pr

ot
ei

n 
in

 te
et

h 
(p

re
de

nt
in

, d
en

tin
 a

nd
 c

em
en

tu
m

 -
 o

do
nt

ob
la

st
s 

an
d 

ce
m

en
to

bl
as

ts
),

 b
on

es
(o

st
eo

cy
te

s)
 a

nd
 to

 s
om

e 
ex

te
nt

 in
 c

er
ta

in
 s

of
t t

is
su

es
 (

10
8,

 1
38

).
 G

en
er

al
ly

, i
t i

s 
pr

oc
es

se
d 

to
 3

7-
kD

a 
N

-t
er

m
in

al
 a

nd
57

-k
D

a 
C

-t
er

m
in

al
 f

ra
gm

en
ts

 (
13

9)
. T

he
 f

ul
l-

le
ng

th
 a

nd
 f

ra
gm

en
t f

or
m

s 
of

 D
M

P1
 h

av
e 

be
en

 s
ho

w
n 

to
 h

av
e 

m
an

y
bi

ol
og

ic
al

 f
un

ct
io

ns
 in

cl
ud

in
g 

as
 a

 h
yd

ro
xy

ap
at

ite
 n

uc
le

at
or

 (
fu

ll-
le

ng
th

 a
nd

 C
-t

er
m

in
al

 f
ra

gm
en

t)
 (

59
) 

an
d 

as
 a

pr
om

ot
er

 o
f 

ce
ll 

di
ff

er
en

tia
tio

n 
vi

a 
its

 R
G

D
 in

te
ra

ct
io

n 
w

ith
 c

el
l s

ur
fa

ce
 in

te
gr

in
/C

D
44

 r
ec

ep
to

rs
 (

96
).

 D
M

P1
 is

 a
ls

o
th

ou
gh

t t
o 

co
nt

ro
l p

ho
sp

ha
te

 h
om

eo
st

as
is

 th
ro

ug
h 

th
e 

FG
F2

3 
pa

th
w

ay
 (

51
),

 a
s 

w
el

l a
s 

os
te

og
en

es
is

 a
nd

 d
en

tin
og

en
es

is
(1

38
).

D
SP

P
D

en
tin

 s
ia

lo
ph

os
ph

op
ro

te
in

 (D
SP

P)
D

SP
P 

is
 f

ou
nd

 p
re

do
m

in
an

tly
 in

 d
en

tin
 (

an
d 

to
 a

 le
ss

er
 e

xt
en

t i
n 

bo
ne

),
 b

ut
 is

 im
m

ed
ia

te
ly

 c
le

av
ed

 in
to

 it
s 

ac
tiv

e
fr

ag
m

en
ts

 d
en

tin
 p

ho
sp

ho
pr

ot
ei

n 
an

d 
de

nt
in

 s
ia

lo
pr

ot
ei

n 
(1

10
, 1

40
).

 D
en

tin
 p

ho
sp

ho
pr

ot
ei

n 
co

nt
ai

ns
 a

 la
rg

e 
nu

m
be

r 
of

as
pa

rt
ic

 a
ci

d 
an

d 
ph

os
ph

os
er

in
e 

re
pe

at
s 

w
hi

ch
 a

llo
w

s 
it 

to
 b

in
d 

to
 h

yd
ro

xy
ap

at
ite

 a
nd

 is
 th

ou
gh

t t
o 

in
iti

at
e 

an
d

m
od

ul
at

e 
de

nt
in

 m
in

er
al

iz
at

io
n 

(1
35

).
 T

he
 f

un
ct

io
n 

of
 d

en
tin

 s
ia

lo
pr

ot
ei

n 
is

 n
ot

 y
et

 k
no

w
n.

Periodontol 2000. Author manuscript; available in PMC 2014 October 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

McKee et al. Page 27

P
ro

te
in

 a
bb

re
vi

at
io

n
G

en
e 

na
m

e(
s)

P
ro

te
in

 f
un

ct
io

n

FG
F2

3
Fi

br
ob

la
st

 g
ro

w
th

 fa
ct

or
 2

3 
(F

G
F2

3)
FG

F2
3 

is
 a

 s
ec

re
te

d 
pr

ot
ei

n 
m

ai
nl

y 
ex

pr
es

se
d 

by
 o

st
eo

bl
as

ts
 a

nd
 o

st
eo

cy
te

s 
th

at
 a

ct
s 

as
 a

 c
ir

cu
la

tin
g 

fa
ct

or
 to

 c
on

tr
ol

se
ru

m
 p

ho
sp

ha
te

 le
ve

ls
 (

14
2)

. F
G

F2
3 

bi
nd

s 
to

 F
G

F 
re

ce
pt

or
 1

, 3
 o

r 
4 

an
d 

its
 c

o-
re

ce
pt

or
 K

lo
th

o 
in

 th
e 

pr
ox

im
al

 tu
bu

le
of

 th
e 

ki
dn

ey
, w

hi
ch

 d
ec

re
as

es
 th

e 
ex

pr
es

si
on

 o
f 

so
di

um
-d

ep
en

de
nt

 p
ho

sp
ha

te
 c

ot
ra

ns
po

rt
er

 2
, t

hu
s 

re
du

ci
ng

 p
ho

sp
ha

te
re

ab
so

rp
tio

n 
(1

42
, 1

57
).

 I
t a

ls
o 

su
pp

re
ss

es
 1

,2
5-

di
hy

ro
xy

vi
ta

m
in

 D
 le

ve
ls

 b
y 

do
w

nr
eg

ul
at

in
g 

re
na

l 2
5-

hy
dr

ox
yv

ita
m

in
D

-1
α

-h
yd

ro
xy

la
se

.

K
L

O
T

H
O

K
L

O
T

H
O

 (K
L

)
K

L
O

T
H

O
 is

 p
ro

du
ce

d 
in

 a
 li

m
ite

d 
nu

m
be

r 
of

 ti
ss

ue
s,

 w
ith

 th
e 

hi
gh

es
t b

ei
ng

 in
 th

e 
di

st
al

 c
on

vo
lu

te
d 

tu
bu

le
s 

of
 th

e
ki

dn
ey

 (
98

).
 H

er
e,

 K
L

O
T

H
O

 a
ct

s 
as

 a
 m

em
br

an
e-

bo
un

d 
co

-r
ec

ep
to

r 
fo

r 
FG

F2
3,

 a
llo

w
in

g 
it 

to
 b

in
d 

to
 f

ib
ro

bl
as

t g
ro

w
th

fa
ct

or
 r

ec
ep

to
rs

 1
, 3

, a
nd

 4
, a

nd
 c

on
tr

ib
ut

e 
to

 p
ho

sp
ha

te
 h

om
eo

st
as

is
 (

99
).

 A
lth

ou
gh

 le
ss

 c
om

m
on

, K
L

O
T

H
O

 c
an

 b
e

fo
un

d 
in

 a
 s

ec
re

te
d 

fo
rm

 w
he

re
 it

 is
 th

ou
gh

t t
o 

ac
tiv

at
e 

ce
ll 

su
rf

ac
e 

io
n 

ch
an

ne
ls

, i
on

 tr
an

sp
or

te
rs

, a
nd

 g
ro

w
th

 f
ac

to
r

re
ce

pt
or

s 
(9

7)
.

SL
C

34
A

3,
 N

a/
Pi

-I
Ic

 (
N

PT
2C

)
So

lu
te

 c
ar

ri
er

 fa
m

ily
 3

4 
(s

od
iu

m
 p

ho
sp

ha
te

),
m

em
be

r 3
 p

ro
te

in
; R

en
al

 s
od

iu
m

-p
ho

sp
ha

te
co

tr
an

sp
or

te
r, 

N
a/

Pi
-I

Ic
 (S

L
C

34
A

3)

SL
C

34
A

3 
is

 p
ro

m
in

en
t i

n 
th

e 
ap

ic
al

 m
em

br
an

e 
of

 p
ro

xi
m

al
 tu

bu
la

r 
ce

lls
 in

 th
e 

ki
dn

ey
 (

15
5)

. L
ik

e 
ot

he
r 

so
di

um
-

de
pe

nd
en

t p
ho

sp
ha

te
 c

ot
ra

ns
po

rt
er

s,
 it

 p
la

ys
 a

 m
aj

or
 r

ol
e 

in
 e

xt
ra

ce
llu

la
r 

ph
os

ph
at

e 
ho

m
eo

st
as

is
.

Periodontol 2000. Author manuscript; available in PMC 2014 October 01.


